Standard evaluations	Adversarial evaluations	History	Considerations	Example: SQUaD	Example: NLI
		00	0000	00	00

Analysis methods in NLP: Adversarial testing

Christopher Potts

Stanford Linguistics

CS224u: Natural language understanding

Standard evaluations

- 1. Create a dataset from a single process.
- 2. Divide the dataset into disjoint train and test sets, and set the test set aside.
- 3. Develop a system on the train set.
- 4. Only after all development is complete, evaluate the system based on accuracy on the test set.
- 5. Report the results as providing an estimate of the system's capacity to generalize.

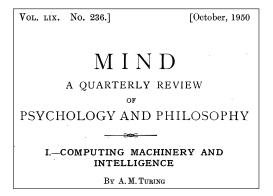
Standard evaluations	Adversarial evaluations	History 00	Considerations	Example: SQUaD 00	Example: NLI 00

Adversarial evaluations

- 1. Create a dataset by whatever means you like.
- 2. Develop and assess the system using that dataset, according to whatever protocols you choose.
- Develop a new test dataset of examples that you suspect or know will be challenging given your system and the original dataset.
- Only after all system development is complete, evaluate the system based on accuracy on the new test dataset.
- 5. Report the results as providing an estimate of the system's capacity to generalize.

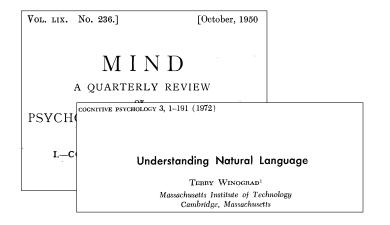
Standard evaluations	Adversarial evaluations	History	Considerations	Example: SQUaD	Example: NLI
		00	0000	00	00

A bit of history



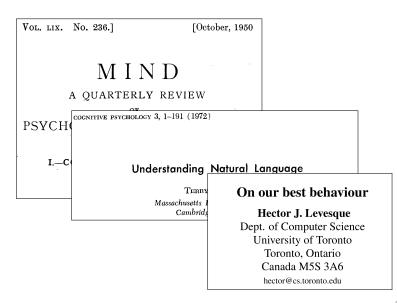
Standard evaluations	Adversarial evaluations	History	Considerations	Example: SQUaD	Example: NLI
		00	0000	00	00

A bit of history



Standard evaluations	Adversarial evaluations	History	Considerations	Example: SQUaD	Example: NLI
		00	0000	00	00

A bit of history



Winograd sentences

- The trophy doesn't fit into the brown suitcase because it's too small. What is too small? The suitcase / The trophy
- The trophy doesn't fit into the brown suitcase because it's too large. What is too large? The suitcase / The trophy
- The council refused the demonstrators a permit because they **feared** violence. Who **feared** violence? The council / The demonstrators
- 4. The council refused the demonstrators a permit because they advocated violence. Who advocated violence? The council / The demonstrators

Levesque's (2013) adversarial framing

Could a crocodile run a steelechase?

"The intent here is clear. The question can be answered by thinking it through: a crocodile has short legs; the hedges in a steeplechase would be too tall for the crocodile to jump over; so no, a crocodile cannot run a steeplechase."

Foiling cheap tricks

"Can we find questions where cheap tricks like this will not be sufficient to produce the desired behaviour? This unfortunately has no easy answer. The best we can do, perhaps, is to come up with a suite of multiple-choice questions carefully and then study the sorts of computer programs that might be able to answer them."

Analytical considerations

What can adversarial testing tell us? (And what can't it tell us)?

No need to be too adversarial

The evaluation need not be adversarial per se. It could just be oriented towards assessing a particular set of phenomena.

- 1. Has my system learned anything about numerical terms?
- 2. Does my system understand how negation works?
- 3. Does my system work with a new style or genre?

Standard evaluations	Adversarial evaluations	History	Considerations	Example: SQUaD	Example: NLI
		00	0000	00	00

Metrics

The limitations of accuracy-based metrics are generally left unaddressed by the adversarial paradigm.

Liu et al. (2019)

"What should we conclude when a system fails on a challenge dataset? In some cases, a challenge might exploit blind spots in the design of the original dataset (*dataset weakness*). In others, the challenge might expose an inherent inability of a particular model family to handle certain natural language phenomena (*model weakness*). These are, of course, not mutually exclusive."

Geiger et al. (2019)

However, for any evaluation method, we should ask whether it is fair. Has the model been shown data sufficient to support the kind of generalization we are asking of it? Unless we can say "yes" with complete certainty, we can't be sure whether a failed evaluation traces to a model limitation or a data limitation that no model could overcome.

Standard evaluations	Adversarial evaluations	History	Considerations	Example: SQUaD	Example: NLI
		00	0000	00	00

3 3 5 4 ...

Standard evaluations	Adversarial evaluations	History	Considerations	Example: SQUaD	Example: NLI
		00	0000	00	00

3 3 5 4 ...

What number comes next?

Inoculation by fine-tuning

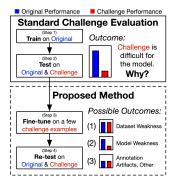


Figure 1: An illustration of the standard challenge evaluation procedure (e.g., Jia and Liang, 2017) and our proposed analysis method. "Original" refers to the a standard dataset (e.g., SQuAD) and "Challenge" refers to the challenge dataset (e.g., Adversarial SQuAD). Outcomes are discussed in Section 2.

Liu et al. 2019

SQUaD leaderboards

Leaderboard

SQuAD2.0 tests the ability of a system to not only answer reading comprehension questions, but also abstain when presented with a question that cannot be answered based on the provided paragraph.

Rank	Model	EM	F1
	Human Performance Stanford University (Rajpurkar & Jia et al. '18)	86.831	89.452
1 Jan 10, 2020	Retro-Reader on ALBERT (ensemble) Shanghai Jiao Tong University http://arxiv.org/abs/2001.09694	90.115	92.580
2 Nov 06, 2019	ALBERT + DAAF + Verifier (ensemble) PINGAN Omni-Sinitic	90.002	92.425
3 Sep 18, 2019	ALBERT (ensemble model) Google Research & TTIC https://arxiv.org/abs/1909.11942	89.731	92.215
3 Feb 25, 2020	Albert_Verifier_AA_Net (ensemble) QIANXIN	89.743	92.180
4 Jan 23, 2020	albert+transform+verify (ensemble) qianxin	89.528	92.059
13 Nov 12, 2019	RoBERTa+Verify (single model) CW	86.448	89.586
13 Mar 15, 2019	BERT + ConvLSTM + MTL + Verifier (ensemble) Layer 6 Al	86.730	89.286

Rajpurkar et al. 2016

Passage

Peyton Manning became the first quarterback ever to lead two different teams to multiple Super Bowls. He is also the oldest quarterback ever to play in a Super Bowl at age 39. The past record was held by John Elway, who led the Broncos to victory in Super Bowl XXXIII at age 38 and is currently Denver's Executive Vice President of Football Operations and General Manager.

Question

What is the name of the quarterback who was 38 in Super Bowl XXXIII?

Passage

Peyton Manning became the first quarterback ever to lead two different teams to multiple Super Bowls. He is also the oldest quarterback ever to play in a Super Bowl at age 39. The past record was held by John Elway, who led the Broncos to victory in Super Bowl XXXIII at age 38 and is currently Denver's Executive Vice President of Football Operations and General Manager.

Question

What is the name of the quarterback who was 38 in Super Bowl XXXIII?

Answer

John Elway

Passage

Peyton Manning became the first quarterback ever to lead two different teams to multiple Super Bowls. He is also the oldest quarterback ever to play in a Super Bowl at age 39. The past record was held by John Elway, who led the Broncos to victory in Super Bowl XXXIII at age 38 and is currently Denver's Executive Vice President of Football Operations and General Manager. Quarterback Leland Stanford had jersey number 37 in Champ Bowl XXXIV.

Question

What is the name of the quarterback who was 38 in Super Bowl XXXIII?

Answer

John Elway

Passage

Peyton Manning became the first quarterback ever to lead two different teams to multiple Super Bowls. He is also the oldest quarterback ever to play in a Super Bowl at age 39. The past record was held by John Elway, who led the Broncos to victory in Super Bowl XXXIII at age 38 and is currently Denver's Executive Vice President of Football Operations and General Manager. Quarterback Leland Stanford had jersey number 37 in Champ Bowl XXXIV.

Question

What is the name of the quarterback who was 38 in Super Bowl XXXIII?

Answer

John Elway Model: Leland Stanford

Passage

Quarterback Leland Stanford had jersey number 37 in Champ Bowl XXXIV. Peyton Manning became the first quarterback ever to lead two different teams to multiple Super Bowls. He is also the oldest quarterback ever to play in a Super Bowl at age 39. The past record was held by John Elway, who led the Broncos to victory in Super Bowl XXXIII at age 38 and is currently Denver's Executive Vice President of Football Operations and General Manager.

Question

What is the name of the quarterback who was 38 in Super Bowl XXXIII?

Answer

John Elway

Passage

Quarterback Leland Stanford had jersey number 37 in Champ Bowl XXXIV. Peyton Manning became the first quarterback ever to lead two different teams to multiple Super Bowls. He is also the oldest quarterback ever to play in a Super Bowl at age 39. The past record was held by John Elway, who led the Broncos to victory in Super Bowl XXXIII at age 38 and is currently Denver's Executive Vice President of Football Operations and General Manager.

Question

What is the name of the quarterback who was 38 in Super Bowl XXXIII?

Answer

John Elway Model: Leland Stanford

Standard evaluations	Adversarial evaluations	History	Considerations	Example: SQUaD	Example: NLI
		00	0000	•0	00

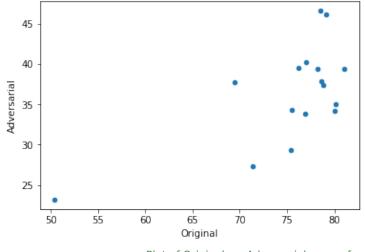
System	Original	Adversarial
ReasoNet-E	81.1	39.4
SEDT-E	80.1	35.0
BIDAF-E	80.0	34.2
Mnemonic-E	79.1	46.2
Ruminating	78.8	37.4
jNet	78.6	37.9
Mnemonic-S	78.5	46.6
ReasoNet-S	78.2	39.4
MPCM-S	77.0	40.3
SEDT-S	76.9	33.9
RaSOR	76.2	39.5
BiDAF-S	75.5	34.3
Match-E	75.4	29.4
Match-S	71.4	27.3
DCR	69.4	37.8
Logistic	50.4	23.2

Standard evaluations	Adversarial evaluations	History	Considerations	Example: SQUaD	Example: NLI
		00	0000	•0	00

System	Original Rank	Adversarial Rank
ReasoNet-E	1	5
SEDT-E	2	10
BiDAF-E	3	12
Mnemonic-E	4	2
Ruminating	5	9
jNet	6	7
Mnemonic-S	7	1
ReasoNet-S	8	5
MPCM-S	9	3
SEDT-S	10	13
RaSOR	11	4
BiDAF-S	12	11
Match-E	13	14
Match-S	14	15
DCR	15	8
Logistic	16	16

Standard evaluations	Adversarial evaluations	History	Considerations	Example: SQUaD	Example: NLI
		00	0000	0	00

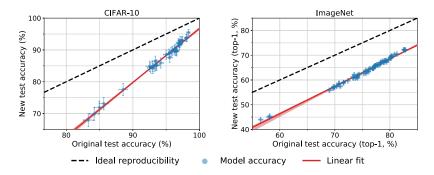
Comparison with regular testing



Plot of Original vs. Adversarial scores for SQUaD

Standard evaluations	Adversarial evaluations	History	Considerations	Example: SQUaD	Example: NLI
		00	0000	0.	00

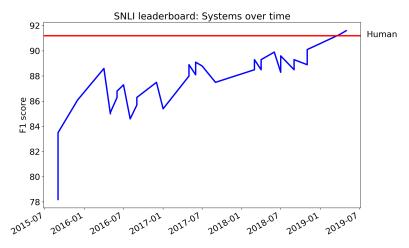
Comparison with regular testing



Recht et al. 2019

Standard evaluations	Adversarial evaluations	History	Considerations	Example: SQUaD	Example: NLI
		00	0000	00	00

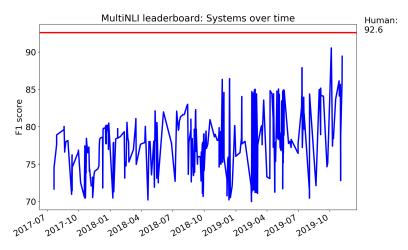
Example: NLI



Bowman et al. 2015

Standard evaluations	Adversarial evaluations	History	Considerations	Example: SQUaD	Example: NLI
		00	0000	00	00

Example: NLI



Bowman et al. 2015

Standard evaluations	Adversarial evaluations	History	Considerations	Example: SQUaD	Example: NLI
		00	0000	00	•0

	Premise	Relation	Hypothesis
		entails	A little girl is very sad.
Train Adversarial	in the dirt crying.		A little girl is very unhappy.
Train	An elderly couple are sitting outside a	entails	A couple drinking wine.
Adversarial	restaurant, enjoying wine. dversarial		A couple drinking champagne.

Glockner et al. 2018

Standard evaluations	Adversarial evaluations	History	Considerations	Example: SQUaD	Example: NLI
		00	0000	00	•0

	Model	Train set	SNLI test set	New test set	Δ
	Decomposable Attention	SNLI	84.7%	51.9%	-32.8
	(Parikh et al., 2016)	MultiNLI + SNLI	84.9%	65.8%	-19.1
	(Fariki et al., 2010)	SciTail + SNLI	85.0%	49.0%	-36.0
		SNLI	87.9%	65.6%	-22.3
	ESIM (Chen et al., 2017)	MultiNLI + SNLI	86.3%	74.9%	-11.4
		SciTail + SNLI	88.3%	67.7%	-20.6
	Devident Creater J Francisco	SNLI	86.0%	62.2%	-23.8
viodels that have	Residual-Stacked-Encoder (Nie and Bansal, 2017)	MultiNLI + SNLI	84.6%	68.2%	-16.8
resources used to		SciTail + SNLI	85.0%	60.1%	-24.9
create the	WordNet Baseline	-	-	85.8%	-
examples	KIM (Chen et al., 2018)	SNLI	88.6%	83.5%	-5.1

Table 3: Accuracy of various models trained on SNLI or a union of SNLI with another dataset (MultiNLI, SciTail), and tested on the original SNLI test set and the new test set.

RoBERTA-MNLI, off-the-shelf

Standard evaluations	Adversarial evaluations	History	Considerations	Example: SQUaD	Example: NLI
		00	0000	00	•0

RoBERTA-MNLI, off-the-shelf

print(classif	reaction_repo	rc(y_cesc	, preus//		
	precision	recall	f1-score	support	
contradiction	0.99	0.97	0.98	7164	
entailment	0.86	1.00	0.92	982	
neutral	0.15	0.15	0.15	47	
accuracy			0.97	8193	
macro avg	0.67	0.71	0.68	8193	
weighted avg	0.97	0.97	0.97	8193	

Standard evaluations	Adversarial evaluations	History	Considerations	Example: SQUaD	Example: NLI
		00	0000	00	0

Category	Premise	Relation	Hypothesis
Antonyms	I love the Cinderella story.	contradicts	I hate the Cinderella story.
Numerical	Tim has 350 pounds of cement in 100, 50, and 25 pound bags.	contradicts	Tim has less than 750 pounds of cement in 100, 50, and 25 pound bags.
Word overlap	Possibly no other country has had such a turbulent history.	entails	The country's history has been turbulent and true is true
Negation	Possibly no other country has had such a turbulent history.	entails	The country's history has been turbulent and false is not true

Also 'Length mismatch' and 'Spelling errors'; Naik et al. 2018

Standard evaluations	Adversarial evaluations	History	Considerations	Example: SQUaD	Example: NLI
		00	0000	00	0

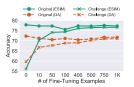
Category	Examples
Antonym	1,561
Length Mismatch	9815
Negation	9,815
Numerical Reasoning	7,596
Spelling Error	35,421
Word Overlap	9,815

Naik et al. 2018

	Original		Competence Test			Distraction Test						Noise Test	
	MultiNLI					Word				Length		Spelling	
System	n Dev		Antonymy		Numerical	Overlap		Negation		Mismatch		Error	
	Mat	Mis	Mat	Mis	Reasoning	Mat	Mis	Mat	Mis	Mat	Mis	Mat	Mis
NB	74.2	74.8	15.1	19.3	21.2	47.2	47.1	39.5	40.0	48.2	47.3	51.1	49.8
СН	73.7	72.8	11.6	9.3	30.3	58.3	58.4	52.4	52.2	63.7	65.0	68.3	69.1
RC	71.3	71.6	36.4	32.8	30.2	53.7	54.4	49.5	50.4	48.6	49.6	66.6	67.0
IS	70.3	70.6	14.4	10.2	28.8	50.0	50.2	46.8	46.6	58.7	59.4	58.3	59.4
BiLSTM	70.2	70.8	13.2	9.8	31.3	57.0	58.5	51.4	51.9	49.7	51.2	65.0	65.1
CBOW	63.5	64.2	6.3	3.6	30.3	53.6	55.6	43.7	44.2	48.0	49.3	60.3	60.6

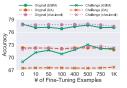
Outcome 1 (Dataset weakness)

(a) Word Overlap



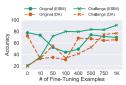
Outcome 2 (Model weakness)

(c) Spelling Errors



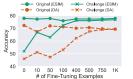
Outcome 3 (Dataset artifacts or other problem)

(e) Numerical Reasoning



(b) Negation

(d) Length Mismatch



of Fine-Tuning Examples

Liu et al. 2019; Antonym not tested because its label is always 'contradiction'

References I

- Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. 2015. A large annotated corpus for learning natural language inference. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 632–642, Stroudsburg, PA. Association for Computational Linguistics.
- Atticus Geiger, Ignacio Cases, Lauri Karttunen, and Christopher Potts. 2019. Posing fair generalization tasks for natural language inference. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 4475–4485, Stroudsburg, PA. Association for Computational Linguistics.
- Max Glockner, Vered Shwartz, and Yoav Goldberg. 2018. Breaking NLI systems with sentences that require simple lexical inferences. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 650–655. Melbourne, Australia. Association for Computational Linguistics.
- Robin Jia and Percy Liang. 2017. Adversarial examples for evaluating reading comprehension systems. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2021–2031. Association for Computational Linguistics.
- Hector J. Levesque. 2013. On our best behaviour. In Proceedings of the Twenty-third International Conference on Artificial Intelligence, Beijing.
- Nelson F. Liu, Roy Schwartz, and Noah A. Smith. 2019. Inoculation by fine-tuning: A method for analyzing challenge datasets. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 2171–2179, Minneapolis, Minnesota. Association for Computational Linguistics.
- Aakanksha Naik, Abhilasha Ravichander, Norman Sadeh, Carolyn Rose, and Graham Neubig. 2018. Stress test evaluation for natural language inference. In Proceedings of the 27th International Conference on Computational Linguistics, pages 2340–2353, Santa Fe, New Mexico, USA. Association for Computational Linguistics.
- Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. Squad: 100,000+ questions for machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2383–2392. Association for Computational Linguistics.
- Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. 2019. Do ImageNet classifiers generalize to ImageNet? In Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages 5389–5400, Long Beach, California, USA. PMLR.
- Terry Winograd. 1972. Understanding natural language. Cognitive Psychology, 3(1):1-191.