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Goals of reweighting

• Amplify the important, the trustworthy, the unusual;
deemphasize the mundane and the quirky.

• Absent a defined objective function, this will remain
fuzzy.

• The intuition behind moving away from raw counts is
that frequency is a poor proxy for the above values.

• So we should ask of each weighting scheme: How does it
compare to the raw count values?

• What overall distribution of values does it deliver?

• We hope to do no feature selection based on counts,
stopword dictionaries, etc. Rather, we want our methods
to reveal what’s important without these ad hoc
interventions.
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Normalization
L2 norming (repeated from earlier)
Given a vector u of dimension n, the L2-length of u is

||u||2 =
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and the length normalization of u is
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Probability distribution
Given a vector u of dimension n containing all positive values, let

sum(u) =
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and then the probability distribution of u is
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Observed/Expected

rowsum(X, i) =
n
∑

j=1

Xij colsum(X, j) =
m
∑

i=1

Xij sum(X) =
m
∑

i=1

n
∑

j=1

Xij

expected(X, i, j) =
rowsum(X, i) · colsum(X, j)

sum(X)

oe(X, i, j) =
Xij

expected(X, i, j)
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Observed/Expected

rowsum(X, i) =
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∑
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sum(X)

oe(X, i, j) =
Xij
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a b rowsum

x 34 11 45
y 47 7 54

colsum 81 18 99

oe
⇒

a b

x 34
45·81

99

11
45·18

99

y 47
54·81

99

7
54·18

99
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Observed/Expected

rowsum(X, i) =
n
∑

j=1

Xij colsum(X, j) =
m
∑

i=1

Xij sum(X) =
m
∑

i=1

n
∑
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Xij

expected(X, i, j) =
rowsum(X, i) · colsum(X, j)

sum(X)

oe(X, i, j) =
Xij

expected(X, i, j)

Observed

tabs reading birds

keep 20 20 20
enjoy 1 20 20

keep and tabs co-occur more than
expected given their frequencies,
enjoy and tabs less than expected

Expected

tabs reading birds

keep 60·21
101

60·40
101

60·40
101

enjoy 41·21
101

41·40
101

41·40
101

=

tabs reading birds

keep 12.48 23.76 23.76
enjoy 8.5 16.24 16.24
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Pointwise Mutual Information (PMI)

PMI is observed/expected in log-space (with loge(0) = 0):

pmi(X, i, j) = loge

�

Xij

expected(X, i, j)

�

= loge

�

P(Xij)

P(Xi∗) · P(X∗j)

�

d1 d2 d3 d4

A 10 10 10 10
B 10 10 10 0
C 10 10 0 0
D 0 0 0 1

⇒

P(w,d) P(w)

A 0.11 0.11 0.11 0.11 0.44
B 0.11 0.11 0.11 0.00 0.33
C 0.11 0.11 0.00 0.00 0.22
D 0.00 0.00 0.00 0.01 0.01

P(d) 0.33 0.33 0.22 0.12

PMI
⇓

d1 d2 d3 d4

A −0.28 −0.28 0.13 0.73
B 0.01 0.01 0.42 0.00
C 0.42 0.42 0.00 0.00
D 0.00 0.00 0.00 2.11

5 / 13



Goals Normalization Observed/Expected PMI Positive PMI Others Effects Generalizations Code snippets

Positive PMI

The issue
PMI is actually undefined when Xij = 0. The usual response is
the one given above: set PMI to 0 in such cases. However,
this is arguably not coherent (Levy and Goldberg 2014):

• Larger than expected count ⇒ large PMI
• Smaller than expected count ⇒ small PMI
• 0 count ⇒ placed right in the middle!?

PPMI

ppmi(X, i, j) = max(0,pmi(X, i, j))
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Other weighting/normalization schemes
• t-test: P(w,d)−P(w)P(d)p

P(w)P(d)

• TF-IDF: For a corpus of documents D:
É Term frequency (TF):

xij

colsum(X, j)
É Inverse document frequency (IDF):

loge

�

|D|
�

�{d ∈ D :w ∈ d}
�

�

�

loge(0) = 0

É TF-IDF: TF · IDF

• Pairwise distance matrices:

dx dy

A 2 4
B 10 15
C 14 10

cosine
⇒

A B C

A 0 0.008 0.116
B 0.008 0 0.065
C 0.116 0.065 0
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High-level effects

• Amplify the important, the trustworthy, the unusual;
deemphasize the mundane and the quirky.

• Absent a defined objective function, this will remain
fuzzy.

• So we should ask of each weighting scheme: How does it
compare to the raw count values?

• What overall distribution of values does it deliver?

• We hope to do no feature selection based on counts,
stopword dictionaries, etc. Rather, we want our methods
to reveal what’s important without these ad hoc
interventions.
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Weighting scheme cell-value distributions
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TF-IDF

Uses the giga5 matrix loaded earlier. Others look similar.
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Weighting scheme relationships to counts

Uses the giga5 matrix loaded earlier. Others look similar.
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Relationships and generalizations

• The theme running through nearly all these schemes is
that we want to weight a cell value Xij relative to the
value we expect given Xi∗ and X∗j.

• The magnitude of counts can be important; [1,10] and
[1000,10000] might represent very different situations;
creating probability distributions or length normalizing
will obscure this.

• PMI and its variants will amplify the values of counts that
are tiny relative to their rows and columns.
Unfortunately, with language data, these might be noise
noise.

• TF-IDF severely punishes words that appear in many
documents – it behaves oddly for dense matrices, which
can include word × word matrices.
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Code snippets
pbKn+Q/2n`2r2B;?iBM;nbQHp2/

J�`+? k9- kykR

(R), BKTQ`i Qb
BKTQ`i T�M/�b �b T/
BKTQ`i pbK

(k), .�h�n>PJ1 4 QbXT�i?XDQBMU^/�i�^- ^pbK/�i�^V

(j), v2HT8 4 T/X`2�/n+bpU
QbXT�i?XDQBMU.�h�n>PJ1- ^v2HTnrBM/Qr8@b+�H2/X+bpX;x^V- BM/2tn+QH4yV

(9), v2HTnQ2 4 pbKXQ#b2`p2/nQp2`n2tT2+i2/Uv2HT8V

(8), v2HTnMQ`K 4 v2HT8X�TTHvUpbKXH2M;i?nMQ`K- �tBb4RV

(e), v2HT8nTTKB 4 pbKXTKBUv2HT8V

(d), v2HT8nTKB 4 pbKXTKBUv2HT8- TQbBiBp246�Hb2V

(3), v2HT8ni7B/7 4 pbKXi7B/7Uv2HT8V

(N), pbKXM2B;?#Q`bU^#�/^- v2HT8VX?2�/UV

(N), #�/ yXyyyyyy
mM7Q`imM�i2Hv yXRReR3j
K2KQ`�#H2 yXRkyRdN
ē yXRkkyk9
Q#pBQmbHv yXRkjRky
/ivT2, 7HQ�ie9

(Ry), pbKXM2B;?#Q`bU^#�/^- v2HT8nTTKBVX?2�/UV

(Ry), #�/ yXyyyyyy
i2``B#H2 yX9dR889
?Q``B#H2 yX8Re8ek
�r7mH yX8dRRy9
TQQ` yX8NNy3R
/ivT2, 7HQ�ie9

R
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Code snippets
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