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Abstract

Given a partial description like “she opened
the hood of the car,” humans can reason about
the situation and anticipate what might come
next (“then, she examined the engine”). In this
paper, we introduce the task of grounded com-
monsense inference, unifying natural language
inference and commonsense reasoning.

We present Swag, a new dataset with 113k
multiple choice questions about a rich spec-
trum of grounded situations. To address the
recurring challenges of the annotation arti-
facts and human biases found in many exist-
ing datasets, we propose Adversarial Filter-
ing (AF), a novel procedure that constructs a
de-biased dataset by iteratively training an en-
semble of stylistic classifiers, and using them
to filter the data. To account for the aggres-
sive adversarial filtering, we use state-of-the-
art language models to massively oversam-
ple a diverse set of potential counterfactuals.
Empirical results demonstrate that while hu-
mans can solve the resulting inference prob-
lems with high accuracy (88%), various com-
petitive models struggle on our task. We pro-
vide comprehensive analysis that indicates sig-
nificant opportunities for future research.

1 Introduction

When we read a story, we bring to it a large body
of implicit knowledge about the physical world.
For instance, given the context “on stage, a woman
takes a seat at the piano,” shown in Table 1, we
can easily infer what the situation might look like:
a woman is giving a piano performance, with a
crowd watching her. We can furthermore infer her
likely next action: she will most likely set her fin-
gers on the piano keys and start playing.

This type of natural language inference requires
commonsense reasoning, substantially broadening
the scope of prior work that focused primarily on

On stage, a woman takes a seat at the piano. She
a) sits on a bench as her sister plays with the doll.
b) smiles with someone as the music plays.
c) is in the crowd, watching the dancers.
d) nervously sets her fingers on the keys.

A girl is going across a set of monkey bars. She
a) jumps up across the monkey bars.
b) struggles onto the monkey bars to grab her head.
c) gets to the end and stands on a wooden plank.
d) jumps up and does a back flip.

The woman is now blow drying the dog. The dog
a) is placed in the kennel next to a woman’s feet.
b) washes her face with the shampoo.
c) walks into frame and walks towards the dog.
d) tried to cut her face, so she is trying to do something
very close to her face.

Table 1: Examples from Swag; the correct an-
swer is bolded. Adversarial Filtering ensures that
stylistic models find all options equally appealing.

linguistic entailment (Chierchia and McConnell-
Ginet, 2000). Whereas the dominant entailment
paradigm asks if two natural language sentences
(the ‘premise’ and the ‘hypothesis’) describe the
same set of possible worlds (Dagan et al., 2006;
Bowman et al., 2015), here we focus on whether a
(multiple-choice) ending describes a possible (fu-
ture) world that can be anticipated from the situa-
tion described in the premise, even when it is not
strictly entailed. Making such inference necessi-
tates a rich understanding about everyday physical
situations, including object affordances (Gibson,
1979) and frame semantics (Baker et al., 1998).

A first step toward grounded commonsense in-
ference with today’s deep learning machinery is to
create a large-scale dataset. However, recent work
has shown that human-written datasets are suscep-
tible to annotation artifacts: unintended stylistic
patterns that give out clues for the gold labels (Gu-
rurangan et al., 2018; Poliak et al., 2018). As a
result, models trained on such datasets with hu-
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Abstract

Recent work by Zellers et al. (2018) intro-
duced a new task of commonsense natural lan-
guage inference: given an event description
such as “A woman sits at a piano,” a machine
must select the most likely followup: “She
sets her fingers on the keys.” With the intro-
duction of BERT (Devlin et al., 2018), near
human-level performance was reached. Does
this mean that machines can perform human
level commonsense inference?

In this paper, we show that commonsense in-
ference still proves di�cult for even state-
of-the-art models, by presenting HellaSwag,
a new challenge dataset. Though its ques-
tions are trivial for humans (°95% accuracy),
state-of-the-art models struggle (†48%). We
achieve this via Adversarial Filtering (AF), a
data collection paradigm wherein a series of
discriminators iteratively select an adversarial
set of machine-generated wrong answers. AF
proves to be surprisingly robust. The key in-
sight is to scale up the length and complex-
ity of the dataset examples towards a critical
‘Goldilocks’ zone wherein generated text is
ridiculous to humans, yet often misclassified
by state-of-the-art models.

Our construction of HellaSwag, and its result-
ing di�culty, sheds light on the inner work-
ings of deep pretrained models. More broadly,
it suggests a new path forward for NLP re-
search, in which benchmarks co-evolve with
the evolving state-of-the-art in an adversarial
way, so as to present ever-harder challenges.

1 Introduction

Imagine a woman chasing a dog around outside,
trying to give it a bath. What might happen next?
Humans can read a narrative like this, shown in
Figure 1, and connect it to a rich model of the
world: the dog is currently dry and not soapy, and
it actively doesn’t want to be bathed. Thus, one

A woman is outside with a bucket and a dog. The dog is running 
around trying to avoid a bath. She…

A. rinses the bucket off with soap and blow dry the dog’s head.
B. uses a hose to keep it from getting soapy.
C. gets the dog wet, then it runs away again.
D. gets into a bath tub with the dog.

Come to a complete halt at a stop sign or red light. At a stop sign, 
come to a complete halt for about 2 seconds or until vehicles that 
arrived before you clear the intersection. If you're stopped at a red 
light, proceed when the light has turned green. …

A. Stop for no more than two seconds, or until the light turns 
yellow. A red light in front of you indicates that you should 
stop.

B. After you come to a complete stop, turn off your turn signal. 
Allow vehicles to move in different directions before moving 
onto the sidewalk.

C. Stay out of the oncoming traffic. People coming in from 
behind may elect to stay left or right.

D. If the intersection has a white stripe in your lane, stop 
before this line. Wait until all traffic has cleared before 
crossing the intersection.

OpenAI
GPT

How to 
determine 

who has right 
of way. 

easy! ???

+
Adversarial 

Filtering

+
Adversarial 

Filtering

Figure 1: Models like BERT struggle to finish the sen-
tences in HellaSwag, even when they come from the
same distribution as the training set. While the wrong
endings are on-topic, with words that relate to the con-
text, humans consistently judge their meanings to be
either incorrect or implausible. For example, option A
of the WikiHow passage suggests that a driver should
stop at a red light for no more than two seconds.

plausible next event is option C—that she’ll get
the dog wet and it will run away again.

When the SWAG dataset was first announced
(Zellers et al., 2018), this new task of common-
sense natural language inference seemed trivial
for humans (88%) and yet challenging for then-
state-of-the-art models (†60%), including ELMo
(Peters et al., 2018). However, BERT (Devlin
et al., 2018) soon reached over 86%, almost
human-level performance. One news article on
this development was headlined “finally, a ma-
chine that can finish your sentence.”1

In this paper, we investigate the following ques-
tion: How well do deep pretrained models, like

1A New York Times article at https://nyti.ms/2DycutY.

3 / 16



Overview SWAG Adversarial NLI Dynabench Can adversarial training improve systems?

SWAG examples

Example

• Context (given): He is throwing darts at a target.
• Sentence start (given): Another man
• Continuation (predicted): throws a dart at the target

board.
• Distractors:

1. comes running in and shoots an arrow at a target.
2. is shown on the side of men.
3. throws darts at a disk.

Sources
• ActivityNet: 51,439 exs; 203 activity types
• Large Scale Movie Description Challenge: 62,118 exs

4 / 16

Zellers et al. 2018;
https://rowanzellers.com/swag/

https://rowanzellers.com/swag/


Overview SWAG Adversarial NLI Dynabench Can adversarial training improve systems?

Adversarial filtering for SWAG

For each example i:

i The mixture creams the butter. Sugar

a. is added.
b. is sprinkled on top. [Model incorrect; keep this sample]
c. is in many foods.

Repeat for some number of iterations.

5 / 16
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Model accuracies under adversarial filtering

96

Figure 2: Test accuracy by AF iteration, under the
negatives given by A. The accuracy drops from
around 60% to close to random chance. For effi-
ciency, the first 100 iterations only use the MLP.

3.4 Stylistic models for adversarial filtering

In creating Swag, we designed the model family
f to pick up on low-level stylistic features that we
posit should not be predictive of whether an event
happens next in a video. These stylistic features
are an obvious case of annotation artifacts (Cai
et al., 2017; Schwartz et al., 2017).4 Our final clas-
sifier is an ensemble of four stylistic models:
1. A multilayer perceptron (MLP) given LM per-
plexity features and context/ending lengths.
2. A bag-of-words model that averages the word
embeddings of the second sentence as features.
3. A one-layer CNN, with filter sizes ranging from
2-5, over the second sentence.
4. A bidirectional LSTM over the 100 most com-
mon words in the second sentence; uncommon
words are replaced by their POS tags.
We ensemble the models by concatenating their fi-
nal representations and passing it through an MLP.
On every adversarial iteration, the ensemble is
trained jointly to minimize cross-entropy.

The accuracies of these models (at each itera-
tion, evaluated on a 20% split of the test dataset
before indices of A get remapped) are shown in
Figure 2. Performance decreases from 60% to
close to random chance; moreover, confusing the
perplexity-based MLP is not sufficient to lower
performance of the ensemble. Only once the other
stylistic models are added does the ensemble ac-
curacy drop substantially, suggesting that our ap-
proach is effective at reducing stylistic artifacts.

4A broad definition of annotation artifacts might include
aspects besides lexical/stylistic features: for instance, certain
events are less likely semantically regardless of the context
(e.g. riding a horse using a hose). For this work, we erred
more conservatively and only filtered based on style.

Imagine that you are watching a video clip. The clip has
a caption, but it is missing the final phrase. Please choose
the best 2 caption endings, and classify each as:
• likely, if it completes the caption in a reasonable way;
• unlikely, if it sounds ridiculous or impossible;
• gibberish if it has such serious errors that it doesn’t
feel like a valid English sentence.

Example: Someone is shown sitting on a fence and talking
to the camera while pointing out horses. Someone
• stands in front of a podium. (likely, second best)
• rides a horse using a hose. (unlikely)
• is shown riding a horse. (likely, best)
• , the horse in a plaza field. (gibberish)

Figure 3: Mechanical Turk instructions (abridged).

3.5 Human verification

The final data-collection step is to have humans
verify the data. Workers on Amazon Mechani-
cal Turk were given the caption context, as well
as six candidate endings: one found ending and
five adversarially-sampled endings. The task was
twofold: Turkers ranked the endings indepen-
dently as likely, unlikely, or gibberish, and se-
lected the best and second best endings (Fig 3).

We obtained the correct answers to each con-
text in two ways. If a Turker ranks the found end-
ing as either best or second best (73.7% of the
time), we add the found ending as a gold exam-
ple, with negatives from the generations not la-
belled best or gibberish. Further, if a Turker ranks
a generated ending as best, and the found ending
as second best, then we have reason to believe that
the generation is good. This lets us add an addi-
tional training example, consisting of the gener-
ated best ending as the gold, and remaining gen-
erations as negatives.5 Examples with 3 non-
gibberish endings were filtered out.6

We found after 1000 examples that the annota-
tors tended to have high agreement, also generally
choosing found endings over generations (see Ta-
ble 2). Thus, we collected the remaining 112k ex-
amples with one annotator each, periodically veri-
fying that annotators preferred the found endings.

4 Experiments

In this section, we evaluate the performance of
various NLI models on Swag. Recall that models

5These two examples share contexts. To prevent biasing
the test and validation sets, we didn’t perform this procedure
on answers from the evaluation sets’ context.

6To be data-efficient, we reannotated filtered-out exam-
ples by replacing gibberish endings, as well as generations
that outranked the found ending, with candidates from A.
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SWAG in the original BERT paper

System Dev F1 Test F1

ELMo+BiLSTM+CRF 95.7 92.2
CVT+Multi (Clark et al., 2018) - 92.6

BERTBASE 96.4 92.4
BERTLARGE 96.6 92.8

Table 3: CoNLL-2003 Named Entity Recognition re-
sults. The hyperparameters were selected using the
Dev set, and the reported Dev and Test scores are aver-
aged over 5 random restarts using those hyperparame-
ters.

sub-token as input to the classifier. For example:

Jim Hen ##son was a puppet ##eer
I-PER I-PER X O O O X

Where no prediction is made for X. Since
the WordPiece tokenization boundaries are a
known part of the input, this is done for both
training and test. A visual representation is also
given in Figure 3 (d). A cased WordPiece model
is used for NER, whereas an uncased model is
used for all other tasks.

Results are presented in Table 3. BERTLARGE
outperforms the existing SOTA, Cross-View
Training with multi-task learning (Clark et al.,
2018), by +0.2 on CoNLL-2003 NER Test.

4.4 SWAG
The Situations With Adversarial Generations
(SWAG) dataset contains 113k sentence-pair com-
pletion examples that evaluate grounded common-
sense inference (Zellers et al., 2018).

Given a sentence from a video captioning
dataset, the task is to decide among four choices
the most plausible continuation. For example:

A girl is going across a set of monkey bars. She

(i) jumps up across the monkey bars.

(ii) struggles onto the bars to grab her head.

(iii) gets to the end and stands on a wooden plank.

(iv) jumps up and does a back flip.

Adapting BERT to the SWAG dataset is similar
to the adaptation for GLUE. For each example, we
construct four input sequences, which each con-
tain the concatenation of the the given sentence
(sentence A) and a possible continuation (sentence
B). The only task-specific parameters we introduce
is a vector V 2 RH , whose dot product with the
final aggregate representation Ci 2 RH denotes a

System Dev Test

ESIM+GloVe 51.9 52.7
ESIM+ELMo 59.1 59.2

BERTBASE 81.6 -
BERTLARGE 86.6 86.3

Human (expert)† - 85.0
Human (5 annotations)† - 88.0

Table 4: SWAG Dev and Test accuracies. Test results
were scored against the hidden labels by the SWAG au-
thors. †Human performance is measure with 100 sam-
ples, as reported in the SWAG paper.

score for each choice i. The probability distribu-
tion is the softmax over the four choices:

Pi =
eV ·Ci

P4
j=1 eV ·Cj

We fine-tune the model for 3 epochs with a
learning rate of 2e-5 and a batch size of 16. Re-
sults are presented in Table 4. BERTLARGE out-
performs the authors’ baseline ESIM+ELMo sys-
tem by +27.1%.

5 Ablation Studies

Although we have demonstrated extremely strong
empirical results, the results presented so far have
not isolated the specific contributions from each
aspect of the BERT framework. In this section,
we perform ablation experiments over a number of
facets of BERT in order to better understand their
relative importance.

5.1 Effect of Pre-training Tasks

One of our core claims is that the deep bidirec-
tionality of BERT, which is enabled by masked
LM pre-training, is the single most important im-
provement of BERT compared to previous work.
To give evidence for this claim, we evaluate two
new models which use the exact same pre-training
data, fine-tuning scheme and Transformer hyper-
parameters as BERTBASE:

1. No NSP: A model which is trained using the
“masked LM” (MLM) but without the “next
sentence prediction” (NSP) task.

2. LTR & No NSP: A model which is trained
using a Left-to-Right (LTR) LM, rather than
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HellaSWAG

1. ActivityNet retained
2. Large Scale Movie Description Challenge dropped
3. WikiHow data added
4. Adversarial filtering as before, now with more powerful

generators and discriminators
5. Human agreement at 94%
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Figure 3: Validation accuracy on SWAG for BERT-
Large versus training set size. The baseline (25% accu-
racy) is random chance. BERT does well given as few
as 16 training examples, but requires tens of thousands
of examples to approach human performance.

olate human notions about how the world works),
which we achieve by using a language model. Po-
tential candidates of incorrect answers were mas-
sively oversampled from a language model trained
on in-domain data, and then selected using an en-
semble of adversaries. The selection process hap-
pens iteratively: on each iteration, the dataset is
randomly partitioned into Dtrain and Dtest. The
ensemble is trained to classify endings as real or
generated on Dtrain, then, AF replaces easy-to-
classify generations in Dtest. This process con-
tinues until the accuracy of these adversaries con-
verges. Last, humans validate the data to remove
adversarial endings that seem realistic.

Importantly, AF creates a final dataset that
is challenging to models regardless of the final
dataset split. In Section 4, we will use AF as the
underlying workhorse to construct an NLI dataset
that is easy for humans, yet challenging for ma-
chines. This di�culty persists even when mod-
els are provided significant training data, and even
when this data comes from the same distribution
as the test set. This contrasts with past work on
adversarial examples (e.g. Jia and Liang, 2017;
Glockner et al., 2018; Belinkov and Bisk, 2018)
which consider cases where an out-of-distribution
test set is constructed to be adversarial.

3 Investigating SWAG

In this section, we investigate why SWAG was
solved. We focus on BERT, since it is the best

Figure 4: BERT validation accuracy when trained and
evaluated under several versions of SWAG, with the
new dataset HellaSwag as comparison. We compare:
Ending Only No context is provided; just the endings.
Shuffled Endings that are indidivually tokenized,

shu✏ed, and then detokenized.
Shuffled+
Ending Only

No context is provided and each ending is
shu✏ed.

known approach at the time of writing.4 Core to
our analysis is investigating how a model trained
on Wikipedia and books can be so e↵ectively fine-
tuned for SWAG, a dataset from video captions.

3.1 How much innate knowledge does BERT
have about SWAG?

We investigate this question by measuring BERT’s
performance on SWAG while varying the size of
the training dataset; results are shown in Fig-
ure 3. While the best known ELMo NLI model
(ESIM+ELMo; Chen et al., 2017) requires the en-
tire training set to reach 59%, BERT outperforms
this given only 64 examples. However, BERT still
needs upwards of 16k examples to approach hu-
man performance, around which it plateaus.

3.2 What is learned during finetuning?

Figure 4 compares BERT’s performance when
trained and evaluated on variants of SWAG.
Context: BERT’s performance only slips 11.9
points (86.7%Ñ74.8%) when context is omitted
(Ending Only), suggesting a bias exists in the
endings themselves.5 If a followup event seems
unreasonable absent of context, then there must be
something markedly di↵erent between the space
of human-written and machine-generated endings.
Structure: To distinguish word usage from

4See the appendix for a discussion of the BERT architec-
ture and hyperparameter settings we used in our experiments.

5These biases are similar to those in NLI datasets, as
found by Gururangan et al. (2018); Poliak et al. (2018).
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Overall In-Domain Zero-Shot ActivityNet WikiHow
Model Val Test Val Test Val Test Val Test Val Test

Split SizeÑ 10K 10K 5K 5K 5K 5K 3.2K 3.5K 6.8K 6.5K

Chance 25.0

fastText 30.9 31.6 33.8 32.9 28.0 30.2 27.7 28.4 32.4 33.3
LSTM+GloVe 31.9 31.7 34.3 32.9 29.5 30.4 34.3 33.8 30.7 30.5
LSTM+ELMo 31.7 31.4 33.2 32.8 30.4 30.0 33.8 33.3 30.8 30.4
LSTM+BERT-Base 35.9 36.2 38.7 38.2 33.2 34.1 40.5 40.5 33.7 33.8
ESIM+ELMo 33.6 33.3 35.7 34.2 31.5 32.3 37.7 36.6 31.6 31.5
OpenAI GPT 41.9 41.7 45.3 44.0 38.6 39.3 46.4 43.8 39.8 40.5
BERT-Base 39.5 40.5 42.9 42.8 36.1 38.3 48.9 45.7 34.9 37.7
BERT-Large 46.7 47.3 50.2 49.7 43.3 45.0 54.7 51.7 42.9 45.0

Human 95.7 95.6 95.6 95.6 95.8 95.7 94.0 94.0 96.5 96.5

Table 1: Performance of models, evaluated with accuracy (%).We report results on the full validation and test sets
(Overall), as well as results on informative subsets of the data: evaluated on in-domain, versus zero-shot situations,
along with performance on the underlying data sources (ActivityNet versus WikiHow). All models substantially
underperform humans: the gap is over 45% on in-domain categories, and 50% on zero-shot categories.

Figure 8: Examples on the in-domain validation set of
HellaSwag, grouped by category label. Our evaluation
setup equally weights performance on categories seen
during training as well as out-of-domain.

5 Results

We evaluate the di�culty of HellaSwag using a va-
riety of strong baselines, with and without mas-
sive pretraining. The models share the same for-
mat: given a context and an ending, return a logit
for that ending. Accordingly, we train our models
using a four-way cross-entropy loss, where the ob-
jective is to predict the correct ending. In addition
to BERT-Large, our comparisons include:
a. OpenAI GPT (Radford et al., 2018): A fine-
tuned 12-layer transformer that was pre-trained on
the BookCorpus (Zhu et al., 2015).
b. Bert-Base: A smaller version of the BERT
model whose architecture size matches GPT.
c. ESIM+ELMo (Chen et al., 2017; Peters et al.,
2018): This is the best-performing ELMo model
for NLI, modified slightly so the final output layer

is now a four-way softmax over endings.
d. LSTM sentence encoder: This is a randomly
initialized two-layer bi-LSTM; the second layer’s
hidden states are max-pooled and fed into an MLP
to predict the logit. We consider three varia-
tions: GloVe embeddings, ELMo embeddings, or
(frozen) BERT-Base embeddings.9

e. FastText: (Joulin et al., 2017) An o↵-the-shelf
library for bag-of-words text classification.10

We compare all models to human performance
by asking five independent crowd workers to solve
the same four-way multiple choice problems; their
predictions are combined via majority vote.

Our results, shown in Table 1, hint at the di�-
culty of the dataset: human performance is over
95%, while overall model performance is below
50% for every model. Surprisingly, despite BERT-
Large having been used as the adversarial filter,
it still performs the strongest at 47.3% overall.
By making the dataset adversarial for BERT, it
seems to also have become adversarial for every
other model. For instance, while ESIM+ELMo
obtained 59% accuracy on SWAG, it obtains only
33.3% accuracy on HellaSwag.

In addition to pretraining being critical, so too is
end-to-end finetuning. Freezing BERT-Base and
adding an LSTM on top lowers its overall perfor-
mance 4.3%. This may help explain why mod-
els such as ESIM+ELMo struggled on SWAG, as
ELMo isn’t updated during finetuning.

While BERT is the best model, it still struggles
on HellaSwag, and especially so on zero-shot cat-

9For ELMo and BERT-Base, the model learns scalar
weights to combine each internal layer of the encoder.

10This model is trained with binary cross entropy loss.
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Abstract

We introduce a new large-scale NLI bench-
mark dataset, collected via an iterative, ad-
versarial human-and-model-in-the-loop proce-
dure. We show that training models on this
new dataset leads to state-of-the-art perfor-
mance on a variety of popular NLI bench-
marks, while posing a more difficult challenge
with its new test set. Our analysis sheds light
on the shortcomings of current state-of-the-
art models, and shows that non-expert annota-
tors are successful at finding their weaknesses.
The data collection method can be applied in
a never-ending learning scenario, becoming a
moving target for NLU, rather than a static
benchmark that will quickly saturate.

1 Introduction

Progress in AI has been driven by, among other
things, the development of challenging large-scale
benchmarks like ImageNet (Russakovsky et al.,
2015) in computer vision, and SNLI (Bowman
et al., 2015), SQuAD (Rajpurkar et al., 2016), and
others in natural language processing (NLP). Re-
cently, for natural language understanding (NLU)
in particular, the focus has shifted to combined
benchmarks like SentEval (Conneau and Kiela,
2018) and GLUE (Wang et al., 2018), which track
model performance on multiple tasks and provide
a unified platform for analysis.

With the rapid pace of advancement in AI, how-
ever, NLU benchmarks struggle to keep up with
model improvement. Whereas it took around 15
years to achieve “near-human performance” on
MNIST (LeCun et al., 1998; Cireşan et al., 2012;
Wan et al., 2013) and approximately 7 years to
surpass humans on ImageNet (Deng et al., 2009;
Russakovsky et al., 2015; He et al., 2016), the
GLUE benchmark did not last as long as we would
have hoped after the advent of BERT (Devlin et al.,

2018), and rapidly had to be extended into Super-
GLUE (Wang et al., 2019). This raises an important
question: Can we collect a large benchmark dataset
that can last longer?

The speed with which benchmarks become ob-
solete raises another important question: are cur-
rent NLU models genuinely as good as their high
performance on benchmarks suggests? A grow-
ing body of evidence shows that state-of-the-art
models learn to exploit spurious statistical patterns
in datasets (Gururangan et al., 2018; Poliak et al.,
2018; Tsuchiya, 2018; Glockner et al., 2018; Geva
et al., 2019; McCoy et al., 2019), instead of learn-
ing meaning in the flexible and generalizable way
that humans do. Given this, human annotators—be
they seasoned NLP researchers or non-experts—
might easily be able to construct examples that
expose model brittleness.

We propose an iterative, adversarial human-and-
model-in-the-loop solution for NLU dataset collec-
tion that addresses both benchmark longevity and
robustness issues. In the first stage, human anno-
tators devise examples that our current best mod-
els cannot determine the correct label for. These
resulting hard examples—which should expose ad-
ditional model weaknesses—can be added to the
training set and used to train a stronger model.
We then subject the strengthened model to the
same procedure and collect weaknesses over sev-
eral rounds. After each round, we train a new
model and set aside a new test set. The process
can be iteratively repeated in a never-ending learn-
ing (Mitchell et al., 2018) setting, with the model
getting stronger and the test set getting harder in
each new round. Thus, not only is the resultant
dataset harder than existing benchmarks, but this
process also yields a “moving post” dynamic target
for NLU systems, rather than a static benchmark
that will eventually saturate.

Our approach draws inspiration from recent ef-
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Adversarial NLI: Dataset creation

A direct response to adversarial test failings *NLI datasets:

1. The annotator is presented with a premise sentence and a
condition (entailment, contradiction, neutral).

2. The annotator writes a hypothesis.

3. A state-of-the-art model makes a prediction about the
premise–hypothesis pair.

4. If the model’s prediction matches the condition, the
annotator returns to step 2 to try again.

5. If the model was fooled, the premise–hypothesis pair is
independently validated by other annotators.
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Adversarial NLI: Example

Premise Hypothesis Reason Label Model

A melee weapon is
any weapon used in
direct hand-to-hand
combat; by contrast
with ranged weapons
which act at a
distance. The term
“melee” originates in
the 1640s from the
French word “mělée”,
which refers to
hand-to-hand combat,
a close quarters
battle, a brawl, a
confused fight, etc.
Melee weapons can be
broadly divided into
three categories

Melee weapons
are good for
ranged and
hand-to-hand
combat.

Melee weapons
are good for hand
to hand combat,
but NOT ranged.

E N
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Adversarial NLI results

Model Data A1 A2 A3 ANLI ANLI-E SNLI MNLI-m/-mm

BERT

S,M?1 00.0 28.9 28.8 19.8 19.9 91.3 86.7 / 86.4
+A1 44.2 32.6 29.3 35.0 34.2 91.3 86.3 / 86.5
+A1+A2 57.3 45.2 33.4 44.6 43.2 90.9 86.3 / 86.3
+A1+A2+A3 57.2 49.0 46.1 50.5 46.3 90.9 85.6 / 85.4
S,M,F,ANLI 57.4 48.3 43.5 49.3 44.2 90.4 86.0 / 85.8

XLNet S,M,F,ANLI 67.6 50.7 48.3 55.1 52.0 91.8 89.6 / 89.4

RoBERTa

S,M 47.6 25.4 22.1 31.1 31.4 92.6 90.8 / 90.6
+F 54.0 24.2 22.4 32.8 33.7 92.7 90.6 / 90.5
+F+A1?2 68.7 19.3 22.0 35.8 36.8 92.8 90.9 / 90.7
+F+A1+A2?3 71.2 44.3 20.4 43.7 41.4 92.9 91.0 / 90.7
S,M,F,ANLI 73.8 48.9 44.4 53.7 49.7 92.6 91.0 / 90.6

Table 3: Model Performance. ‘Data’ refers to training dataset (‘S’ refers to SNLI, ‘M’ to MNLI dev (-m=matched,
-mm=mismatched), and ‘F’ to FEVER); ‘A1–A3’ refer to the rounds respectively. ‘-E’ refers to test set examples
written by annotators exclusive to the test set. Datasets marked ‘?n’ were used to train the base model for round n,
and their performance on that round is underlined.

data is likely to be more interesting, but also simply
because the base model is better and so annotation
took longer to collect good, verified correct exam-
ples of model vulnerabilities.

For each round, we report the model error rate,
both on verified and unverified examples. The un-
verified model error rate captures the percentage
of examples where the model disagreed with the
writer’s target label, but where we are not (yet) sure
if the example is correct. The verified model error
rate is the percentage of model errors from example
pairs that other annotators were able to confirm the
correct label for. Note that this error rate represents
a straightforward way to evaluate model quality:
the lower the model error rate—assuming constant
annotator quality and context-difficulty—the better
the model.

We observe that model error rates decrease as
we progress through rounds. In Round 3, where
we included a more diverse range of contexts
from various domains, the overall error rate went
slightly up compared to the preceding round, but
for Wikipedia contexts the error rate decreased sub-
stantially. While for the first round roughly 1 in
every 5 examples were verified model errors, this
quickly dropped over consecutive rounds, and the
overall model error rate is less than 1 in 10. On
the one hand, this is impressive, and shows how far
we have come with just three rounds. On the other
hand, it shows that we still have a long way to go
if even untrained annotators can fool ensembles of
state-of-the-art models with relative ease.

Table 2 also reports the average number of
“tries”, i.e., attempts made for each context until a
model error was found (or the number of possible

tries is exceeded), and the average time this took
(in seconds). Again, these metrics represent a use-
ful way to evaluate model quality. We observe that
the average tries and average time per verified error
both go up as we progress through the rounds. The
numbers clearly demonstrate that the rounds are
getting increasingly more difficult.

4 Results

Table 3 reports the main results. In addition to
BERT (Devlin et al., 2018) and RoBERTa (Liu
et al., 2019b), we also include XLNet (Yang et al.,
2019) as an example of a strong, but different,
model architecture. We show test set performance
on the ANLI test sets per round, the total ANLI test
set, and the exclusive test subset (examples from
test-set-exclusive workers). We also show accuracy
on the SNLI test set and the MNLI development
(for the purpose of comparing between different
model configurations across table rows) set. In
what follows, we briefly discuss our observations.

Base model performance is low. Notice that the
base model for each round performs very poorly on
that round’s test set. This is the expected outcome:
For round 1, the base model gets the entire test set
wrong, by design. For rounds 2 and 3, we used an
ensemble, so performance is not necessarily zero.
However, as it turns out, performance still falls
well below chance, indicating that workers did not
find vulnerabilities specific to a single model, but
generally applicable ones for that model class.

Rounds become increasingly more difficult.
As already foreshadowed by the dataset statistics,
round 3 is more difficult (yields lower performance)
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A vision for future development

Zellers et al. (2019)
“a path for NLP progress going forward: towards benchmarks
that adversarially co-evolve with evolving state-of-the-art
models.”

Nie et al. (2019)
“This process yields a “moving post” dynamic target for NLU
systems, rather than a static benchmark that will eventually
saturate.”
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Dynabench
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Dynabench

1. NLI (see Nie et al. 2020)
2. QA (see Bartolo et al. 2020)
3. Sentiment (DynaSent; Potts et al. 2020)
4. Hate Speech (Vidgen et al. 2020)
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Can adversarial training improve systems?

1. Jia and Liang (2017:§4.6): Training on adversarial
examples makes them more robust to those examples
but not to simple variants.

2. Alzantot et al. (2018:§4.3): “We found that adversarial
training provided no additional robustness benefit in our
experiments using the test set, despite the fact that the
model achieves near 100% accuracy classifying
adversarial examples included in the training set.”

3. Liu et al. (2019): Fine-tuning with a few adversarial
examples improves systems in some cases (as discussed
under ‘inoculation’ just above).

4. Iyyer et al. (2018): Adversarially generated paraphrases
improve model robustness to syntactic variation.
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