# Distributed word representations: Matrix designs 

Christopher Potts

Stanford Linguistics

## CS224u: Natural language understanding



## word x word

|  | $:)$ | $: /$ | $: D$ | $: \mid$ | ;p | abandon | abc | ability | able |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

## word $x$ document

|  | $d 1$ | $d 2$ | $d 3$ | $d 4$ | d5 | d6 | d7 | d8 | d9 | d10 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| against | 0 | 0 | 0 | 1 | 0 | 0 | 3 | 2 | 3 | 0 |
| age | 0 | 0 | 0 | 1 | 0 | 3 | 1 | 0 | 4 | 0 |
| agent | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| ages | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
| ago | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 3 | 0 |
| agree | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| ahead | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| ain't | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| air | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| aka | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |

## word x discourse context

Upper left corner of an interjection $\times$ dialog-act tag matrix derived from the Switchboard Dialog Act Corpus:

|  |  | $\begin{aligned} & \mathbb{O} \\ & \text { O} \\ & \text { 조 } \end{aligned}$ | $\begin{aligned} & \stackrel{C}{0} \\ & \frac{0}{0} \\ & \frac{0}{O} \\ & 0 \\ & 0 \end{aligned}$ |  | $\begin{aligned} & \text { 응 } \\ & \text { 몽 } \end{aligned}$ | $\begin{aligned} & \stackrel{C}{0} \\ & 0, \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | + | $\ldots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| absolutely | 0 | 2 | 0 | 0 | 0 | 0 | 95 |  |
| actually | 17 | 12 | 0 | 0 | 1 | 0 | 4 |  |
| anyway | 23 | 14 | 0 | 0 | 0 | 0 | 0 |  |
| boy | 5 | 3 | 1 | 0 | 5 | 2 | 1 |  |
| bye | 0 | 1 | 0 | 0 | 0 | 0 | 0 |  |
| bye-bye | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\ldots$ |
| dear | 0 | 0 | 0 | 0 | 1 | 0 | 0 |  |
| definitely | 0 | 2 | 0 | 0 | 0 | 0 | 56 |  |
| exactly | 2 | 6 | 1 | 0 | 0 | 0 | 294 |  |
| gee | 0 | 3 | 0 | 0 | 2 | 1 | 1 |  |
| goodness | 1 | 0 | 0 | 0 | 2 | 0 | 0 |  |
| ! |  |  |  | : |  |  |  |  |

## Other designs

- adj. $\times$ modified noun
- word $\times$ syntactic context
- word $\times$ search query
- person $\times$ product
- word $\times$ person
- word $\times$ word $\times$ pattern
- verb $\times$ subject $\times$ object


## Feature representations of data

- the movie was horrible becomes [4, 0, 1/4].
- The complex, real-world response of an experimental subject to a particular example becomes $[0,1]$ or $[118,1]$.
- A human is modeled as a vector [24, 140, 5, 12].
- A continuous, noisy speech stream is reduced to a restricted set of acoustic features.


## Windows and scaling: What is a co-occurrence?

## Windows and scaling: What is a co-occurrence?

from swerve of shore to bend of bay , brings

| 4 | 3 | 2 | 1 | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Windows and scaling: What is a co-occurrence?

from swerve of shore to bend of bay, brings

$$
\begin{array}{llllllllll}
4 & 3 & 2 & 1 & 0 & 1 & 2 & 3 & 4 & 5
\end{array}
$$

from swerve of shore to bend of bay, brings

| Window: 3 | 4 | 3 | 2 | 1 | 0 | 1 | 2 | 3 | 4 | 5 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Scaling: flat | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |

## Windows and scaling: What is a co-occurrence?

from swerve of shore to bend of bay , brings

$$
\begin{array}{llllllllll}
4 & 3 & 2 & 1 & 0 & 1 & 2 & 3 & 4 & 5
\end{array}
$$

from swerve of shore to bend of bay, brings

| Window: 3 | 4 | 3 | 2 | 1 | 0 | 1 | 2 | 3 | 4 | 5 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Scaling: flat | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
| Scaling: $\frac{1}{n}$ | 0 | $\frac{1}{3}$ | $\frac{1}{2}$ | $\frac{1}{1}$ | 1 | $\frac{1}{1}$ | $\frac{1}{2}$ | $\frac{1}{3}$ | 0 | 0 |

## Windows and scaling: What is a co-occurrence?

from swerve of shore to bend of bay , brings

| 4 | 3 | 2 | 1 | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Larger, flatter windows capture more semantic information.
- Small, more scaled windows capture more syntactic (collocational) information.
- Textual boundaries can be separately controlled; core unit as the sentence/paragraph/document will have major consequences.


## Code snippets

```
import os
import pandas as pd
DATA_HOME = os.path.join('data', 'vsmdata')
# Yelp: Window size = 5; scaling = 1/n
yelp5 = pd.read_csv(
    os.path.join(DATA_HOME, 'yelp_window5-scaled.csv.gz'), index_col=0)
# Yelp: Window size = 20; scaling = flat
yelp20 = pd.read_csv(
    os.path.join(DATA_HOME, 'yelp_window20-flat.csv.gz'), index_col=0)
# Gigaword: Window size = 5; scaling = 1/n
giga5 = pd.read_csv(
    os.path.join(DATA_HOME, 'giga_window5-scaled.csv.gz'), index_col=0)
# Gigaword: Window size = 20; scaling = flat
giga20 = pd.read_csv(
    os.path.join(DATA_HOME, 'giga_window20-flat.csv.gz'), index_col=0)
```

