Contextual word representations: RoBERTa

Christopher Potts

Stanford Linguistics

CS224u: Natural language understanding

Addressing the known limitations with BERT

- 1. Devlin et al. (2019:§5): admirably detailed but still partial ablation studies and optimization studies.
- Devlin et al. (2019): "The first [downside] is that we are creating a mismatch between pre-training and fine-tuning, since the [MASK] token is never seen during fine-tuning."
- Devlin et al. (2019): "The second downside of using an MLM is that only 15% of tokens are predicted in each batch"
- 4. Yang et al. (2019): "BERT assumes the predicted tokens are independent of each other given the unmasked tokens, which is oversimplified as high-order, long-range dependency is prevalent in natural language"

Robustly optimized BERT approach

BERT	RoBERTa
Static masking/substitution	Dynamic masking/substitution
Inputs are two concatenated document segments	Inputs are sentence sequences that may span document boundaries
Next Sentence Prediction (NSP)	No NSP
Training batches of 256 examples	Training batches of 2,000 examples
Word-piece tokenization	Character-level byte-pair encoding
Pretraining on BooksCorpus and English Wikipedia	Pretraining on BooksCorpus, CC-News, OpenWebText, and Stories
Train for 1M steps	Train for up to 500K steps
Train on short sequences first	Train only on full-length sequences

Additional differences in the optimizer and data presentation (sec 3.1).

Masking	SQuAD 2.0	MNLI-m	SST-2			
reference	76.3	84.3	92.8			
Our reimplementation:						
static	78.3	84.3	92.5			
dynamic	78.7	84.0	92.9			

Table 1: Comparison between static and dynamic masking for $BERT_{BASE}$. We report F1 for SQuAD and accuracy for MNLI-m and SST-2. Reported results are medians over 5 random initializations (seeds). Reference results are from Yang et al. (2019).

	Model	SQuAD 1.1/2.0	1.1/2.0 MNLI-m		RACE
	<i>Our reimplementatio</i> SEGMENT-PAIR SENTENCE-PAIR	on (with NSP loss): 90.4/78.7 88.7/76.2	84.0 82.9	92.9 92.1	64.2 63.0
RoBERTa choice for efficient batching, and comparisons with related work.	Our reimplementation	ss): 84.7 84.7	92.5 92.7	64.8 65.6	
	$\frac{\text{BERT}_{\text{BASE}}}{\text{XLNet}_{\text{BASE}} (\text{K} = 7)}$ $\text{XLNet}_{\text{BASE}} (\text{K} = 6)$	88.5/76.3 -/81.3 -/81.0	84.3 85.8 85.6	92.8 92.7 93.4	64.3 66.1 66.7

Table 2: Development set results for base models pretrained over BOOKCORPUS and WIKIPEDIA. All models are trained for 1M steps with a batch size of 256 sequences. We report F1 for SQuAD and accuracy for MNL1-m, SST-2 and RACE. Reported results are medians over five random initializations (seeds). Results for BERT_{BASE} and XLNet_{BASE} are from Yang et al. (2019).

bsz	steps	lr	ppl	MNLI-m	SST-2
256	1M	1e-4	3.99	84.7	92.7
2K	125K	7e-4	3.68	85.2	92.9
8K	31K	1e-3	3.77	84.6	92.8

Table 3: Perplexity on held-out training data (*ppl*) and development set accuracy for base models trained over BOOKCORPUS and WIKIPEDIA with varying batch sizes (*bsz*). We tune the learning rate (*lr*) for each setting. Models make the same number of passes over the data (epochs) and have the same computational cost.

Model	data	bsz	steps	SQuAD (v1.1/2.0)	MNLI-m	SST-2
RoBERTa						
with BOOKS + WIKI	16GB	8K	100K	93.6/87.3	89.0	95.3
+ additional data (§3.2)	160GB	8K	100K	94.0/87.7	89.3	95.6
+ pretrain longer	160GB	8K	300K	94.4/88.7	90.0	96.1
+ pretrain even longer	160GB	8K	500K	94.6/89.4	90.2	96.4
BERTLARGE						
with BOOKS + WIKI	13GB	256	1M	90.9/81.8	86.6	93.7
XLNet _{LARGE}						
with BOOKS + WIKI	13GB	256	1M	94.0/87.8	88.4	94.4
+ additional data	126GB	2K	500K	94.5/88.8	89.8	95.6

Table 4: Development set results for RoBERTa as we pretrain over more data (16GB \rightarrow 160GB of text) and pretrain for longer (100K \rightarrow 300K \rightarrow 500K steps). Each row accumulates improvements from the rows above. RoBERTa matches the architecture and training objective of BERT_{LARGE}. Results for BERT_{LARGE} and XLNet_{LARGE} are from Devlin et al. (2019) and Yang et al. (2019), respectively. Complete results on all GLUE tasks can be found in the Appendix.

Related work

A Primer in BERTology: What we know about how BERT works

Anna Rogers, Olga Kovaleva, Anna Rumshisky Department of Computer Science, University of Massachusetts Lowell Lowell, MA 01854 {arogers, okovalev, arum}@cs.uml.edu

References I

- Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics.
- Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. ROBERTa: A robustly optimized BERT pretraining approach. ArXiv:1907.11692.
- Anna Rogers, Ólga Kovaleva, and Anna Rumshisky. 2020. A primer in bertology: What we know about how bert works. ArXiv:2002.12327.
- Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le. 2019. XLNet: Generalized autoregressive pretraining for language understanding. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages 5753–5763. Curran Associates, Inc.