Distributed word representations: Dimensionality reduction

Christopher Potts

Stanford Linguistics

CS224u: Natural language understanding

Overview

1. Latent Semantic Analysis
2. Autoencoders
3. GloVe
4. Visualization

Latent Semantic Analysis (LSA)

1. Latent Semantic Analysis
2. Autoencoders
3. GloVe
4. Visualization

Overview

- Due to Deerwester et al. 1990.
- One of the oldest and most widely used dimensionality reduction techniques.
- Also known as Truncated Singular Value Decomposition (Truncated SVD).
- Standard baseline, often very tough to beat.

Guiding intuitions for LSA

The LSA method

Singular value decomposition

For any matrix of real numbers A of dimension $(m \times n)$ there exists a factorization into matrices T, S, D such that

$$
\begin{gathered}
A_{m \times n}=T_{m \times m} S_{m \times m} D_{n \times m}^{T} \\
\left(\begin{array}{cccc}
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot
\end{array}\right)=\left(\begin{array}{lll}
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot
\end{array}\right)\left(\begin{array}{ll}
\cdot & \\
& \cdot \\
A_{3 \times 4} & = \\
& T_{3 \times 3}
\end{array} S_{3 \times 3} \quad\left(\begin{array}{lll}
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot
\end{array}\right)^{T}\right. \\
D_{4 \times 3}^{T}
\end{gathered}
$$

Idealized LSA example

Cell-value comparisons $(k=100)$

\Downarrow

Choosing the LSA dimensionality

Related dimensionality reduction techniques

- Principal Components Analysis (PCA)
- Non-negative Matrix Factorization (NMF)
- Probabilistic LSA (PLSA; Hofmann 1999)
- Latent Dirichlet Allocation (LDA; Blei et al. 2003)
- t-SNE (van der Maaten and Hinton 2008)

See sklearn.decomposition and sklearn.manifold

Code snippets

```
[1]: import os
    import pandas as pd
import vsm
[2]: DATA_HOME = os.path.join('data', 'vsmdata')
giga5 = pd.read_csv(
    os.path.join(DATA_HOME, 'giga_window5-scaled.csv.gz'), index_col=0)
```

[4]: giga5_lsa100 = vsm.lsa(giga5, k=100)
[5]: giga5_lsa100.shape
[5]: $(5000,100)$

Autoencoders

1. Latent Semantic Analysis

2. Autoencoders

3. GloVe
4. Visualization

Overview

- Autoencoders are a flexible class of deep learning architectures for learning reduced dimensional representations.
- Chapter 14 of Goodfellow et al. (2016) is an excellent discussion.

The basic autoencoder model

$$
\text { Assume } f=\tanh \text { and so } f^{\prime}(z)=1.0-z^{2} \text {. Per example error is } \sum_{i} 0.5 *\left(x_{-} \text {hat } i_{i}-x_{i}\right)^{2}
$$

Seeks to predict its own input.

High-dimensional inputs are fed through a narrow hidden layer (or multiple hidden layers). This is the representation of interest - akin to LSA output.

This might be preceded by a separate dimensionality reduction step (e.g., LSA)

Autoencoder code snippets

[1]:

```
from np_autoencoder import Autoencoder
import os
import pandas as pd
from torch_autoencoder import TorchAutoencoder
import vsm
```

[2]:

```
DATA_HOME = os.path.join('data', 'vsmdata')
giga5 = pd.read_csv(
    os.path.join(DATA_HOME, 'giga_window5-scaled.csv.gz'), index_col=0)
```

[3](giga5.shape):

```
# You'll likely need a larger network, trained longer, for good results.
ae = Autoencoder(max_iter=10, hidden_dim=50)
```

[4]:

```
# Scaling the values first will help the network learn:
```

giga5_12 = giga5.apply(vsm.length_norm, axis=1)
[5] :
\# The 'fit" method returns the hidden reps:
giga5_ae = ae.fit(giga5_12)

Finished epoch 10 of 10 ; error is 0.4883386066987744
[6]:
torch_ae $=$ TorchAutoencoder(max_iter=10, hidden_dim=50)
[7]:

```
# A potentially interesting pipeline:
giga5_ppmi_lsa100 = vsm.lsa(vsm.pmi(giga5), k=100)
```

[8]:

```
giga5_ppmi_lsa100_ae = torch_ae.fit(giga5_ppmi_lsa100)
```

Finished epoch 10 of 10 ; error is 1.2230274677276611

Autoencoder code snippets

```
[9]: vsm.neighbors("finance", giga5).head()
[9]: finance 0.000000
minister 0.870300
. 0.880074
</p> 0.896013
ministry 0.897051
dtype: float64
[10]: vsm.neighbors("finance", giga5_ae).head()
[10]: finance 0.000000
article 0.504076
style 0.526473
domain 0.538920
investigators 0.548903
dtype: float64
[11]: vsm.neighbors("finance", giga5_ppmi_lsa100_ae).head()
[11]: finance 0.000000
affairs 0.232635
management 0.248080
commerce 0.255099
banking 0.256428
dtype: float64
```


Global Vectors (GloVe)

1. Latent Semantic Analysis
2. Autoencoders

3. GloVe

4. Visualization

Overview

- Pennington et al. (2014)
- Roughly speaking, the objective is to learn vectors for words such that their dot product is proportional to their log probability of co-occurrence.
- We'll use the implementation in torch_glove.py in the course repo. There is a reference implementation in vsm. py. For really big vocabularies, the GloVe team's C implementation is probably the best choice.
- We'll make use of the GloVe team's pretrained representations throughout this course.

The GloVe objective

Equation (6):

$$
w_{i}^{\top} \widetilde{w}_{k}=\log \left(P_{i k}\right)=\log \left(X_{i k}\right)-\log \left(X_{i}\right)
$$

Allowing different rows and columns:

$$
w_{i}^{\top} \widetilde{w}_{k}=\log \left(P_{i k}\right)=\log \left(X_{i k}\right)-\log \left(X_{i *} \cdot X_{* k}\right)
$$

That's PMI!

$$
\mathbf{p m i}(X, i, j)=\log \left(\frac{X_{i j}}{\operatorname{expected}(X, i, j)}\right)=\log \left(\frac{P\left(X_{i j}\right)}{P\left(X_{i *}\right) \cdot P\left(X_{* j}\right)}\right)
$$

By the equivalence $\log \left(\frac{x}{y}\right)=\log (x)-\log (y)$

The weighted GloVe objective

Original

$$
w_{i}^{\top} \widetilde{w}_{k}+b_{i}+\widetilde{b}_{k}=\log \left(X_{i k}\right)
$$

Weighted

$$
\sum_{i, j=1}^{|V|} f\left(x_{i j}\right)\left(w_{i}^{\top} \widetilde{w}_{j}+b_{i}+\tilde{b}_{j}-\log x_{i j}\right)^{2}
$$

where V is the vocabulary and f is

$$
f(x) \begin{cases}\left(x / x_{\max }\right)^{\alpha} & \text { if } x<x_{\text {max }} \\ 1 & \text { otherwise }\end{cases}
$$

Typically, α is set to 0.75 and $x_{\max }$ to 100 .

GloVe hyperparameters

- Learned representation dimensionality.
- $x_{\text {max }}$, which flattens out all high counts.
- α, which scales the values as $\left(x / x_{\max }\right)^{\alpha}$.

$$
f(x) \begin{cases}\left(x / x_{\max }\right)^{\alpha} & \text { if } x<x_{\max } \\ 1 & \text { otherwise }\end{cases}
$$

$f\left(\left[\begin{array}{lllll}100 & 99 & 75 & 10 & 1\end{array}\right]\right)=$

$$
\left[\begin{array}{lllll}
1.00 & 0.99 & 0.81 & 0.18 & 0.03
\end{array}\right]
$$

GloVe learning

The loss calculations

$$
f\left(X_{i j}\right)\left(w_{i}^{\top} \tilde{w}_{j}-\log X_{i j}\right)
$$

show how gnarly and wicked are pulled toward awesome. Bias terms left out for simplicity. gnarly and wicked deliberately far apart in w_{0} and \widetilde{w}_{0}.

Counts gnarly wicked awesome terrible
Weights $\left(x_{\max }=10, \alpha=0.75\right)$
gnarly wicked awesome terrible

gnarly	10	0	9	1
wicked	0	10	9	1
awesome	9	9	19	1
terrible	1	1	1	3

gnarly	1.00	0.00	0.92	0.18
wicked	0.00	1.00	0.92	0.18
awesome	0.92	0.92	1.00	0.18
terrible	0.18	0.18	0.18	0.41

w_{0}			\widetilde{w}_{0}		
gnarly	0.27	-0.27	gnarly	0.18	-0.18
wicked	-0.27	0.27	wicked	-0.18	0.18
awesome	0.36	-0.50	awesome	0.03	0.20
terrible	0.08	0.16	terrible	0.17	0.32
$0.92\left(\left[\begin{array}{ll}0.27 & -0.27\end{array}\right]^{\top}\left[\begin{array}{ll}0.03 & 0.20\end{array}\right]-\log (9)\right)=-2.06$					
$\left.0.92\left(\begin{array}{ll}-0.27 & 0.27\end{array}\right]^{\top}\left[\begin{array}{ll}0.03 & 0.20\end{array}\right]-\log \left(\begin{array}{l}9\end{array}\right)\right)=-1.98$					
w_{1}			\widetilde{w}_{1}		
gnarly	0.99	-0.85	gnarly	0.97	-0.82
wicked	0.74	-0.54	wicked	0.73	-0.54
awesome	0.37	-0.26	awesome	0.34	-0.25
terrible	0.12	0.21	terrible	0.20	0.34
$0.92\left(\left[\begin{array}{ll}0.99 & -0.85\end{array}\right]^{\top}\left[\begin{array}{ll}0.34 & -0.25\end{array}\right]-\log (9)\right)=-1.51$					
$0.92\left(\left[\begin{array}{ll} 0.74 & -0.54 \end{array}\right]^{\top}\left[\begin{array}{ll} 0.34 & -0.25 \end{array}\right]-\log (9)\right)=-1.66$					

GloVe cell-value comparisons ($n=50$)

GloVe code snippets

```
[1]: from torch_glove import TorchGloVe
    import os
    import pandas as pd
[2]: DATA_HOME = os.path.join('data', 'vsmdata')
yelp5 = pd.read_csv(
    os.path.join(DATA_HOME, 'yelp_window5-scaled.csv.gz'), index_col=0)
yelp20 = pd.read_csv(
    os.path.join(DATA_HOME, 'yelp_window20-flat.csv.gz'), index_col=0)
```

[3](giga5.shape): \# What percentage of the non-zero values are being mapped to 1 by f ?
def percentage_nonzero_vals_above (df, $\mathrm{n}=100$) :
$\mathrm{v}=\mathrm{df}$. values.reshape (1, -1).squeeze()
$\mathrm{v}=\mathrm{v}[\mathrm{v}>0]$
above $=\mathrm{v}[\mathrm{v}>\mathrm{n}]$
return len(above) / len(v)
[4]: percentage_nonzero_vals_above(yelp5)
[4]: 0.049558084774404466
[5]: percentage_nonzero_vals_above(yelp20)
[5]: 0.20425339735840817
[6]: glv $=$ TorchGloVe(max_iter=100, embed_dim=50)
[7]: yelp5_glv = glv.fit(yelp5)
Finished epoch 100 of 100 ; error is 2361281.46875
[8]: \# Are dot products of learned vectors proportional
\# to the log co-occurrence probabilities?
glv.score(yelp5)
[8]: 0.32520973952703197

Visualization

1. Latent Semantic Analysis
2. Autoencoders
3. GloVe
4. Visualization

Techniques

- Our goal is to visualize very high-dimensional spaces in two or three dimensions. This will inevitably involve compromises.
- Still, visualization can give you a feel for what is in your VSM, especially if you pair it with other kinds of qualitative exploration (e.g., using vsm.neighbors).
- There are many visualization techniques implemented in sklearn.manifold; see this user guide for an overview and discussion of trade-offs.

t-SNE on the giga20 PPMI VSM

t-SNE on the giga20 PPMI VSM

cooking

conflict

t-SNE on the yelp20 PPMI VSM

t-SNE on the yelp20 PPMI VSM

positivity

negativity

Code snippets

[1]: from nltk. corpus import opinion_lexicon import os
import pandas as pd
import vsm
[2]: DATA_HOME = os.path.join('data', 'vsmdata')
yelp5 = pd.read_csv(
os.path.join(DATA_HOME, 'yelp_window5-scaled.csv.gz'), index_col=0)
[3](giga5.shape): yelp5_ppmi $=$ vsm.pmi (yelp5)
[4]: \# Supply a str filename to write the output to a file:
vsm.tsne_viz(yelp5_ppmi, output_filename=None)
[5]: \# To display words in different colors based on external criteria: positive $=$ set (opinion_lexicon.positive())
negative $=$ set(opinion_lexicon.negative())
colors $=$ []
for w in yelp5_ppmi.index:
if w in positive: color $=$ 'red'
elif w in negative: color $=$ 'blue'
else: color $=$ 'gray'
colors append (color)
vsm.tsne_viz(yelp5_ppmi, colors=colors)

References I

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent dirichlet allocation. Journal of Machine Learning Research, 3:993-1022.
S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman. 1990. Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41(6):391-407.
Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT Press.
Thomas Hofmann. 1999. Probabilistic latent semantic indexing. In Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 50-57, New York. ACM.
Laurens van der Maaten and Geoffrey E. Hinton. 2008. Visualizing data using t-SNE. Journal of Machine Learning Research, 9:2579-2605.
Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe: Global vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1532-1543, Doha, Qatar. Association for Computational Linguistics.

