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Standard evaluations

1. Create a dataset from a single process.

2. Divide the dataset into disjoint train and test sets, and
set the test set aside.

3. Develop a system on the train set.

4. Only after all development is complete, evaluate the
system based on accuracy on the test set.

5. Report the results as providing an estimate of
the system’s capacity to generalize.
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Adversarial evaluations

1. Create a dataset by whatever means you like.

2. Develop and assess the system using that dataset,
according to whatever protocols you choose.

3. Develop a new test dataset of examples that you
suspect or know will be challenging given your system
and the original dataset.

4. Only after all system development is complete, evaluate
the system based on accuracy on the new test dataset.

5. Report the results as providing an estimate of the
system’s capacity to generalize.
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A bit of history

[October, 1950 

M I N D   
A Q U A R T E R L Y  R E V I E W  

PSYCHOLOGY AND PHILOSOPHY 

I.-COMPUTING MACHINERY AND  
INTELLIGENCE  

1. The Imitation Game. 
I PROPOSE to consider the question, ' Can machines think ? ' 
This should begin with definitions of the meaning of the terms 
'machine ' and ' think '. The definitions might be framed so as to 
reflect so far as possible the normal use of the words, but this 
attitude is dangerous. If the meaning of the words ' machine ' 
and ' think ' are to be found by examining how they are commonly 
used i t  is difficult to escaDe the conclusion that the meaning a 
and the answer to tlie auestion, ' Can machines think ? ' is to be 
sought in a statistical sirvey sdch as a Gallup poll. But this is 
absurd. Instead of attempting such a definition I shall replace the 
question by another, which is closely related to it and is expressed 
in relatively unambiguous words. 

The new form of the problem can be described in terms of 
a game which we call the ' imitation game '. I t  is played with 
three people, a man (A), a woman (B), and an interrogator (C) who 
may be of either sex. The interrogator stays in a room apart 
from the other two. The object of the game for the interrogator 
is to determine which of the other two is the man and which is 
the woman. He knows them by labels X and Y, and at the end 
of the game he says either ' X is A and Y is B ' or ' X is B and Y 
is A '. The interrogator is allowed to put questions to A and B 
thas : 

C : Will X please tell me the length of his or her hair ? 
Now suppose X is actually A, then A must answer. It is A's 
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COGNITIVE PSYCHOLOGY 3, l-191 (1972) 

Understanding Natural Language 

TERRY WINOGRAD’ 
Massachusetts Institute of Technology 

Cambridge, Massachusetts 

This paper describes a computer system for understanding English. The 
system answers questions, executes commands, and accepts information in 
an interactive English dialog. 

It is based on the belief that in modeling language understanding, we 
must deal in an integrated way with all of the aspects of language- 
syntax, semantics, and inference. The system contains a parser, a recognition 
grammar of English, programs for semantic analysis, and a general problem 
solving system. We assume that a computer cannot deal reasonably with 
language unless it can understand the subject it is discussing. Therefore, the 
program is given a detailed model of a particular domain. In addition, the 
system has a simple model of its own mentality. It can remember and 
discuss its plans and actions as well as carrying them out. It enters into a 
dialog with a person, responding to English sentences with actions and 
English replies, asking for clarification when its heuristic programs can- 
not understand a sentence through the use of syntactic, semantic, con- 
textual, and physical knowledge. Knowledge in the system is represented 
in the form of procedures, rather than tables of rules or lists of patterns. By 
developing special procedural representations for syntax, semantics, and 
inference, we gain flexibility and power. Since each piece of knowledge can 
be a procedure, it can call directly on any other piece of knowledge in the 
system. 

1. OVERVIEW OF THE LANGUAGE UNDERSTANDING PROGRAM 

1.1. Introduction 
When a person sees or hears a sentence, he makes full use of his 

knowledge and intelligence to understand it. This includes not only 
grammar, but also his knowledge about words, the context of the sen- 

1 Work reported herein was conducted at the Artificial Intelligence Laboratory, a 
Massachusetts Institute of Technology research program supported by the Advanced 
Research Projects Agency of the Department of Defense under Contract Number 
N00014-70-A-0362-0002. The author wishes to express his gratitude to the members 
of the Artificial Intelligence Laboratory for their advice and support in this work. 

Requests for reprints or further information should be sent to the author, at the 
Artificial Intelligence Laboratory, M.I.T., 545 Technology Square, Cambridge, Massa- 
chusetts 02139. 

1 
@ 1972 by Academic Press, Inc. 
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Winograd sentences

1. The trophy doesn’t fit into the brown suitcase because
it’s too small. What is too small?
The suitcase / The trophy

2. The trophy doesn’t fit into the brown suitcase because
it’s too large. What is too large?
The suitcase / The trophy

3. The council refused the demonstrators a permit because
they feared violence. Who feared violence?
The council / The demonstrators

4. The council refused the demonstrators a permit because
they advocated violence. Who advocated violence?
The council / The demonstrators
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Levesque’s (2013) adversarial framing

Could a crocodile run a steelechase?
“The intent here is clear. The question can be answered by
thinking it through: a crocodile has short legs; the hedges in
a steeplechase would be too tall for the crocodile to jump
over; so no, a crocodile cannot run a steeplechase.”

Foiling cheap tricks
“Can we find questions where cheap tricks like this will not
be sufficient to produce the desired behaviour? This
unfortunately has no easy answer. The best we can do,
perhaps, is to come up with a suite of multiple-choice
questions carefully and then study the sorts of computer
programs that might be able to answer them.”
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Analytical considerations

What can adversarial testing tell us?
(And what can’t it tell us)?
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No need to be too adversarial

The evaluation need not be adversarial per se. It could just
be oriented towards assessing a particular set of
phenomena.

1. Has my system learned anything about numerical terms?
2. Does my system understand how negation works?
3. Does my system work with a new style or genre?
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Metrics

The limitations of accuracy-based metrics are generally left
unaddressed by the adversarial paradigm.
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Model failing or dataset failing?

Liu et al. (2019)
“What should we conclude when a system fails on a
challenge dataset? In some cases, a challenge might exploit
blind spots in the design of the original dataset (dataset
weakness). In others, the challenge might expose an
inherent inability of a particular model family to handle
certain natural language phenomena (model weakness).
These are, of course, not mutually exclusive.”
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Model failing or dataset failing?

Geiger et al. (2019)
However, for any evaluation method, we should ask whether
it is fair. Has the model been shown data sufficient to
support the kind of generalization we are asking of it? Unless
we can say “yes” with complete certainty, we can’t be sure
whether a failed evaluation traces to a model limitation or a
data limitation that no model could overcome.
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Model failing or dataset failing?

3 3 5 4 . . .

What number comes next?
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Inoculation by fine-tuning

Proceedings of NAACL-HLT 2019, pages 2171–2179
Minneapolis, Minnesota, June 2 - June 7, 2019. c�2019 Association for Computational Linguistics
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Inoculation by Fine-Tuning: A Method for Analyzing Challenge Datasets

Nelson F. Liu�~| Roy Schwartz�| Noah A. Smith�|
�Paul G. Allen School of Computer Science & Engineering,

University of Washington, Seattle, WA, USA
~Department of Linguistics, University of Washington, Seattle, WA, USA

|Allen Institute for Artificial Intelligence, Seattle, WA, USA
{nfliu,roysch,nasmith}@cs.washington.edu

Abstract

Several datasets have recently been con-
structed to expose brittleness in models trained
on existing benchmarks. While model perfor-
mance on these challenge datasets is signifi-
cantly lower compared to the original bench-
mark, it is unclear what particular weaknesses
they reveal. For example, a challenge dataset
may be difficult because it targets phenomena
that current models cannot capture, or because
it simply exploits blind spots in a model’s spe-
cific training set. We introduce inoculation by
fine-tuning, a new analysis method for study-
ing challenge datasets by exposing models (the
metaphorical patient) to a small amount of
data from the challenge dataset (a metaphor-
ical pathogen) and assessing how well they
can adapt. We apply our method to analyze
the NLI “stress tests” (Naik et al., 2018) and
the Adversarial SQuAD dataset (Jia and Liang,
2017). We show that after slight exposure,
some of these datasets are no longer challeng-
ing, while others remain difficult. Our results
indicate that failures on challenge datasets
may lead to very different conclusions about
models, training datasets, and the challenge
datasets themselves.

1 Introduction

NLP research progresses through the construction
of dataset-benchmarks and the development of
systems whose performance on them can be fairly
compared. A recent pattern involves challenges to
benchmarks:1 manipulations to input data that re-
sult in severe degradation of system performance,
but not human performance. These challenges
have been used as evidence that current systems
are brittle (Belinkov and Bisk, 2018; Mudrakarta
et al., 2018; Zhao et al., 2018; Glockner et al.,
2018; Ebrahimi et al., 2018; Ribeiro et al., 2018,

1Often referred to as “adversarial datasets” or “attacks”.

Figure 1: An illustration of the standard challenge eval-
uation procedure (e.g., Jia and Liang, 2017) and our
proposed analysis method. “Original” refers to the a
standard dataset (e.g., SQuAD) and “Challenge” refers
to the challenge dataset (e.g., Adversarial SQuAD).
Outcomes are discussed in Section 2.

inter alia). For instance, Naik et al. (2018) gen-
erated natural language inference challenge data
by applying simple textual transformations to ex-
isting examples from MultiNLI (Williams et al.,
2018) and SNLI (Bowman et al., 2015). Similarly,
Jia and Liang (2017) built an adversarial evalua-
tion dataset for reading comprehension based on
SQuAD (Rajpurkar et al., 2016).

What should we conclude when a system fails
on a challenge dataset? In some cases, a challenge
might exploit blind spots in the design of the origi-
nal dataset (dataset weakness). In others, the chal-
lenge might expose an inherent inability of a par-
ticular model family to handle certain natural lan-
guage phenomena (model weakness). These are,
of course, not mutually exclusive.

We introduce inoculation by fine-tuning, a
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SQUaD leaderboards

...
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Standard evaluations Adversarial evaluations History Considerations Example: SQUaD Example: NLI

SQUaD adversarial testing

Passage
Peyton Manning became the first quarterback ever to lead
two different teams to multiple Super Bowls. He is also the
oldest quarterback ever to play in a Super Bowl at age 39.
The past record was held by John Elway, who led the Broncos
to victory in Super Bowl XXXIII at age 38 and is currently
Denver’s Executive Vice President of Football Operations and
General Manager.

Question
What is the name of the quarterback who was 38 in Super
Bowl XXXIII?

Answer
John Elway

Model: Leland Stanford

13 / 18
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SQUaD adversarial testing
System Original Adversarial

ReasoNet-E 81.1 39.4
SEDT-E 80.1 35.0
BiDAF-E 80.0 34.2
Mnemonic-E 79.1 46.2
Ruminating 78.8 37.4
jNet 78.6 37.9
Mnemonic-S 78.5 46.6
ReasoNet-S 78.2 39.4
MPCM-S 77.0 40.3
SEDT-S 76.9 33.9
RaSOR 76.2 39.5
BiDAF-S 75.5 34.3
Match-E 75.4 29.4
Match-S 71.4 27.3
DCR 69.4 37.8
Logistic 50.4 23.2
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SQUaD adversarial testing
System Original Rank Adversarial Rank

ReasoNet-E 1 5
SEDT-E 2 10
BiDAF-E 3 12
Mnemonic-E 4 2
Ruminating 5 9
jNet 6 7
Mnemonic-S 7 1
ReasoNet-S 8 5
MPCM-S 9 3
SEDT-S 10 13
RaSOR 11 4
BiDAF-S 12 11
Match-E 13 14
Match-S 14 15
DCR 15 8
Logistic 16 16
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Comparison with regular testing

14 / 18

Plot of Original vs. Adversarial scores for SQUaD
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Comparison with regular testing
Do ImageNet Classifiers Generalize to ImageNet?

Figure 1. Model accuracy on the original test sets vs. our new test sets. Each data point corresponds to one model in our testbed (shown
with 95% Clopper-Pearson confidence intervals). The plots reveal two main phenomena: (i) There is a significant drop in accuracy from
the original to the new test sets. (ii) The model accuracies closely follow a linear function with slope greater than 1 (1.7 for CIFAR-10
and 1.1 for ImageNet). This means that every percentage point of progress on the original test set translates into more than one percentage
point on the new test set. The two plots are drawn so that their aspect ratio is the same, i.e., the slopes of the lines are visually comparable.
The red shaded region is a 95% confidence region for the linear fit from 100,000 bootstrap samples.

is to find a model f̂ that minimizes the population loss

LD(f̂) = E
(x,y)∼D

[
I[f̂(x) ̸= y]

]
. (1)

Since we usually do not know the distribution D, we instead
measure the performance of a trained classifier via a test set
S drawn from the distribution D:

LS(f̂) =
1

|S|
∑

(x,y)∈S

I[f̂(x) ̸= y] . (2)

We then use this test error LS(f̂) as a proxy for the popu-
lation loss LD(f̂). If a model f̂ achieves a low test error,
we assume that it will perform similarly well on future ex-
amples from the distribution D. This assumption underlies
essentially all empirical evaluations in machine learning
since it allows us to argue that the model f̂ generalizes.

In our experiments, we test this assumption by collecting a
new test set S′ from a data distribution D′ that we carefully
control to resemble the original distribution D. Ideally, the
original test accuracy LS(f̂) and new test accuracy LS′(f̂)
would then match up to the random sampling error. In
contrast to this idealized view, our results in Figure 1 show
a large drop in accuracy from the original test set S set to
our new test set S′. To understand this accuracy drop in
more detail, we decompose the difference between LS(f̂)

and LS′(f̂) into three parts (dropping the dependence on f̂
to simplify notation):

LS − LS′ = (LS − LD)︸ ︷︷ ︸
Adaptivity gap

+ (LD − LD′)︸ ︷︷ ︸
Distribution Gap

+ (LD′ − LS′)︸ ︷︷ ︸
Generalization gap

.

We now discuss to what extent each of the three terms can
lead to accuracy drops.
Generalization Gap. By construction, our new test set
S′ is independent of the existing classifier f̂ . Hence the
third term LD′ − LS′ is the standard generalization gap
commonly studied in machine learning. It is determined
solely by the random sampling error.
A first guess is that this inherent sampling error suffices
to explain the accuracy drops in Figure 1 (e.g., the new
test set S′ could have sampled certain “harder” modes of
the distribution D more often). However, random fluctu-
ations of this magnitude are unlikely for the size of our
test sets. With 10,000 data points (as in our new ImageNet
test set), a Clopper-Pearson 95% confidence interval for
the test accuracy has size of at most ±1%. Increasing the
confidence level to 99.99% yields a confidence interval of
size at most ± 2%. Moreover, these confidence intervals
become smaller for higher accuracies, which is the rele-
vant regime for the best-performing models. Hence random
chance alone cannot explain the accuracy drops observed in
our experiments.2

Adaptivity Gap. We call the term LS −LD the adaptivity
gap. It measures how much adapting the model f̂ to the
test set S causes the test error LS to underestimate the
population loss LD. If we assumed that our model f̂ is
independent of the test set S, this terms would follow the

2We remark that the sampling process for the new test set S′

could indeed systematically sample harder modes more often than
under the original data distribution D. Such a systematic change
in the sampling process would not be an effect of random chance
but captured by the distribution gap described below.
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Example: NLI
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An SNLI adversarial evaluation

Premise Relation Hypothesis

Train A little girl kneeling
in the dirt crying.

entails A little girl is very sad.

Adversarial

entails A little girl is very
unhappy.

Train
An elderly couple are
sitting outside a
restaurant, enjoying
wine.

entails A couple drinking
wine.

Adversarial

neutral A couple drinking
champagne.
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An SNLI adversarial evaluation

653

Model Train set SNLI test set New test set �

Decomposable Attention
(Parikh et al., 2016)

SNLI 84.7% 51.9% -32.8
MultiNLI + SNLI 84.9% 65.8% -19.1

SciTail + SNLI 85.0% 49.0% -36.0

ESIM (Chen et al., 2017)
SNLI 87.9% 65.6% -22.3

MultiNLI + SNLI 86.3% 74.9% -11.4
SciTail + SNLI 88.3% 67.7% -20.6

Residual-Stacked-Encoder
(Nie and Bansal, 2017)

SNLI 86.0% 62.2% -23.8
MultiNLI + SNLI 84.6% 68.2% -16.8

SciTail + SNLI 85.0% 60.1% -24.9

WordNet Baseline - - 85.8% -
KIM (Chen et al., 2018) SNLI 88.6% 83.5% -5.1

Table 3: Accuracy of various models trained on SNLI or a union of SNLI with another dataset (MultiNLI,
SciTail), and tested on the original SNLI test set and the new test set.

We chose models which are amongst the best
performing within their approaches (excluding en-
sembles) and have available code. All models
are based on pre-trained GloVe embeddings (Pen-
nington et al., 2014), which are either fine-tuned
during training (RESIDUAL-STACKED-ENCODER

and ESIM) or stay fixed (DECOMPOSABLE AT-
TENTION). All models predict the label using a
concatenation of features derived from the sen-
tence representations (e.g. maximum, mean), for
example as in Mou et al. (2016). We use the rec-
ommended hyper-parameters for each model, as
they appear in the provided code.

With External Knowledge. We provide a sim-
ple WORDNET BASELINE, in which we classify
a sentence-pair according to the WordNet relation
that holds between the original word wp and the
replaced word wh. We predict entailment if wp is
a hyponym of wh or if they are synonyms, neutral
if wp is a hypernym of wh, and contradiction if wp

and wh are antonyms or if they share a common
hypernym ancestor (up to 2 edges). Word pairs
with no WordNet relations are classified as other.

We also report the performance of KIM

(Knowledge-based Inference Model, Chen et al.,
2018), an extension of ESIM with external knowl-
edge from WordNet, which was kindly provided
to us by Qian Chen. KIM improves the attention
mechanism by taking into account the existence
of WordNet relations between the words. The lex-
ical inference component, operating over pairs of
aligned words, is enriched with a vector encoding
the specific WordNet relations between the words.

4.2 Experimental Settings

We trained each model on 3 different datasets: (1)
SNLI train set, (2) a union of the SNLI train set

and the MultiNLI train set, and (3) a union of the
SNLI train set and the SciTail train set. The mo-
tivation is that while SNLI might lack the training
data needed to learn the required lexical knowl-
edge, it may be available in the other datasets,
which are presumably richer.

4.3 Results
Table 3 displays the results for all the models on
the original SNLI test set and the new test set. De-
spite the task being considerably simpler, the drop
in performance is substantial, ranging from 11 to
33 points in accuracy. Adding MultiNLI to the
training data somewhat mitigates this drop in ac-
curacy, thanks to almost doubling the amount of
training data. We note that adding SciTail to the
training data did not similarly improve the perfor-
mance; we conjecture that this stems from the dif-
ferences between the datasets.

KIM substantially outperforms the other neural
models, demonstrating that lexical knowledge is
the only requirement for good performance on the
new test set, and stressing the inability of the other
models to learn it. Both WordNet-informed mod-
els leave room for improvement: possibly due to
limited WordNet coverage and the implications of
applying lexical inferences within context.

5 Analysis

We take a deeper look into the predictions of the
models that don’t employ external knowledge, fo-
cusing on the models trained on SNLI.

5.1 Accuracy by Category
Table 4 displays the accuracy of each model per
replacement-word category. The neural models
tend to perform well on categories which are fre-
quent in the training set, such as colors, and badly

Models that have
access to the 
resources used to 
create the 
adversarial 
examples
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Standard evaluations Adversarial evaluations History Considerations Example: SQUaD Example: NLI

An SNLI adversarial evaluation
RoBERTA-MNLI, off-the-shelf

KmHiBMHBn;HQ+FM2`n�/p2`b�`B�Hn`Q#2`i�

J�`+? kj- kyky

(R), BKTQ`i MHB- Qb- iQ`+?
7`QK bFH2�`MXK2i`B+b BKTQ`i +H�bbB7B+�iBQMn`2TQ`i

(k), O �p�BH�#H2 7`QK ?iiTb,ff;Bi?m#X+QKf"Al@LGSf"`2�FBM;nLGA,
#`2�FBM;nMHBnb`+n7BH2M�K2 4 QbXT�i?XDQBMU]XXfM2r@/�i�f/�i�f/�i�b2iXDbQMH]V
`2�/2` 4 MHBXLGA_2�/2`U#`2�FBM;nMHBnb`+n7BH2M�K2V

(j), 2tb 4 (UU2tXb2Mi2M+2R- 2tXb2Mi2M+2kV- 2tX;QH/nH�#2HV 7Q` 2t BM `2�/2`X`2�/UV)

(9), sni2binbi`- vni2bi 4 xBTU 2tbV

(8), KQ/2H 4 iQ`+?X?m#XHQ�/U^TviQ`+?f7�B`b2[^- ^`Q#2`i�XH�`;2XKMHB^V
n 4 KQ/2HX2p�HUV

lbBM; +�+?2 7QmM/ BM flb2`bf+;TQiibfX+�+?2fiQ`+?f?m#fTviQ`+?n7�B`b2[nK�bi2`

(e), sni2bi 4 (KQ/2HX2M+Q/2U 2tV 7Q` 2t BM sni2binbi`)

(d), T`2/nBM/B+2b 4 (KQ/2HXT`2/B+iU^KMHB^- 2tVX�`;K�tUV 7Q` 2t BM sni2bi)

(3), iQnbi` 4 &y, ^+QMi`�/B+iBQM^- R, ^M2mi`�H^- k, ^2Mi�BHK2Mi^'

(N), T`2/b 4 (iQnbi`(+XBi2KUV) 7Q` + BM T`2/nBM/B+2b)

(Ry), T`BMiU+H�bbB7B+�iBQMn`2TQ`iUvni2bi- T`2/bVV

T`2+BbBQM `2+�HH 7R@b+Q`2 bmTTQ`i

+QMi`�/B+iBQM yXNN yXNd yXN3 dRe9
2Mi�BHK2Mi yX3e RXyy yXNk N3k

M2mi`�H yXR8 yXR8 yXR8 9d

�++m`�+v yXNd 3RNj
K�+`Q �p; yXed yXdR yXe3 3RNj

r2B;?i2/ �p; yXNd yXNd yXNd 3RNj

R
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Standard evaluations Adversarial evaluations History Considerations Example: SQUaD Example: NLI

A MultiNLI adversarial evaluation

Category Premise Relation Hypothesis

Antonyms I love the Cinderella
story.

contradicts I hate the Cinderella
story.

Numerical Tim has 350 pounds of
cement in 100, 50,
and 25 pound bags.

contradicts Tim has less than 750
pounds of cement in
100, 50, and 25 pound
bags.

Word overlap Possibly no other
country has had such
a turbulent history.

entails The country’s history
has been turbulent
and true is true

Negation Possibly no other
country has had such
a turbulent history.

entails The country’s history
has been turbulent
and false is not true
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A MultiNLI adversarial evaluation

Category Examples

Antonym 1,561
Length Mismatch 9815
Negation 9,815
Numerical Reasoning 7,596
Spelling Error 35,421
Word Overlap 9,815
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A MultiNLI adversarial evaluation

2345

Original Competence Test Distraction Test Noise Test
MultiNLI Word Length Spelling

System Dev Antonymy Numerical Overlap Negation Mismatch Error
Mat Mis Mat Mis Reasoning Mat Mis Mat Mis Mat Mis Mat Mis

NB 74.2 74.8 15.1 19.3 21.2 47.2 47.1 39.5 40.0 48.2 47.3 51.1 49.8
CH 73.7 72.8 11.6 9.3 30.3 58.3 58.4 52.4 52.2 63.7 65.0 68.3 69.1
RC 71.3 71.6 36.4 32.8 30.2 53.7 54.4 49.5 50.4 48.6 49.6 66.6 67.0
IS 70.3 70.6 14.4 10.2 28.8 50.0 50.2 46.8 46.6 58.7 59.4 58.3 59.4

BiLSTM 70.2 70.8 13.2 9.8 31.3 57.0 58.5 51.4 51.9 49.7 51.2 65.0 65.1
CBOW 63.5 64.2 6.3 3.6 30.3 53.6 55.6 43.7 44.2 48.0 49.3 60.3 60.6

Table 3: Classification accuracy (%) of state-of-the-art models on our constructed stress tests. Accuracies
shown on both genre-matched and mismatched categories for each stress set. For reference, random
baseline accuracy is 33%.

3.3 Noise Test Construction

This class consists of an adversarial example set which tests model robustness to spelling errors. Spelling
errors occur often in MultiNLI data, due to involvement of Turkers and noisy source text (Ghaeini et
al., 2018), which is problematic as some NLI systems rely heavily on word embeddings. Inspired by
Belinkov and Bisk (2017), we construct a stress test for “spelling errors” by performing two types of
perturbations on a word sampled randomly from the hypothesis: random swap of adjacent characters
within the word (for example, “I saw Tipper with him at teh movie.”), and random substitution of a single
alphabetical character with the character next to it on the English keyboard. For example, “Agencies have
been further restricted and given less choice in selecting contractimg methods”.

4 Experiments

4.1 Experimental Setup

We focus on the following sentence-encoder models, which achieve strong performance on MultiNLI:
Nie and Bansal (2017) (NB): This model uses a sentence encoder consisting of stacked BiLSTM-RNNs
with shortcut connections and fine-tuning of embeddings. It achieves the top non-ensemble result in the
RepEval-2017 shared task (Nangia et al., 2017).
Chen et al. (2017) (CH): This model also uses a sentence encoder consisting of stacked BiLSTM-RNNs
with shortcut connections. Additionally, it makes use of character-composition word embeddings
learned via CNNs, intra-sentence gated attention and ensembling to achieve the best overall result in the
RepEval-2017 shared task.
Balazs et al. (2017) (RiverCorners - RC): This model uses a single-layer BiLSTM with mean pooling
and intra-sentence attention.
Conneau et al. (2017) (InferSent - IS): This model uses a single-layer BiLSTM-RNN with max-
pooling. It is shown to learn robust universal sentence representations which transfer well across several
inference tasks.
We also set up two simple baseline models:
BiLSTM: The simple BiLSTM baseline model described by Nangia et al. (2017).
CBOW: A bag-of-words sentence representation from word embeddings.

4.2 Model Performance on Stress Tests

Table 3 shows the classification accuracy of all six models on our stress tests and the original MultiNLI
development set. We see that performance of all models drops across all stress tests. On competence
stress tests, no model is a clear winner, with RC and CH performing best on antonymy and numerical
reasoning respectively. On distraction tests, CH is the best-performing model, suggesting that their
gated-attention mechanism handles shallow word-level distractions to some extent. Interestingly, our
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A MultiNLI adversarial evaluation

2174

Outcome 1 Outcome 2 Outcome 3

(a) Word Overlap (c) Spelling Errors (e) Numerical Reasoning

(b) Negation (d) Length Mismatch (f) Adversarial SQuAD

Figure 3: Inoculation by fine-tuning results. (a–e): NLI accuracy for the ESIM and decomposable attention (DA)
models. (f): Reading comprehension F1 scores for the BiDAF and QANet models.
Fine-tuning on a small number of word overlap (a) and negation (b) examples erases the performance gap (Outcome
1). Fine-tuning does not yield significant improvement on spelling errors (c) and length mismatch (d), but does not
degrade original performance either (Outcome 2). Fine-tuning on numerical reasoning (e) closes the gap entirely,
but also reduces performance on the original dataset (Outcome 3). On Adversarial SQuAD (f), around 60% of the
performance gap is closed after fine-tuning, though performance on the original dataset decreases (Outcome 3).
On each challenge dataset, we observe similar trends between different models.

produced by running each token through a charac-
ter bidirectional GRU (Cho et al., 2014).

Adversarial SQuAD Jia and Liang (2017) cre-
ated a challenge dataset for reading comprehen-
sion by appending automatically-generated dis-
tractor sentences to SQuAD passages. The ap-
pended distractor sentences are crafted to look
similar to the question while not contradicting the
correct answer or misleading humans (Figure 2).
The authors released model-independent Adver-
sarial SQuAD examples, which we analyze. For
our analysis, we use the BiDAF model (Seo et al.,
2017) and the QANet model (Yu et al., 2018).

3.2 Results
We refer to difference between a model’s pre-
inoculation performance on the original test set
and the challenge test set as the performance gap.

NLI Stress Tests Figure 3 presents NLI accu-
racy for the ESIM and DA models on the word
overlap, negation, spelling errors, length mis-

match and numerical reasoning challenge datasets
after fine-tuning on a varying number of challenge
examples.

For the word overlap and negation challenge
datasets, both ESIM and DA quickly close the
performance gap when fine-tuning (Outcome 1).
For instance, on both of the aforementioned chal-
lenge datasets, ESIM requires only 100 exam-
ples to close over 90% of the performance gap
while maintaining high performance on the orig-
inal dataset. Since these performance gaps are
closed after seeing a few challenge dataset exam-
ples (< 0.03% of the original MultiNLI training
dataset), these challenges are likely difficult be-
cause they exploit easily-recoverable gaps in the
models’ training dataset rather than highlighting
their inability to capture semantic phenomena.

In contrast, on spelling errors and length mis-
match, fine-tuning does not allow either model
to close a substantial portion of the performance
gap, while performance on the original dataset

(Dataset weakness) (Model weakness) (Dataset artifacts or other problem)
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