Distributed word representations: Matrix designs

Christopher Potts

Stanford Linguistics

CS224u: Natural language understanding

word x word

	:)	:/	:D	:	;p	abandon	abc	ability	able	•••
:)	74	1	0	0	0	1	0	2	2	
:/	1	306	0	0	0	0	0	0	17	
:D	0	0	16	0	0	0	6	1	1	
:	0	0	0	120	0	0	0	1	9	
;p	0	0	0	0	516286	0	0	0	0	• • •
abandon	1	0	0	0	0	370	24	65	235	
abc	0	0	6	0	0	24	7948	77	291	
ability	2	0	1	1	0	65	77	4820	1807	
able	2	17	1	9	0	235	291	1807	14328	
<u>:</u>					:					

word x document

	d1	d2	d3	d4	d5	d6	d7	d8	d9	d10
against	0	0	0	1	0	0	3	2	3	0
age	0	0	0	1	0	3	1	0	4	0
agent	0	0	0	0	0	0	0	0	0	0
ages	0	0	0	0	0	2	0	0	0	0
ago	0	0	0	2	0	0	0	0	3	0
agree	0	1	0	0	0	0	0	0	0	0
ahead	0	0	0	1	0	0	0	0	0	0
ain't	0	0	0	0	0	0	0	0	0	0
air	0	0	0	0	0	0	0	0	0	0
aka	0	0	0	1	0	0	0	0	0	0

word x discourse context

Upper left corner of an interjection × dialog-act tag matrix derived from the Switchboard Dialog Act Corpus:

	Reject-part	Hedge	Completion	Tag question	Hold	Quotation	Accept	
absolutely actually anyway boy bye bye-bye dear definitely exactly gee goodness	0 17 23 5 0 0 0 0 2 0	2 12 14 3 1 0 0 2 6 3 0	0 0 0 1 0 0 0 0 0	0 0 0 0 0 0 0 0	0 1 0 5 0 0 1 0 0 2 2	0 0 0 2 0 0 0 0 0	95 4 0 1 0 0 0 56 294 1	

ord x word word x document word x discourse context Still more designs Feature reps Windows and scaling Code snippets

Other designs

- adj. × modified noun
- word × syntactic context
- word × search query
- person × product
- word × person
- word × word × pattern
- verb × subject × object

:

ord x word word x document word x discourse context Still more designs Feature reps Windows and scaling Code snippets

Feature representations of data

- the movie was horrible becomes [4, 0, 1/4].
- The complex, real-world response of an experimental subject to a particular example becomes [0, 1] or [118, 1].
- A human is modeled as a vector [24, 140, 5, 12].
- A continuous, noisy speech stream is reduced to a restricted set of acoustic features.

from swerve of shore to bend of bay , brings 4 3 2 1 0 1 2 3 4 5

from swerve of shore to bend of bay , brings

from swerve of shore to bend of bay , brings Window: 3 4 3 2 1 0 1 2 3 4 5 Scaling: flat 0 1 1 1 1 1 1 0 0

from swerve of shore to bend of bay , brings

from swerve of shore to bend of bay , brings Window: 3 4 3 2 1 0 1 2 3 4 5 Scaling: flat 0 1 1 1 1 1 1 1 0 0 Scaling: $\frac{1}{2}$ 0 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{1}$ 1 $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{2}$ 0 0

ord x word word x document word x discourse context Still more designs Feature reps Windows and scaling Code snippet

Windows and scaling: What is a co-occurrence?

from swerve of shore to bend of bay , brings

- Larger, flatter windows capture more semantic information.
- Small, more scaled windows capture more syntactic (collocational) information.
- Textual boundaries can be separately controlled; core unit as the sentence/paragraph/document will have major consequences.

Code snippets

```
import os
import pandas as pd
DATA HOME = os.path.join('data', 'vsmdata')
# Yelp: Window size = 5; scaling = 1/n
yelp5 = pd.read_csv(
   os.path.join(DATA HOME, 'yelp window5-scaled.csv.gz'), index col=0)
# Yelp: Window size = 20: scaling = flat
velp20 = pd.read csv(
   os.path.join(DATA_HOME, 'yelp_window20-flat.csv.gz'), index_col=0)
# Gigaword: Window size = 5; scaling = 1/n
giga5 = pd.read_csv(
    os.path.join(DATA_HOME, 'giga_window5-scaled.csv.gz'), index_col=0)
# Gigaword: Window size = 20: scaling = flat
giga20 = pd.read csv(
    os.path.join(DATA_HOME, 'giga_window20-flat.csv.gz'), index_col=0)
```