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Varieties of evaluation

Behavioral

• Standard (“IID”; Independent
and Identically Distributed)
• Exploratory
• Hypothesis-driven
• Challenge
• Adversarial
• Security-oriented

Structural

• Probing
• Feature attribution
• Interventions
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Limits of behavioral testing
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Limits of behavioral testing

sixty three

thirty six

thirty two

twenty one

four

twenty two

five

eighty nine

fifty six

sixteen

Even/Odd Model 2

even

4 / 64



Overview Probing Feature attribution Causal abstraction IIT DAS Conclusions

Limits of behavioral testing

sixty three

thirty six

thirty two

twenty one

four

twenty two

five

eighty nine

fifty six

sixteen

Even/Odd Model 2

odd

4 / 64



Overview Probing Feature attribution Causal abstraction IIT DAS Conclusions

Limits of behavioral testing

sixty three

thirty six

thirty two

twenty one

four

twenty two

five

eighty nine

fifty six

sixteen

Even/Odd Model 2

odd

4 / 64



Overview Probing Feature attribution Causal abstraction IIT DAS Conclusions

Limits of behavioral testing

sixty three

thirty six

thirty two

twenty one

four

twenty two

five

eighty nine

fifty six

sixteen

Even/Odd Model 2

even

4 / 64



Overview Probing Feature attribution Causal abstraction IIT DAS Conclusions

Limits of behavioral testing
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Limits of behavioral testing
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Models today
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The interpretability dream
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The reality: Apparently just a mess (but only apparently!)
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Progress on benchmarks
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Systematicity

Fodor and Pylyshyn (1988:37):
“What we mean when we say that linguistic capacities are systematic is
that the ability to produce/understand some sentences is intrinsically
connected to the ability to produce/understand certain others.”

1. Sandy loves the puppy.
2. The puppy loves Sandy.
3. the turtle ∼ the puppy
4. The turtle loves Sandy.
5. …

Compositionality
The meaning of a phrase is a function of the meanings of its immediate
syntactic constituents and the way they are combined.
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A crucial prerequisite

Approved and
disapproved uses

Pernicious
social biases

Safety in
adversarial contexts

Analytic guarantees
about model behaviors
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Probing internal representations

4595

Figure 1: Summary statistics on BERT-large. Columns
on left show F1 dev-set scores for the baseline (P (0)

⌧ )
and full-model (P (L)

⌧ ) probes. Dark (blue) are the mix-
ing weight center of gravity (Eq. 2); light (purple) are
the expected layer from the cumulative scores (Eq. 4).

idence that the corresponding layer contains more
information related to that particular task.

Center-of-Gravity. As a summary statistic, we
define the mixing weight center of gravity as:

Ēs[`] =
LX

`=0

` · s(`)⌧ (2)

This reflects the average layer attended to for each
task; intuitively, we can interpret a higher value to
mean that the information needed for that task is
captured by higher layers.

3.2 Cumulative Scoring
We would like to estimate at which layer in the
encoder a target (s1, s2, label) can be correctly
predicted. Mixing weights cannot tell us this di-
rectly, because they are learned as parameters and
do not correspond to a distribution over data. A
naive classifier at a single layer cannot either, be-
cause information about a particular span may be
spread out across several layers, and as observed
in Peters et al. (2018b) the encoder may choose to
discard information at higher layers.

To address this, we train a series of classifiers
{P (`)

⌧ }` which use scalar mixing (Eq. 1) to attend
to layer ` as well as all previous layers. P (0)

⌧ corre-
sponds to a non-contextual baseline that uses only
a bag of word(piece) embeddings, while P

(L)
⌧ =

P⌧ corresponds to probing all layers of the BERT
model.

These classifiers are cumulative, in the sense
that P (`+1)

⌧ has a similar number of parameters but
with access to strictly more information than P

(`)
⌧ ,

Figure 2: Layer-wise metrics on BERT-large. Solid
(blue) are mixing weights s(`)⌧ (§3.1); outlined (purple)
are differential scores �(`)

⌧ (§3.2), normalized for each
task. Horizontal axis is encoder layer.

and we see intuitively that performance (F1 score)
generally increases as more layers are added.3 We
can then compute a differential score �(`)

⌧ , which
measures how much better we do on the probing
task if we observe one additional encoder layer `:

�(`)
⌧ = Score(P (`)

⌧ )� Score(P (`�1)
⌧ ) (3)

Expected Layer. Again, we compute a
(pseudo)4 expectation over the differential scores
as a summary statistic. To focus on the behavior
of the contextual encoder layers, we omit the con-
tribution of both the “trivial” examples resolved at
layer 0, as well as the remaining headroom from

3Note that if a new layer provides distracting features, the
probing model can overfit and performance can drop. We see
this in particular in the last 1-2 layers (Figure 2).

4This is not a true expectation because the F1 score is not
an expectation over examples.
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Feature attribution
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Intervention-based methods
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Analytical framework

Characterize
representations

Causal
inference

Improved
models

Probing
Feature attribution
Interventions
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Overview

1. Core idea: use supervised models (the probes) to determine what is
latently encoded in the hidden representations of our target models.

2. Often applied in the context of BERTology – see especially Tenney
et al. 2019.

3. A source of valuable insights, but we need to proceed with caution:
É A very powerful probe might lead you to see things that aren’t

in the target model (but rather in your probe).
É Probes cannot tell us about whether the information that we

identify has any causal relationship with the target model’s
behavior.

4. Final section: unsupervised probes.

15 / 64
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Recipe for probing

1. State a hypothesis about an aspect of the target model’s internal
structure.

2. Choose a supervised task that is a proxy for the internal structure of
interest.

3. Identify the place in the model where you believe the structure will
be encoded.

4. Train supervised probe on the chosen site(s).

16 / 64
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Core method

a c f m r w t

h

SmallLinearModel(h) = task

X y

h1 task1y

h2 task2y

h3 task3y

SmallLinearModel(X , y)
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Core method
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Probing or learning a new model?

1. Probes in the above sense are supervised models whose inputs are
frozen parameters of the model we are probing.

2. This is hard to distinguish from simply fitting a supervised model as
usual, with a particular choice for featurization.

3. At least some of the information that we identify is likely to be
stored in the probe model.

4. More powerful probes might “find” more information – by storing
more information in the probe parameters.
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Control tasks and probe selectivity

Control task
A random task with the same input/output structure as the target task.
• Word-sense classification: words assigned random fixed senses.
• POS tagging task: words assigned random fixed tags.
• Parsing: assigned edges randomly using simple strategies.

Selectivity
The difference between probe performance on the task and probe
performance on the control task.

19 / 64
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Control tasks and probe selectivity

2734

Figure 2: Selectivity is defined as the difference between
linguistic task accuracy and control task accuracy, and can
vary widely, as shown, across probes which achieve similar
linguistic task accuracies. These results taken from § 3.5.

provide insight into how representation and probe
interact to achieve high task accuracy.

Control tasks are based on the intuition that the
more a probe is able to make task output decisions
independently of the linguistic properties of a rep-
resentation, the less its accuracy on a linguistic task
necessarily reflects the properties of the representa-
tion. Thus, a good probe (one that provides insights
into the linguistic properties of a representation)
should be what we call selective, achieving high lin-
guistic task accuracy and low control task accuracy
(see Figure 2).

We show that selectivity can be a guide in
designing probes and interpreting probing results,
complementary to random representation baselines;
as of now, there is little consensus on how to design
probes. Early probing papers used linear functions
(Shi et al., 2016; Ettinger et al., 2016; Alain and
Bengio, 2016), which are still used (Bisazza and
Tump, 2018; Liu et al., 2019), but multi-layer
perceptron (MLP) probes are at least as popular
(Belinkov et al., 2017; Conneau et al., 2018; Adi
et al., 2017; Tenney et al., 2019; Ettinger et al.,
2018). Arguments have been made for “simple”
probes, e.g., that we want to find easily accessible
information in a representation (Liu et al., 2019;
Alain and Bengio, 2016). As a counterpoint
though, “complex” MLP probes have also been
suggested since useful properties might be encoded
non-linearly (Conneau et al., 2018), and they tend
to report similar trends to simpler probes anyway
(Belinkov et al., 2017; Qian et al., 2016).

We define control tasks corresponding to
English part-of-speech tagging and dependency

edge prediction, and use ELMo representations
to conduct a broad study of probe families,
hyperparameters, and regularization methods,
evaluating both linguistic task accuracy and
selectivity. We propose that selectivity be used for
building intuition about the expressivity of probes
and the properties of models, putting probing
accuracies into richer context. We find that:

1. With popular hyperparameter settings, MLP
probes achieve very low selectivity, suggest-
ing caution in interpreting how their results
reflect properties of representations. For ex-
ample, on part-of-speech tagging, 97.3 accu-
racy is achieved, compared to 92.8 control
task accuracy, resulting in 4.5 selectivity.

2. Linear and bilinear probes achieve relatively
high selectivity across a range of hyperparam-
eters. For example, a linear probe on part-of-
speech tagging achieves a similar 97.2 accu-
racy, and 71.2 control task accuracy, for 26.0
selectivity. This suggests that the small accu-
racy gain of the MLP may be explained by
increased probe expressivity.

3. The most popular method for controlling
probe complexity, dropout, does not consis-
tently lead to selective MLP probes. However,
control of MLP complexity through unintu-
itively small (10-dimensional) hidden states,
as well as small training sample sizes and
weight decay, lead to higher selectivity and
similar linguistic task accuracy.

Finally, we ask, can we meaningfully compare
the linguistic properties of layers of a model using
only linguistic task accuracy? We raise a poten-
tial problem with this approach: it fails to take
into account differences in ease of memorization
across layers. In particular, we find that while lin-
ear and MLP probes on the first layer of ELMo
(ELMo1) achieve slightly higher part-of-speech ac-
curacy than those on the second layer (ELMo2),
(97.2 compared to 96.6, for a loss of 0.6 ), the same
probes achieve much greater selectivity on ELMo2
(31.4 compared to 26.0, for a gain of 5.4). Thus,
the difference in selectivity in favor of ELMo2 is
much greater than the commonly known (Peters
et al., 2018a; Liu et al., 2019) difference in linguis-
tic task accuracy in favor of ELMo1; the difference
in accuracy may be explained by probes more eas-
ily accessing word identity features in ELMo1.
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Simple example
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No causal inferences

x y z

x y z

L1 L2 L3

1. Probe L1: it computes z
2. Probe L2: it computes x + y
3. Aha!

x y z

wS1

S2

4. But L2 has no impact on the output!

W1 =

 0
0
1

!

W2 =

 1
1
0

!

W3 =

 1
1
0

!

w =

 1
0
1

!

(xW1;xW2;xW3)w
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From probing to multi-task training

x y z

x y z

z x + y

w =

 1
0
1

!
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Unsupervised probes

1. Saphra and Lopez (2019): Singular Vector Canonical Correlation
Analysis as a probing technique

2. Clark et al. (2019) and Manning et al. (2020): Inspecting attention
weights.

3. Hewitt and Manning (2019) and Chi et al. (2020): Linear
transformations of hidden states to identify latent syntactic
structures in BERT.

4. Rogers et al. (2020): extensive discussion of probing and related
efforts and what they have revealed about BERT representations.
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Feature attribution
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captum.ai

1. Integrated gradients (Sundararajan et al. 2017)
2. Gradients
3. Saliency Maps (Simonyan et al. 2013)
4. DeepLift (Shrikumar et al. 2017)
5. Deconvolution (Zeiler and Fergus 2014)
6. LIME (Ribeiro et al. 2016)
7. Feature ablation
8. Feature permutation
9. …

27 / 64

https://captum.ai
https://github.com/cgpotts/cs224u/blob/main/feature_attribution.ipynb
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Axioms

Sensitivity
If two inputs x and x ′ differ only at dimension i and lead to different
predictions, then feature fi has non-zero attribution.

M([1, 0, 1]) = positive
M([1, 1, 1]) = negative

Implementation invariance
If two models M and M′ have identical input/output behavior, then the
attributions for M and M′ are identical.

28 / 64
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Gradients · inputs

InputXGradienti(M, x) =
∂M(x)
∂xi
· xi

1 """For both functions, the `forward` method of `model` is used.
2 `X` is an (m x n) tensor of attributions. Use `targets=None` for
3 models with scalar outputs, else supply a LongTensor giving a
4 label for each example."""
5
6 import torch
7 def grad_x_input(model, X, targets=None):
8 X.requires_grad = True
9 y = model(X)
10 y = y if targets is None else y[list(range(len(y))), targets]
11 (grads, ) = torch.autograd.grad(y.unbind(), X)
12 return grads * X
13
14 from captum.attr import InputXGradient
15 def captum_grad_x_input(model, X, target):
16 X.requires_grad = True
17 amod = InputXGradient(model)
18 return amod.attribute(X, target=target)

29 / 64
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Attributions wrt predicted vs. actual labels
1 import torch
2 import utils
3 from sklearn.datasets import make_classification
4 from torch_shallow_neural_classifier import

TorchShallowNeuralClassifier
5
6 utils.fix_random_seeds()
7
8 X, y = make_classification(n_samples=100, n_classes=2, n_features=4,

n_informative=4, n_redundant=0, random_state=1)
9
10 # Deliberately undertrained model:
11 mod_bad = TorchShallowNeuralClassifier(max_iter=1)
12 mod_bad.fit(X, y)
13
14 # Attributions wrt the true labels:
15 bad_true = captum_grad_x_input(mod_bad.model, torch.FloatTensor(X),

target=torch.LongTensor(y))
16 print(bad_true.mean(axis=0))
17 tensor([ 0.0204, -0.0181, 0.0508, 0.0194], grad_fn=<MeanBackward1 >)
18
19 # Attributions wrt the predicted labels:
20 bad_pred = mod_bad.predict(X)
21 bad_attr = captum_grad_x_input(mod_bad.model, torch.FloatTensor(X),

target=torch.LongTensor(bad_pred))
22 print(bad_attr.mean(axis=0))
23 tensor([0.0112, 0.0168, 0.0558, 0.0740], grad_fn=<MeanBackward1 >)

30 / 64
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Gradients · inputs fails sensitivity

M(x) = 1− max(0, 1− x)

M(0) = 1− max(0, 1− 0) = 1− 1 = 0
M(2) = 1− max(0, 1− 2) = 1− 0 = 1

InputXGradient(M, 0) = max(0, sign(1− 0)) · 0 = 1 · 0 = 0
InputXGradient(M, 2) = max(0, sign(1− 2)) · 2 = 0 · 2 = 0

31 / 64

Example from Sundararajan et al. 2017
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Integrated gradients: Intuition

0.0 0.2 0.4 0.6
x1

0.0

0.2

0.4

0.6

0.8

1.0
x2
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Integrated gradients: Core computation

IGi(M, x , x ′) =

5
︷      ︸︸      ︷
(xi − x ′i ) ·

4
︷︸︸︷

m
∑

k=1

3
︷                            ︸︸                            ︷
∂M(

2
︷                    ︸︸                    ︷
x ′ +

1
︷︸︸︷

k
m
· (x − x ′))

∂xi
·

4
︷︸︸︷

1
m

1. Generate α = [1, . . . ,m]

2. Interpolate inputs between baseline x ′ and actual input x
3. Compute gradients for each interpolated input
4. Integral approximation through averaging
5. Scaling to remain in the space region as the original

33 / 64

Adapted from the TensorFlow integrated gradients tutorial

https://www.tensorflow.org/tutorials/interpretability/integrated_gradients
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Sensitivity again

M(x) = 1− max(0, 1− x)

M(0) = 1− max(0, 1− 0) = 1− 1 = 0
M(2) = 1− max(0, 1− 2) = 1− 0 = 1

InputXGradient(M, 0) = max(0, sign(1− 0)) · 0 = 1 · 0 = 0
InputXGradient(M, 2) = max(0, sign(1− 2)) · 2 = 0 · 2 = 0

IGi(M, 2, 0) = (2− 0) ·
∑













max(0, sign(1− 0.00)
max(0, sign(1− 0.02)
max(0, sign(1− 0.04)

...
max(0, sign(1− 2.00)













·
1
m
≈ 1
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BERT example

x4 1 x7 2 x32 3 x43 4 x0 5

y
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BERT example
1 import torch
2 import torch.nn.functional as F
3 from transformers import AutoModelForSequenceClassification ,

AutoTokenizer
4 from captum.attr import LayerIntegratedGradients
5 from captum.attr import visualization as viz
6
7 weights = 'cardiffnlp/twitter-roberta-base-sentiment'
8 tok = AutoTokenizer.from_pretrained(weights)
9 model = AutoModelForSequenceClassification.from_pretrained(weights)
10
11 def predict_one_proba(text):
12 input_ids = tok.encode(text, add_special_tokens=True,

return_tensors='pt')
13 model.eval()
14 with torch.no_grad():
15 logits = model(input_ids)[0]
16 preds = F.softmax(logits, dim=1)
17 model.train()
18 return preds.squeeze(0)
19
20 def ig_encodings(text):
21 """Get base and source ids."""
22 input_ids = tok.encode(text, add_special_tokens=False)
23 base_ids = [tok.pad_token_id] * len(input_ids)
24 input_ids = [tok.cls_token_id] + input_ids + [tok.sep_token_id]
25 base_ids = [tok.cls_token_id] + base_ids + [tok.sep_token_id]
26 return torch.LongTensor([input_ids]), torch.LongTensor([base_ids])
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BERT example

1 def ig_forward(inputs):
2 return model(inputs).logits
3
4 #layer = model.roberta.encoder.layer[0]
5 layer = model.roberta.embeddings
6 ig = LayerIntegratedGradients(ig_forward, layer)
7
8 text = "This is illuminating!"
9 true_class = 2 # positive
10
11 input_ids, base_ids = ig_encodings(text)
12
13 # Attributions wrt to the true label:
14 attrs, delta = ig.attribute(input_ids, base_ids, target=true_class,

return_convergence_delta=True)
15
16 # `scores` has dimension [1, 6, 768]
17 scores = attrs.sum(dim=-1)
18 # z-score normalize the attributions:
19 scores = (scores - scores.mean()) / scores.norm()
20
21 pred_probs = predict_one_proba(text)
22 pred_class = pred_probs.argmax()
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BERT example

1 toks = tok.convert_ids_to_tokens(input_ids.tolist()[0])
2 toks = [x.strip("Ġ") for x in toks]
3
4 score_vis = viz.VisualizationDataRecord(
5 word_attributions=scores.squeeze(0),
6 pred_prob=pred_probs.max(),
7 pred_class=pred_class,
8 true_class=true_class,
9 attr_class=None,
10 attr_score=attrs.sum(),
11 raw_input_ids=toks,
12 convergence_score=delta)
13
14 viz.visualize_text([score_vis])
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A small challenge test

Attributions with respect to the true labels:
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Causal abstraction
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Recipe for causal abstraction

1. State a hypothesis about (an aspect of) the target model’s causal
structure.

2. Search for an alignment between the causal model and target model.
3. Perform interchange interventions.
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Our neural network successfully adds three numbers.
In human-interpretable terms, how does it do it?

43 / 64



Overview Probing Feature attribution Causal abstraction IIT DAS Conclusions

x y z

wS1

S2

L1 L2 L3

1 3 55

54

9

9

1410

4 5 6

69

15

1 3 5

1 3 5

L1 L2

L1 L2L2

L3

9

L3

1410

4 5 6

4 5 6

L1

L1

L2

L2

L3

L3

15

Our causal model adds the first two inputs to form an
intermediate variable S1.
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We hypothesize that the neural representation L3 plays
the same role as S1.
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To test this, we run our causal model on [1, 3, 5] and
obtain output 9.
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And we run the causal model on [4, 5, 6] to get 15.
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Then we perform an interchange intervention targeting
the value of S1.
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This changes the value of S1 in the left example to 9.
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And this causes the model to output 14.
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Will the neural network show the same behavior?
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We process the same two examples.
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We hypothesized that L3 plays the role of S1.
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So we perform an intervention targeting L3.
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What is the effect of this intervention?
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If this leads the network to output 14, we have a piece
of evidence that L3 plays the same role as S1.
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We can repeat the same process using the hypothesis
that L1 plays the role of w .
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We first intervene on the causal model to get an
output for this intervention.
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Then we intervene on the neural model.
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And we check whether the output corresponds to the
output of the causal model under the aligned

intervention.
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Finally, if we intervene on L2 and find that the output
label never changes, then we have shown that it plays

no role in the model’s behavior.
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Interchange intervention accuracy (IIA)

1. IIA is the percentage of interchange interventions that lead to
outputs that match those of the causal model under the chosen
alignment.

2. IIA is scaled in [0, 1], as with a normal accuracy metric.
3. IIA can actually be above task performance, if the interchange

interventions put the model into a better state.
4. IIA is extremely sensitive to the set of interchange interventions one

does.
5. Pay particular attention to how many interchange interventions

should change the output label, since they provide the clearest
evidence.
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Findings from causal abstraction

1. Fine-tuned BERT models succeed at hard, out-of-domain examples
involving lexical entailment and negation because they are
abstracted by simple monotonicity programs (Geiger et al. 2020).

2. Fine-tuned BERT models succeed at the MQNLI task because they
find compositional solutions (Geiger et al. 2021).

3. Models succeed at the MNIST Pointer Value Retrieval task
(MNIST-PVR; Zhang et al. 2021) because they are abstracted by
simple programs like “if the digit is 6, then the label is in the lower
left” (Geiger et al. 2021).

4. BART and T5 use coherent entity and situation representations that
evolve as the discourse unfolds (Li et al. 2021).

5. This course notebook is a hands-on introduction to these techniques:
https://github.com/cgpotts/cs224u/blob/main/iit_equality.ipynb
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Connections to the literature

• Constructive abstraction (Beckers et al. 2020)
• Causal mediation analysis (Vig et al. 2020)
• Role Learning Networks (Soulos et al. 2020)
• CausaLM (Feder et al. 2021)
• Amnesic Probing (Elazar et al. 2021)
• Circuits (Cammarata et al. 2020; Olsson et al. 2022; Wang et al. 2022)
• Causal scrubbing (LawrenceC et al. 2022)
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For more:
https://ai.stanford.edu/blog/causal-abstraction/

https://ai.stanford.edu/blog/causal-abstraction/


Overview Probing Feature attribution Causal abstraction IIT DAS Conclusions

Summary

Characterize
representations

Causal
inference

Improved
models

Probing
Feature attribution
Interventions

47 / 64



Overview Probing Feature attribution Causal abstraction IIT DAS Conclusions

Interchange Intervention Training
(IIT)
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Suppose our network doesn’t agree with the causal
model under our intervention.
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We can correct that misalignment with interchange
intervention training.
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The causal model provides us with a true label, and a
comparison with the incorrect prediction gives us an

error signal.
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The gradients flow from this node to the top hidden
layer as usual.
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And the gradients flow as usual for the left and center
hidden states.
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But the intervention site receives a double update,
from the target example and the source example at

right.
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This process gradually brings L3 into alignment with
S1.
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Findings from IIT

1. Geiger et al. (2022b) develop IIT and use it to achieve
state-of-the-art results on the MNIST Pointer Value Retrieval task
(MNIST-PVR; Zhang et al. 2021) and the ReaSCAN grounded
language understanding benchmark (Wu et al. 2021).

2. Wu et al. (2022b) augment the standard distillation objectives (Sanh
et al. 2019) with an IIT objective and show that it improves over
standard distillation techniques.

3. Huang et al. (2022) use IIT to induce internal representations of
characters in LMs based in subword tokenization, and they show
that this helps with a variety of character-level games and tasks.

4. Wu et al. (2022a) use IIT to create concept-level methods for
explaining model behavior.

5. Our course notebook covers IIT as well as causal abstraction:
https://github.com/cgpotts/cs224u/blob/main/iit_equality.ipynb
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Distributed Alignment Search (DAS)
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• Alignment search is expensive.
• Causal abstraction could fail to find genuine causal structure.
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A simple causal abstraction analysis

p q

V1 = p V2 = q

V3 = v1 ∧ v2

X1 X2

H1 = [x1;x2]W1 H2 = [x1;x2]W2

Y = [h1;h2]w+ b

W1 =
�

cos(20◦) − sin(20◦)
�

w =
�

1 1
�

W2 =
�

sin(20◦) cos(20◦)
�

b = −1.8

The high-level model does not abstract the new neural model under our
chosen alignment.
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Interchange intervention failure
An interchange intervention on the high-level model:

False True

V1 = True V2 = True

V3 = True

True True

V1 = True V2 = True

V3 = True

The aligned interchange intervention on the neural model:

0 1

H1 = 0.6 H2 = 0.94

Y = −0.26

False

1 1

H1 = 0.6 H2 = 1.28

Y = 0.08

The two models have unequal counterfactual predictions
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But the relationship holds in a non-standard basis

p q

V1 = p V2 = q

V3 = v1 ∧ v2

X1 X2

H1 = [x1;x2]W1 H2 = [x1;x2]W2

Y = [h1;h2]w+ b

W1 =
�

cos(20◦) − sin(20◦)
�

w =
�

1 1
�

W2 =
�

sin(20◦) cos(20◦)
�

b = −1.8

View [H1,H2] under a non-standard basis by rotating −20◦

�

cos(−20◦) − sin(−20◦)
sin(−20◦) cos(−20◦)

�

Problem: Causal abstraction missed this because of the standard basis
we chose. But our choice of basis was arbitrary!

56 / 64



Overview Probing Feature attribution Causal abstraction IIT DAS Conclusions

Solution: Distributed Interchange Intervention

X1

X2

X3

Y1

Y2

Y3

Y1

Y2

Y3

Y1

Y2

Y3

Y1

Y2

Y3

X1

X2

X3
X1

X2

X3
X1

X2

X3X1 X2 X3 X1 X2 X3 X1 X2 X3

Y1 Y2 Y3

R

Y1 Y2 Y3

R

Y1 Y2 Y3

Y1 Y2 Y3

R

X1 X2 X3

R−1

Freeze the model parameters and learn a rotation matrix with
distributed interchange intervention training.

57 / 64



Overview Probing Feature attribution Causal abstraction IIT DAS Conclusions

Findings from DAS

1. Geiger et al. (2023): Models learn truly hierarchical solutions to the
hierarchical equality task from our notebook, but these solutions are
easy to miss with standard causal abstraction.

2. Geiger et al. (2023): Models learn theories of lexical entailment and
negation, but in a brittle way that preserves the identities of the
lexical items rather than truly learning a general solution to
entailment.

3. Wu et al. (2023): Alpaca implements an intuitive algorithm to solve
a numerical reasoning task.
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Reminder: A crucial prerequisite

Approved and
disapproved uses

Pernicious
social biases

Safety in
adversarial contexts

Analytic guarantees about model
behaviors
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The near future of explainability research

1. Causal explanations

2. Human-interpretable explanations

3. Applications to ever-larger Instruct-trained LLMs

4. Increasing evidence that models are inducing a semantics: a
mapping from language into network of concepts.
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