0	10	n.	in		
0	ve	I V	ie	VV	

LSA

Autoencoders

GloVe 0000000 Visualization 0000

Distributed word representations: Dimensionality reduction

Christopher Potts

Stanford Linguistics

CS224u: Natural language understanding

Overview	LSA	Autoencoders	GloVe	Visualization
	0000000	000	0000000	0000

Overview

- 1. Latent Semantic Analysis
- 2. Autoencoders
- 3. GloVe
- 4. Visualization

Overview	LSA	Autoencoders	GloVe	Visualization
	0000000	000	0000000	0000

Latent Semantic Analysis (LSA)

1. Latent Semantic Analysis

- 2. Autoencoders
- 3. GloVe
- 4. Visualization

Overview	LSA	Autoencoders	GloVe	Visualization
	●0000000	000	000000	0000

Overview

- Due to Deerwester et al. 1990.
- One of the oldest and most widely used dimensionality reduction techniques.
- Also known as Truncated Singular Value Decomposition (Truncated SVD).
- Standard baseline, often very tough to beat.

Overview	LSA	Autoencoders	GloVe	Visualization
	0000000	000	0000000	0000

Guiding intuitions for LSA

The LSA method

Singular value decomposition

For any matrix of real numbers A of dimension $(m \times n)$ there exists a factorization into matrices T, S, D such that

 $A_{m \times n} = T_{m \times m} S_{m \times m} D_{n \times m}^{T}$

Overview	LSA	Autoencoders	GloVe	Visualization
	0000000	000	0000000	0000

Idealized LSA example

	d1 d2 d3 d4 d5 d6	Distance from gnarly
gnarly wicked awesome lame terrible	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1. gnarly 2. awesome 3. terrible 4. wicked 5. lame
	₩↑	T
T(erm)	S(ingular values)	D(ocument)
gnarly 0.41 0.00 0.71 0.00 0.56 wicked 0.41 0.00 0.71 0.00 0.58 awesome 0.82 0.00 0.00 0.00 0.58 lame 0.00 0.85 0.00 0.53 0.00 terrible 0.00 0.53	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.50 0.00 -0.50 0.00 0.00 0.50 -0.00 0.50 0.00 0.71 0.50 -0.00 -0.50 -0.00 0.00 -0.00 0.53 0.00 -0.85 0.00
$\begin{array}{c} \mbox{gnarly 0.41 0.00} \\ \mbox{wicked 0.41 0.00} \\ \mbox{awesome 0.82 -0.00} \\ \mbox{lame 0.00 0.85} \\ \mbox{terrible 0.00 0.53} \end{array} \times \begin{array}{c} \mbox{2.45 0.00} \\ \mbox{0.00 1.62} \\ \mbox{2.45 0.00} \\ $	gnarly 1.00 0.00 wicked 1.00 0.00 awesome 2.00 0.00 lame 0.00 1.38 terrible 0.00 0.85	Distance from <i>gnarly</i> 1. gnarly 2. wicked 3. awesome 4. terrible 5. lame

Cell-value comparisons (k = 100)

₩

Overview	LSA	Autoencoders	GloVe	Visualization
	00000000	000	0000000	0000

Choosing the LSA dimensionality

Overview	LSA	Autoencoders	GloVe	Visualization
	0000000	000	0000000	0000

Related dimensionality reduction techniques

- Principal Components Analysis (PCA)
- Non-negative Matrix Factorization (NMF)
- Probabilistic LSA (PLSA; Hofmann 1999)
- Latent Dirichlet Allocation (LDA; Blei et al. 2003)
- t-SNE (van der Maaten and Hinton 2008)

See sklearn.decomposition and sklearn.manifold

Overview	LSA	Autoencoders	GloVe	Visualization
	0000000	000	0000000	0000

Code snippets

[1]:	import os
	import pandas as pd
	import vsm
[2]:	<pre>DATA_HOME = os.path.join('data', 'vsmdata')</pre>
	giga5 = pd.read_csv(
	os.path.join(DATA_HOME, 'giga_window5-scaled.csv.gz'), index_col=0)
[3]:	giga5.shape
[3]:	(5000, 5000)
[4]:	giga5_lsa100 = vsm.lsa(giga5, k=100)
[5]:	giga5_1sa100.shape
[5]:	(5000, 100)

Overview LS.	A	Autoencoders	GloVe	Visualization
00	000000	000	000000	0000

Autoencoders

1. Latent Semantic Analysis

2. Autoencoders

- 3. GloVe
- 4. Visualization

Overview	LSA	Autoencoders	GloVe	Visualization
	0000000	•00	0000000	0000

Overview

- Autoencoders are a flexible class of deep learning architectures for learning reduced dimensional representations.
- Chapter 14 of Goodfellow et al. (2016) is an excellent discussion.

The basic autoencoder model

Assume f = tanh and so f'(z) = 1.0 - z^2 . Per example error is $\sum_i 0.5 * (x hat_i - x_i)^2$


```
        Overview
        LSA
        Autoencoders
        GloVe
        Visualization

        00000000
        000
        0000000
        0000000
        000000
```

Autoencoder code snippets

[1]: from np_autoencoder import Autoencoder import os import pandas as pd from torch_autoencoder import TorchAutoencoder import vsm

[2]: DATA_HOME = os.path.join('data', 'vsmdata')

```
giga5 = pd.read_csv(
    os.path.join(DATA_HOME, 'giga_window5-scaled.csv.gz'), index_col=0)
```

- [3]: # You'll likely need a larger network, trained longer, for good results. ae = Autoencoder(max_iter=10, hidden_dim=50)
- [4]: # Scaling the values first will help the network learn: giga5_12 = giga5.apply(vsm.length_norm, axis=1)

```
[5]: # The `fit` method returns the hidden reps:
giga5_ae = ae.fit(giga5_12)
```

Finished epoch 10 of 10; error is 0.4883386066987744

- [6]: torch_ae = TorchAutoencoder(max_iter=10, hidden_dim=50)
- [7]: # A potentially interesting pipeline: giga5_ppmi_lsa100 = vsm.lsa(vsm.pmi(giga5), k=100)
- [8]: giga5_ppmi_lsa100_ae = torch_ae.fit(giga5_ppmi_lsa100)

Finished epoch 10 of 10; error is 1.2230274677276611

Overview	LSA 000000	000	Autoencoders ○○●	GloVe	Visualization
Autoe	encoder	code :	snippets		
[9]	: vsm.neighbors("	finance", gi	ga5).head()		
[9]	: finance 0.00 minister 0.8				
	. 0.88				
	ministry 0.89 dtype: float64	97051			
[10]	: vsm.neighbors("	finance", gi	ga5_ae).head()		
[10]	: finance	0.000000			
	article	0.504076			
	style	0.526473			
	domain	0.538920			
	investigators dtype: float64	0.548903			

[11]: vsm.neighbors("finance", giga5_ppmi_lsa100_ae).head()

[11]: finance 0.00000 affairs 0.232635 management 0.248080 commerce 0.255099 banking 0.256428 dtype: float64

Overview	LSA	Autoencoders	GloVe	Visualization
	0000000	000	0000000	0000

Global Vectors (GloVe)

- 1. Latent Semantic Analysis
- 2. Autoencoders
- 3. GloVe
- 4. Visualization

Overview	LSA	Autoencoders	GloVe	Visualization
	00000000	000	●○○○○○	0000

Overview

- Pennington et al. (2014)
- Roughly speaking, the objective is to learn vectors for words such that their dot product is proportional to their log probability of co-occurrence.
- We'll use the implementation in torch_glove.py in the course repo. There is a reference implementation in vsm.py. For really big vocabularies, the GloVe team's C implementation is probably the best choice.
- We'll make use of the GloVe team's pretrained representations throughout this course.

Overview	LSA	Autoencoders	GloVe	Visualization
	0000000	000	000000	0000

The GloVe objective

Equation (6):

$$w_i^{\mathsf{T}} \widetilde{w}_k = \log(P_{ik}) = \log(X_{ik}) - \log(X_i)$$

Allowing different rows and columns:

$$w_i^{\mathsf{T}}\widetilde{w}_k = \log(P_{ik}) = \log(X_{ik}) - \log(X_{i*} \cdot X_{*k})$$

That's PMI!

$$\mathbf{pmi}(X, i, j) = \log\left(\frac{X_{ij}}{\mathbf{expected}(X, i, j)}\right) = \log\left(\frac{P(X_{ij})}{P(X_{i*}) \cdot P(X_{*j})}\right)$$

By the equivalence $\log(\frac{x}{y}) = \log(x) - \log(y)$

Overview	LSA	Autoencoders	GloVe	Visualization
	0000000	000	000000	0000

The weighted GloVe objective

Original

$$w_i^{\mathsf{T}} \widetilde{w}_k + b_i + \widetilde{b}_k = \log(X_{ik})$$

Weighted

$$\sum_{i,j=1}^{|V|} f(X_{ij}) \left(w_i^{\top} \widetilde{w}_j + b_i + \widetilde{b}_j - \log X_{ij} \right)^2$$

where V is the vocabulary and f is

$$f(x) \begin{cases} (x/x_{\max})^{\alpha} & \text{if } x < x_{\max} \\ 1 & \text{otherwise} \end{cases}$$

Typically, α is set to 0.75 and x_{max} to 100.

Overview	LSA	Autoencoders	GloVe	Visualization
	0000000	000	000000	0000

GloVe hyperparameters

- Learned representation dimensionality.
- *x*_{max}, which flattens out all high counts.
- α , which scales the values as $(x/x_{\text{max}})^{\alpha}$.

$$f(x) \begin{cases} (x/x_{\max})^{\alpha} & \text{if } x < x_{\max} \\ 1 & \text{otherwise} \end{cases}$$

$$f(\begin{bmatrix} 100 & 99 & 75 & 10 & 1 \end{bmatrix}) = \begin{bmatrix} 1.00 & 0.99 & 0.81 & 0.18 & 0.03 \end{bmatrix}$$

Overview	LSA	Autoencoders	GloVe	Visualization
	0000000	000	0000000	0000

GloVe learning _

The loss calculations

$$f(X_{ij})\left(w_i^{\top}\widetilde{w}_j - \log X_{ij}\right)$$

show how gnarly and wicked are pulled toward awesome. Bias terms left out for simplicity. gnarly and wicked deliberately far apart in w_0 and \tilde{w}_0 .

					-					
Counts	gnarly wick	ed awe	some terr	rible	Wei	ghts(×max = gnarly	= 10, a wicked	= 0.75) aweso) me
gnarly	10	0	9	1	gnar		1.00	0.00		.92
wicked		10	9	1	wick		0.00	1.00		.92
awesome		9	19	1		some	0.92	0.92		.00
terrible	1	1	1	3	terril	ble	0.18	0.18	0	.18
					-	~				_
	w ₀				-	ŵ0				_
	gnarly	0.27	-0.27			gnarl	у	0.18	-0.18	3
	wicked	-0.27	0.27			wicke		-0.18	0.18	
	awesome	0.36	-0.50			awes		0.03	0.20	
	terrible	0.08	0.16			terrib	le	0.17	0.32	2
	0.92 ([-0.27	0.27]	[0.	03 C).20	— log(9))=	-1.98	
	w1					<i>w</i> ₁				_
	gnarly	0.99	-0.85			gnar	lv	0.97	-0.82	-
	wicked	0.74	-0.54			wick			-0.54	
	awesome	0.37	-0.26			awes	some	0.34	-0.25	
	terrible	0.12	0.21			territ	ole	0.20	0.34	
	0.92 ([(0.85] ^T 0.54] ^T							
	0.92	J.74 —	0.54	0.3	- 44	0.25] — log(<u>ع ((حو</u>	= -1.66)

terrible

0.18

0.18 0.18

0.41

Overview	LSA	Autoencoders	GloVe	Visualization
	0000000	000	0000000	0000

GloVe cell-value comparisons (n = 50)

Overview	LSA	Autoencoders	GloVe	Visualization
	0000000	000	000000	0000

GloVe code snippets

```
[1]: from torch_glove import TorchGloVe
     import os
     import pandas as pd
[2]: DATA_HOME = os.path.join('data', 'vsmdata')
     velp5 = pd.read csv(
         os.path.join(DATA_HOME, 'yelp_window5-scaled.csv.gz'), index_col=0)
     yelp20 = pd.read csv(
         os.path.join(DATA HOME, 'velp window20-flat.csv.gz'), index col=0)
[3]: # What percentage of the non-zero values are being mapped to 1 by f?
     def percentage nonzero vals above(df, n=100):
         v = df.values.reshape(1, -1).squeeze()
         \mathbf{v} = \mathbf{v} [\mathbf{v} > 0]
         above = v[v > n]
         return len(above) / len(v)
[4]: percentage nonzero vals above(yelp5)
[4]: 0.049558084774404466
[5]: percentage nonzero vals above(velp20)
[5]: 0.20425339735840817
[6]: glv = TorchGloVe(max iter=100, embed dim=50)
[7]: yelp5 glv = glv.fit(yelp5)
    Finished epoch 100 of 100; error is 2361281,46875
[8]: # Are dot products of learned vectors proportional
     # to the log co-occurrence probabilities?
     glv.score(velp5)
[8]: 0.32520973952703197
```

Overview	LSA	Autoencoders	GloVe	Visualization
	0000000	000	000000	0000

Visualization

- 1. Latent Semantic Analysis
- 2. Autoencoders
- 3. GloVe
- 4. Visualization

Overview	LSA	Autoencoders	GloVe	Visualization
	00000000	000	0000000	●○○○
Technique	es			

- Our goal is to visualize very high-dimensional spaces in two or three dimensions. This will inevitably involve compromises.
- Still, visualization can give you a feel for what is in your VSM, especially if you pair it with other kinds of qualitative exploration (e.g., using vsm.neighbors).
- There are many visualization techniques implemented in sklearn.manifold; see this user guide for an overview and discussion of trade-offs.

Overview	LSA	Autoencoders	GloVe	Visualization
	0000000	000	000000	0000

t-SNE on the giga20 PPMI VSM

Overview	LSA	Autoencoders	GloVe	Visualization
	0000000	000	000000	0000

t-SNE on the giga20 PPMI VSM

Overview	LSA	Autoencoders	GloVe	Visualization
	0000000	000	000000	0000

t-SNE on the yelp20 PPMI VSM

Overview	LSA	Autoencoders	GloVe	Visualization
	0000000	000	0000000	0000

t-SNE on the yelp20 PPMI VSM

Overview	LSA	Autoencoders	GloVe	Visualization
	0000000	000	0000000	0000

Code snippets

[1]: from nltk.corpus import opinion_lexicon import os import pandas as pd import vem

```
[2]: DATA_HOME = os.path.join('data', 'vsmdata')
```

```
yelp5 = pd.read_csv(
    os.path.join(DATA_HOME, 'yelp_window5-scaled.csv.gz'), index_col=0)
```

```
[3]: yelp5_ppmi = vsm.pmi(yelp5)
```

```
[4]: # Supply a str filename to write the output to a file:
    vsm.tsne_viz(yelp5_ppmi, output_filename=None)
```

```
[5]: # To display words in different colors based on external criteria:
positive = set(opinion_lexicon.positive())
negative = set(opinion lexicon.negative())
```

```
colors = []
for w in yelp5_ppmi.index:
    if w in positive:
        color = 'red'
    elif w in negative:
```

```
color = 'blue'
else:
```

```
color = 'gray'
```

```
colors.append(color)
```

vsm.tsne_viz(yelp5_ppmi, colors=colors)

References I

- David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent dirichlet allocation. Journal of Machine Learning Research, 3:993–1022.
- S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman. 1990. Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41(6):391–407.
- Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT Press.
- Thomas Hofmann. 1999. Probabilistic latent semantic indexing. In Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 50–57, New York. ACM.
- Laurens van der Maaten and Geoffrey E. Hinton. 2008. Visualizing data using t-SNE. Journal of Machine Learning Research, 9:2579–2605.
- Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe: Global vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543, Doha, Qatar. Association for Computational Linguistics.