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Addressing the known limitations with BERT

1. Devlin et al. (2019:§5): admirably detailed but still
partial ablation studies and optimization studies.

2. Devlin et al. (2019): “The first [downside] is that we are
creating a mismatch between pre-training and
fine-tuning, since the [MASK] token is never seen during
fine-tuning.”

3. Devlin et al. (2019): “The second downside of using an
MLM is that only 15% of tokens are predicted in each
batch”

4. Yang et al. (2019): “BERT assumes the predicted tokens
are independent of each other given the unmasked
tokens, which is oversimplified as high-order, long-range
dependency is prevalent in natural language”
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Robustly optimized BERT approach

BERT RoBERTa

Static masking/substitution Dynamic masking/substitution

Inputs are two concatenated
document segments

Inputs are sentence sequences that
may span document boundaries

Next Sentence Prediction (NSP) No NSP

Training batches of 256 examples Training batches of 2,000 examples

Word-piece tokenization Character-level byte-pair encoding

Pretraining on BooksCorpus and
English Wikipedia

Pretraining on BooksCorpus,
CC-News, OpenWebText, and Stories

Train for 1M steps Train for up to 500K steps

Train on short sequences first Train only on full-length sequences

Additional differences in the optimizer and data presentation (sec 3.1).
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V2.0 some questions are not answered in the pro-
vided context, making the task more challenging.

For SQuAD V1.1 we adopt the same span pre-
diction method as BERT (Devlin et al., 2019). For
SQuAD V2.0, we add an additional binary classi-
fier to predict whether the question is answerable,
which we train jointly by summing the classifica-
tion and span loss terms. During evaluation, we
only predict span indices on pairs that are classi-
fied as answerable.

RACE The ReAding Comprehension from Ex-
aminations (RACE) (Lai et al., 2017) task is a
large-scale reading comprehension dataset with
more than 28,000 passages and nearly 100,000
questions. The dataset is collected from English
examinations in China, which are designed for
middle and high school students. In RACE, each
passage is associated with multiple questions. For
every question, the task is to select one correct an-
swer from four options. RACE has significantly
longer context than other popular reading compre-
hension datasets and the proportion of questions
that requires reasoning is very large.

4 Training Procedure Analysis

This section explores and quantifies which choices
are important for successfully pretraining BERT
models. We keep the model architecture fixed.7

Specifically, we begin by training BERT models
with the same configuration as BERTBASE (L =
12, H = 768, A = 12, 110M params).

4.1 Static vs. Dynamic Masking

As discussed in Section 2, BERT relies on ran-
domly masking and predicting tokens. The orig-
inal BERT implementation performed masking
once during data preprocessing, resulting in a sin-
gle static mask. To avoid using the same mask for
each training instance in every epoch, training data
was duplicated 10 times so that each sequence is
masked in 10 different ways over the 40 epochs of
training. Thus, each training sequence was seen
with the same mask four times during training.

We compare this strategy with dynamic mask-
ing where we generate the masking pattern every
time we feed a sequence to the model. This be-
comes crucial when pretraining for more steps or
with larger datasets.

7Studying architectural changes, including larger archi-
tectures, is an important area for future work.

Masking SQuAD 2.0 MNLI-m SST-2

reference 76.3 84.3 92.8

Our reimplementation:
static 78.3 84.3 92.5
dynamic 78.7 84.0 92.9

Table 1: Comparison between static and dynamic
masking for BERTBASE . We report F1 for SQuAD and
accuracy for MNLI-m and SST-2. Reported results are
medians over 5 random initializations (seeds). Refer-
ence results are from Yang et al. (2019).

Results Table 1 compares the published
BERTBASE results from Devlin et al. (2019) to our
reimplementation with either static or dynamic
masking. We find that our reimplementation
with static masking performs similar to the
original BERT model, and dynamic masking is
comparable or slightly better than static masking.

Given these results and the additional efficiency
benefits of dynamic masking, we use dynamic
masking in the remainder of the experiments.

4.2 Model Input Format and Next Sentence
Prediction

In the original BERT pretraining procedure, the
model observes two concatenated document seg-
ments, which are either sampled contiguously
from the same document (with p = 0.5) or from
distinct documents. In addition to the masked lan-
guage modeling objective, the model is trained to
predict whether the observed document segments
come from the same or distinct documents via an
auxiliary Next Sentence Prediction (NSP) loss.

The NSP loss was hypothesized to be an impor-
tant factor in training the original BERT model.
Devlin et al. (2019) observe that removing NSP
hurts performance, with significant performance
degradation on QNLI, MNLI, and SQuAD 1.1.
However, some recent work has questioned the
necessity of the NSP loss (Lample and Conneau,
2019; Yang et al., 2019; Joshi et al., 2019).

To better understand this discrepancy, we com-
pare several alternative training formats:

• SEGMENT-PAIR+NSP: This follows the original
input format used in BERT (Devlin et al., 2019),
with the NSP loss. Each input has a pair of seg-
ments, which can each contain multiple natural
sentences, but the total combined length must
be less than 512 tokens.
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Model SQuAD 1.1/2.0 MNLI-m SST-2 RACE

Our reimplementation (with NSP loss):
SEGMENT-PAIR 90.4/78.7 84.0 92.9 64.2
SENTENCE-PAIR 88.7/76.2 82.9 92.1 63.0

Our reimplementation (without NSP loss):
FULL-SENTENCES 90.4/79.1 84.7 92.5 64.8
DOC-SENTENCES 90.6/79.7 84.7 92.7 65.6

BERTBASE 88.5/76.3 84.3 92.8 64.3
XLNetBASE (K = 7) –/81.3 85.8 92.7 66.1
XLNetBASE (K = 6) –/81.0 85.6 93.4 66.7

Table 2: Development set results for base models pretrained over BOOKCORPUS and WIKIPEDIA. All models are
trained for 1M steps with a batch size of 256 sequences. We report F1 for SQuAD and accuracy for MNLI-m,
SST-2 and RACE. Reported results are medians over five random initializations (seeds). Results for BERTBASE and
XLNetBASE are from Yang et al. (2019).

• SENTENCE-PAIR+NSP: Each input contains a
pair of natural sentences, either sampled from
a contiguous portion of one document or from
separate documents. Since these inputs are sig-
nificantly shorter than 512 tokens, we increase
the batch size so that the total number of tokens
remains similar to SEGMENT-PAIR+NSP. We re-
tain the NSP loss.

• FULL-SENTENCES: Each input is packed with
full sentences sampled contiguously from one
or more documents, such that the total length is
at most 512 tokens. Inputs may cross document
boundaries. When we reach the end of one doc-
ument, we begin sampling sentences from the
next document and add an extra separator token
between documents. We remove the NSP loss.

• DOC-SENTENCES: Inputs are constructed sim-
ilarly to FULL-SENTENCES, except that they
may not cross document boundaries. Inputs
sampled near the end of a document may be
shorter than 512 tokens, so we dynamically in-
crease the batch size in these cases to achieve
a similar number of total tokens as FULL-
SENTENCES. We remove the NSP loss.

Results Table 2 shows results for the four dif-
ferent settings. We first compare the original
SEGMENT-PAIR input format from Devlin et al.
(2019) to the SENTENCE-PAIR format; both for-
mats retain the NSP loss, but the latter uses sin-
gle sentences. We find that using individual
sentences hurts performance on downstream
tasks, which we hypothesize is because the model
is not able to learn long-range dependencies.

We next compare training without the NSP
loss and training with blocks of text from a sin-
gle document (DOC-SENTENCES). We find that
this setting outperforms the originally published
BERTBASE results and that removing the NSP loss
matches or slightly improves downstream task
performance, in contrast to Devlin et al. (2019).
It is possible that the original BERT implementa-
tion may only have removed the loss term while
still retaining the SEGMENT-PAIR input format.

Finally we find that restricting sequences to
come from a single document (DOC-SENTENCES)
performs slightly better than packing sequences
from multiple documents (FULL-SENTENCES).
However, because the DOC-SENTENCES format
results in variable batch sizes, we use FULL-
SENTENCES in the remainder of our experiments
for easier comparison with related work.

4.3 Training with large batches

Past work in Neural Machine Translation has
shown that training with very large mini-batches
can both improve optimization speed and end-task
performance when the learning rate is increased
appropriately (Ott et al., 2018). Recent work has
shown that BERT is also amenable to large batch
training (You et al., 2019).

Devlin et al. (2019) originally trained
BERTBASE for 1M steps with a batch size of
256 sequences. This is equivalent in computa-
tional cost, via gradient accumulation, to training
for 125K steps with a batch size of 2K sequences,
or for 31K steps with a batch size of 8K.

In Table 3 we compare perplexity and end-

RoBERTa choice
for effificient
batching, and
comparisons with
related work.
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bsz steps lr ppl MNLI-m SST-2

256 1M 1e-4 3.99 84.7 92.7
2K 125K 7e-4 3.68 85.2 92.9
8K 31K 1e-3 3.77 84.6 92.8

Table 3: Perplexity on held-out training data (ppl) and
development set accuracy for base models trained over
BOOKCORPUS and WIKIPEDIA with varying batch
sizes (bsz). We tune the learning rate (lr) for each set-
ting. Models make the same number of passes over the
data (epochs) and have the same computational cost.

task performance of BERTBASE as we increase the
batch size, controlling for the number of passes
through the training data. We observe that train-
ing with large batches improves perplexity for the
masked language modeling objective, as well as
end-task accuracy. Large batches are also easier to
parallelize via distributed data parallel training,8

and in later experiments we train with batches of
8K sequences.

Notably You et al. (2019) train BERT with even
larger batche sizes, up to 32K sequences. We leave
further exploration of the limits of large batch
training to future work.

4.4 Text Encoding

Byte-Pair Encoding (BPE) (Sennrich et al., 2016)
is a hybrid between character- and word-level rep-
resentations that allows handling the large vocab-
ularies common in natural language corpora. In-
stead of full words, BPE relies on subwords units,
which are extracted by performing statistical anal-
ysis of the training corpus.

BPE vocabulary sizes typically range from
10K-100K subword units. However, unicode char-
acters can account for a sizeable portion of this
vocabulary when modeling large and diverse cor-
pora, such as the ones considered in this work.
Radford et al. (2019) introduce a clever imple-
mentation of BPE that uses bytes instead of uni-
code characters as the base subword units. Using
bytes makes it possible to learn a subword vocab-
ulary of a modest size (50K units) that can still en-
code any input text without introducing any “un-
known” tokens.

8Large batch training can improve training efficiency even
without large scale parallel hardware through gradient ac-
cumulation, whereby gradients from multiple mini-batches
are accumulated locally before each optimization step. This
functionality is supported natively in FAIRSEQ (Ott et al.,
2019).

The original BERT implementa-
tion (Devlin et al., 2019) uses a character-level
BPE vocabulary of size 30K, which is learned
after preprocessing the input with heuristic tok-
enization rules. Following Radford et al. (2019),
we instead consider training BERT with a larger
byte-level BPE vocabulary containing 50K sub-
word units, without any additional preprocessing
or tokenization of the input. This adds approxi-
mately 15M and 20M additional parameters for
BERTBASE and BERTLARGE, respectively.

Early experiments revealed only slight dif-
ferences between these encodings, with the
Radford et al. (2019) BPE achieving slightly
worse end-task performance on some tasks. Nev-
ertheless, we believe the advantages of a univer-
sal encoding scheme outweighs the minor degre-
dation in performance and use this encoding in
the remainder of our experiments. A more de-
tailed comparison of these encodings is left to fu-
ture work.

5 RoBERTa

In the previous section we propose modifications
to the BERT pretraining procedure that improve
end-task performance. We now aggregate these
improvements and evaluate their combined im-
pact. We call this configuration RoBERTa for
Robustly optimized BERT approach. Specifi-
cally, RoBERTa is trained with dynamic mask-
ing (Section 4.1), FULL-SENTENCES without NSP
loss (Section 4.2), large mini-batches (Section 4.3)
and a larger byte-level BPE (Section 4.4).

Additionally, we investigate two other impor-
tant factors that have been under-emphasized in
previous work: (1) the data used for pretraining,
and (2) the number of training passes through the
data. For example, the recently proposed XLNet
architecture (Yang et al., 2019) is pretrained us-
ing nearly 10 times more data than the original
BERT (Devlin et al., 2019). It is also trained with
a batch size eight times larger for half as many op-
timization steps, thus seeing four times as many
sequences in pretraining compared to BERT.

To help disentangle the importance of these fac-
tors from other modeling choices (e.g., the pre-
training objective), we begin by training RoBERTa
following the BERTLARGE architecture (L = 24,
H = 1024, A = 16, 355M parameters). We
pretrain for 100K steps over a comparable BOOK-
CORPUS plus WIKIPEDIA dataset as was used in
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Model data bsz steps SQuAD MNLI-m SST-2
(v1.1/2.0)

RoBERTa
with BOOKS + WIKI 16GB 8K 100K 93.6/87.3 89.0 95.3
+ additional data (§3.2) 160GB 8K 100K 94.0/87.7 89.3 95.6
+ pretrain longer 160GB 8K 300K 94.4/88.7 90.0 96.1
+ pretrain even longer 160GB 8K 500K 94.6/89.4 90.2 96.4

BERTLARGE

with BOOKS + WIKI 13GB 256 1M 90.9/81.8 86.6 93.7
XLNetLARGE

with BOOKS + WIKI 13GB 256 1M 94.0/87.8 88.4 94.4
+ additional data 126GB 2K 500K 94.5/88.8 89.8 95.6

Table 4: Development set results for RoBERTa as we pretrain over more data (16GB → 160GB of text) and pretrain
for longer (100K → 300K → 500K steps). Each row accumulates improvements from the rows above. RoBERTa
matches the architecture and training objective of BERTLARGE . Results for BERTLARGE and XLNetLARGE are from
Devlin et al. (2019) and Yang et al. (2019), respectively. Complete results on all GLUE tasks can be found in the
Appendix.

Devlin et al. (2019). We pretrain our model using
1024 V100 GPUs for approximately one day.

Results We present our results in Table 4. When
controlling for training data, we observe that
RoBERTa provides a large improvement over the
originally reported BERTLARGE results, reaffirming
the importance of the design choices we explored
in Section 4.

Next, we combine this data with the three ad-
ditional datasets described in Section 3.2. We
train RoBERTa over the combined data with the
same number of training steps as before (100K).
In total, we pretrain over 160GB of text. We ob-
serve further improvements in performance across
all downstream tasks, validating the importance of
data size and diversity in pretraining.9

Finally, we pretrain RoBERTa for significantly
longer, increasing the number of pretraining steps
from 100K to 300K, and then further to 500K. We
again observe significant gains in downstream task
performance, and the 300K and 500K step mod-
els outperform XLNetLARGE across most tasks. We
note that even our longest-trained model does not
appear to overfit our data and would likely benefit
from additional training.

In the rest of the paper, we evaluate our best
RoBERTa model on the three different bench-
marks: GLUE, SQuaD and RACE. Specifically

9Our experiments conflate increases in data size and di-
versity. We leave a more careful analysis of these two dimen-
sions to future work.

we consider RoBERTa trained for 500K steps over
all five of the datasets introduced in Section 3.2.

5.1 GLUE Results

For GLUE we consider two finetuning settings.
In the first setting (single-task, dev) we finetune
RoBERTa separately for each of the GLUE tasks,
using only the training data for the correspond-
ing task. We consider a limited hyperparameter
sweep for each task, with batch sizes ∈ {16, 32}
and learning rates ∈ {1e−5, 2e−5, 3e−5}, with a
linear warmup for the first 6% of steps followed by
a linear decay to 0. We finetune for 10 epochs and
perform early stopping based on each task’s eval-
uation metric on the dev set. The rest of the hyper-
parameters remain the same as during pretraining.
In this setting, we report the median development
set results for each task over five random initial-
izations, without model ensembling.

In the second setting (ensembles, test), we com-
pare RoBERTa to other approaches on the test set
via the GLUE leaderboard. While many submis-
sions to the GLUE leaderboard depend on multi-
task finetuning, our submission depends only on
single-task finetuning. For RTE, STS and MRPC
we found it helpful to finetune starting from the
MNLI single-task model, rather than the baseline
pretrained RoBERTa. We explore a slightly wider
hyperparameter space, described in the Appendix,
and ensemble between 5 and 7 models per task.
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A Primer in BERTology: What we know about how BERT works

Anna Rogers, Olga Kovaleva, Anna Rumshisky
Department of Computer Science, University of Massachusetts Lowell

Lowell, MA 01854
{arogers, okovalev, arum}@cs.uml.edu

Abstract

Transformer-based models are now widely
used in NLP, but we still do not understand a
lot about their inner workings. This paper de-
scribes what is known to date about the famous
BERT model (Devlin et al., 2019), synthesiz-
ing over 40 analysis studies. We also provide
an overview of the proposed modifications to
the model and its training regime. We then out-
line the directions for further research.

1 Introduction

Since their introduction in 2017, Transformers
(Vaswani et al., 2017) took NLP by storm, of-
fering enhanced parallelization and better model-
ing of long-range dependencies. The best known
Transformer-based model is BERT (Devlin et al.,
2019) which obtained state-of-the-art results in nu-
merous benchmarks, and was integrated in Google
search1, improving an estimated 10% of queries.

While it is clear that BERT and other
Transformer-based models work remarkably well,
it is less clear why, which limits further hypothesis-
driven improvement of the architecture. Unlike
CNNs, the Transformers have little cognitive mo-
tivation, and the size of these models limits our
ability to experiment with pre-training and perform
ablation studies. This explains a large number of
studies over the past year that attempted to under-
stand the reasons behind BERT’s performance.

This paper provides an overview of what has
been learned to date, highlighting the questions
which are still unresolved. We focus on the studies
investigating the types of knowledge learned by
BERT, where this knowledge is represented, how it
is learned, and the methods proposed to improve it.

1https://blog.google/products/search/
search-language-understanding-bert

2 Overview of BERT architecture

Fundamentally, BERT is a stack of Transformer
encoder layers (Vaswani et al., 2017) which consist
of multiple “heads”, i.e., fully-connected neural
networks augmented with a self-attention mecha-
nism. For every input token in a sequence, each
head computes key, value and query vectors, which
are used to create a weighted representation. The
outputs of all heads in the same layer are combined
and run through a fully-connected layer. Each layer
is wrapped with a skip connection and layer nor-
malization is applied after it.

The conventional workflow for BERT consists
of two stages: pre-training and fine-tuning. Pre-
training uses two semi-supervised tasks: masked
language modeling (MLM, prediction of randomly
masked input tokens) and next sentence prediction
(NSP, predicting if two input sentences are adjacent
to each other). In fine-tuning for downstream ap-
plications, one or more fully-connected layers are
typically added on top of the final encoder layer.

The input representations are computed as fol-

Figure 1: BERT fine-tuning (Devlin et al., 2019).
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