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Challenges

1. There is more than one effective way to say most things.
2. What are we measuring?

É Fluency?
É Truthfulness?
É Communicative effectiveness?
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Perplexity of a probability distribution
Perplexity
For a sequence x = [x1, . . .xn] and probability distribution p:

PP(p,x) =
n
∏

i=1
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Token-level perplexity

token-PP(p,x) = exp
�

logPP(p,x)

n
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Mean perplexity
For a corpus X of m examples:

mean-PP(p,X) = exp

�
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m

∑

x∈X
log token-PP(p,x)

�
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Properties

• Bounds: [1,∞], with 1 best.
• Equivalent to the exponentiation of the cross-entropy

loss.
• Value encoded: does the model assign high probability to

the input sequence?
• Weaknesses:

É Heavily dependent on the underlying vocabulary.
É Doesn’t allow comparisons between datasets.
É Even comparisons between models are tricky.
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Word-error rate

Edit distance
A measure of distance between strings. Word-error rate can
be seen as a family of measures depending on the choice of
distance measure.

Word-error rate

wer(x,pred) =
distance(x,pred)

length(x)

Corpus word-error rate
For a corpus X:

∑

x∈X distance(x,pred)
∑

x∈X length(x)
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Properties

• Bounds: [0,∞], with 0 the best.
• Value encoded: how aligned is the predicted sequence

with the actual sequence – similar to F scores.
• Weaknesses:

É Just one reference text.
É A very syntactic notion – consider It was good vs. It
was not good. vs. It was great
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BLEU scores

Modified n-gram precision
Candidate: the the the the the the the
Ref 1: the cat is on the mat
Ref 2: there is a cat on the mat
Score: 2 / 7

Brevity penalty

• r: sum of all minimal absolute length differences
between candidates and referents.

• c: total length of all candidates

• BP: 1 if c > r else e1− r
c

BLEU
BP · the sum of weighted modified n-gram precision values
for each n considered
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Properties
• Bounds: [0,1], with 1 the best, though with no

expectation that any system will achieve 1.
• Value encoded:

É Appropriate balance of (modified) precision and
“recall” (BP).

É Similar to word-error rate, but seeks to
accommodate the fact that there are typically
multiple suitable outputs for a given input.

• Weaknesses:
É Callison-Burch et al. (2006) argue that BLEU fails to

correlate with human scoring of translations.
É Very sensitive to n-gram order.
É Insensitive to n-gram types (that dog vs. the dog

vs. that toaster).
É Liu et al. (2016) specifically argue against BLEU as a

metric for assessing dialogue systems.
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Other n-gram-based metrics

Word-error rate Edit-distance from a single reference text

BLEU Modified precision and brevity penalty,
against many reference texts

ROUGE Recall-focused variant of BLEU, focused on
assessing summarization systems

METEOR Unigram-based alignments using exact
match, stemming, synonyms

CIDEr Weighted cosine similarity between TF-IDF
vectors
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Communication-based metrics

For NLU, it’s worth asking whether you can evaluate your
system based on how well it actually communicates in the
context of a real-world goal.

Context Utterance

xxxx xxxx xxxx The darker blue one

xxxx xxxx xxxx dull pink not the super
bright one

xxxx xxxx xxxx not any of the regular
greens
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