Goals	Normalization	Observed/Expected	PMI	Positive PMI	Others	Effects 00	Generalizations	Code snippets

Distributed word representations: Basic reweighting

Christopher Potts

Stanford Linguistics

CS224u: Natural language understanding

Goals of reweighting

- Amplify the important, the trustworthy, the unusual; deemphasize the mundane and the quirky.
- Absent a defined objective function, this will remain fuzzy.
- The intuition behind moving away from raw counts is that frequency is a poor proxy for the above values.
- So we should ask of each weighting scheme: How does it compare to the raw count values?
- What overall distribution of values does it deliver?
- We hope to do no feature selection based on counts, stopword dictionaries, etc. Rather, we want our methods to reveal what's important without these ad hoc interventions.

Normalization L2 norming (repeated from earlier)

Given a vector u of dimension n, the L2-length of u is

$$||u||_2 = \sqrt{\sum_{i=1}^n u_i^2}$$

and the length normalization of u is

$$\left[\frac{u_1}{||u||_2}, \frac{u_2}{||u||_2}, \cdots, \frac{u_n}{||u||_2}\right]$$

Probability distribution

Given a vector u of dimension n containing all positive values, let

$$\mathbf{sum}(u) = \sum_{i=1}^{n} u_i$$

and then the probability distribution of u is

$$\left[\frac{u_1}{\mathsf{sum}(u)},\frac{u_2}{\mathsf{sum}(u)},\cdots,\frac{u_n}{\mathsf{sum}(u)}\right]$$

Observed/Expected

$$\operatorname{rowsum}(X, i) = \sum_{j=1}^{n} X_{ij} \quad \operatorname{colsum}(X, j) = \sum_{i=1}^{m} X_{ij} \quad \operatorname{sum}(X) = \sum_{i=1}^{m} \sum_{j=1}^{n} X_{ij}$$
$$\operatorname{expected}(X, i, j) = \frac{\operatorname{rowsum}(X, i) \cdot \operatorname{colsum}(X, j)}{\operatorname{sum}(X)}$$
$$\operatorname{oe}(X, i, j) = \frac{X_{ij}}{\operatorname{expected}(X, i, j)}$$

Observed/Expected

$$\operatorname{rowsum}(X, i) = \sum_{j=1}^{n} X_{ij} \quad \operatorname{colsum}(X, j) = \sum_{i=1}^{m} X_{ij} \quad \operatorname{sum}(X) = \sum_{i=1}^{m} \sum_{j=1}^{n} X_{ij}$$
$$\operatorname{expected}(X, i, j) = \frac{\operatorname{rowsum}(X, i) \cdot \operatorname{colsum}(X, j)}{\operatorname{sum}(X)}$$
$$\operatorname{oe}(X, i, j) = \frac{X_{ij}}{\operatorname{expected}(X, i, j)}$$

× 2/	11	45	oe			
X 34	· 11	45	⇒	x	34 45.81	<u>11</u> <u>45.18</u>
colsum 81	. 18	99	_	у	99 47 54.81	99 7 54.18

Observed/Expected

$$\operatorname{rowsum}(X, i) = \sum_{j=1}^{n} X_{ij} \quad \operatorname{colsum}(X, j) = \sum_{i=1}^{m} X_{ij} \quad \operatorname{sum}(X) = \sum_{i=1}^{m} \sum_{j=1}^{n} X_{ij}$$
$$\operatorname{expected}(X, i, j) = \frac{\operatorname{rowsum}(X, i) \cdot \operatorname{colsum}(X, j)}{\operatorname{sum}(X)}$$
$$\operatorname{oe}(X, i, j) = \frac{X_{ij}}{\operatorname{expected}(X, i, j)}$$

Observed

Expected

	tabs	reading	birds
keep	20	20	20
enjoy	1	20	20

keep and tabs co-occur more than expected given their frequencies, enjoy and tabs less than expected

	tabs	reading	birds
keep enjoy	$ \frac{60.21}{101} \\ \frac{41.21}{101} $	$ \frac{60.40}{101} \\ \frac{41.40}{101} $	$\frac{\frac{60.40}{101}}{\frac{41.40}{101}}$
		=	
	tabs	= reading	birds

Pointwise Mutual Information (PMI)

PMI is observed/expected in log-space (with $\log_e(0) = 0$):

$$\mathbf{pmi}(X, i, j) = \log_e \left(\frac{X_{ij}}{\mathbf{expected}(X, i, j)} \right) = \log_e \left(\frac{P(X_{ij})}{P(X_{i*}) \cdot P(X_{*j})} \right)$$

								Р(и	ı, d)			P(w)
	d_1	d ₂	d ₃	<i>d</i> ₄		Α	0.11	0.11	0.11	0.1	.1	0.44
Α	10	10	10	10	-	В	0.11	0.11	0.11	0.0	00	0.33
В	10	10	10	0	\rightarrow	С	0.11	0.11	0.00	0.0		0.22
С	10	10	0	0		D	0.00	0.00	0.00	0.0)1	0.01
D	0	0	0	1		P(d)	0.33	0.33	0.22	0.1	.2	
								Б				
								P	MI V			
							d		d_2	d ₃	a	 I_4
							-0.2	1 8 —0.	d ₂ 28 0).13	0.7	3
						В	-0.2 0.0	1 1 8 —0. 1 0.	d_2 28 01 01 01 01 01 01 01 0).13).42	0.7 0.0	3 0
							-0.2	1 8 -0. 1 0. 2 0.	<i>d</i> ₂ 28 (01 (42 ().13	0.7	3 0 0

The issue

PMI is actually undefined when $X_{ij} = 0$. The usual response is the one given above: set PMI to 0 in such cases. However, this is arguably not coherent (Levy and Goldberg 2014):

- Larger than expected count ⇒ large PMI
- Smaller than expected count ⇒ small PMI
- 0 count \Rightarrow placed right in the middle!?

Other weighting/normalization schemes

• t-test:
$$\frac{P(w,d)-P(w)P(d)}{\sqrt{P(w)P(d)}}$$

- TF-IDF: For a corpus of documents D:
 - Term frequency (TF):

 $\frac{x_{ij}}{\operatorname{colsum}(X,j)}$

Inverse document frequency (IDF):

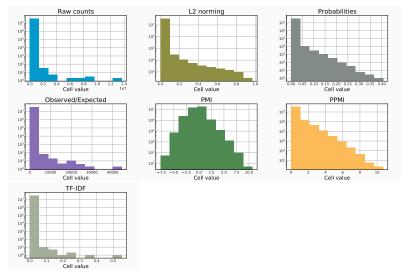
$$\log_e\left(\frac{|D|}{\left|\{d\in D: w\in d\}\right|}\right) \qquad \log_e(0)=0$$

- ► TF-IDF: TF · IDF
- Pairwise distance matrices:

	d _x	dy			Α	В	С
Α	2	4	cosine ⇒	Α	0	0.008	0.116
В	10	15		В	0.008	0	0.065
С	14	10		С	0.116	0.065	0

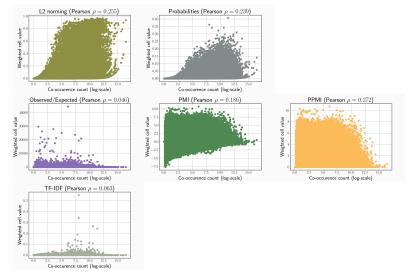
- High-level effects
 - Amplify the important, the trustworthy, the unusual; deemphasize the mundane and the quirky.
 - Absent a defined objective function, this will remain fuzzy.
 - So we should ask of each weighting scheme: How does it compare to the raw count values?
 - What overall distribution of values does it deliver?
 - We hope to do no feature selection based on counts, stopword dictionaries, etc. Rather, we want our methods to reveal what's important without these ad hoc interventions.

Weighting scheme cell-value distributions



Uses the giga5 matrix loaded earlier. Others look similar.

Weighting scheme relationships to counts



Uses the giga5 matrix loaded earlier. Others look similar.

Goals Normalization Observed/Expected PMI Positive PMI Others Effects Generalizations Code snippets

Relationships and generalizations

- The theme running through nearly all these schemes is that we want to weight a cell value X_{ij} relative to the value we expect given X_{i*} and X_{*i} .
- The magnitude of counts can be important; [1, 10] and [1000, 10000] might represent very different situations; creating probability distributions or length normalizing will obscure this.
- PMI and its variants will amplify the values of counts that are tiny relative to their rows and columns. Unfortunately, with language data, these might be noise noise.
- TF-IDF severely punishes words that appear in many documents – it behaves oddly for dense matrices, which can include word × word matrices.

Goals	Normalization	Observed/Expected	PMI	Positive PMI	Others	Effects	Generalizations	Code snippets
						00		

Code snippets

```
[1]: import os
     import pandas as pd
     import vsm
[2]: DATA_HOME = os.path.join('data', 'vsmdata')
[3]: yelp5 = pd.read_csv(
         os.path.join(DATA_HOME, 'yelp_window5-scaled.csv.gz'), index_col=0)
[4]: yelp_oe = vsm.observed_over_expected(yelp5)
[5]: yelp_norm = yelp5.apply(vsm.length_norm, axis=1)
[6]: yelp5_ppmi = vsm.pmi(yelp5)
[7]: yelp5_pmi = vsm.pmi(yelp5, positive=False)
[8]: yelp5_tfidf = vsm.tfidf(yelp5)
```

Goals	Normalization	Observed/Expected	PMI	Positive PMI	Others	Effects	Generalizations	Code snippets
						00		

Code snippets

9]: bad	0.000000
unfortuna	tely 0.116183
memorable	0.120179
	0.122024
obviously	0.123120
dtype: fl	oat64
0]: vsm.neigh	<pre>bors('bad', yelp5_ppmi).head()</pre>
0]: bad	0.000000
0]: bad terrible	0.000000 0.471554
terrible	
terrible horrible	0.471554
terrible horrible awful	0.471554 0.516562

References I

Omer Levy and Yoav Goldberg. 2014. Neural word embedding as implicit matrix factorization. In Advances in Neural Information Processing Systems.