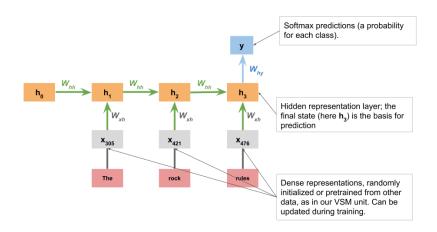
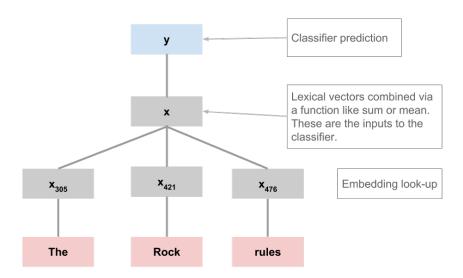
Supervised sentiment analysis: RNN classifiers

Christopher Potts

Stanford Linguistics


CS224u: Natural language understanding



Model overview

For complete details, see the reference implementation np_rnn_classifier.py

Model overview

Examples [a, b, a] [b, c]

Standard RNN dataset preparation

Examples	[a, b, a] [b, c]
Indices	[1, 2, 1]

Embedding					
1	-0.42	0.10	0.12		
2	-0.16	-0.21	0.29		
3	-0.26	0.31	0.37		

Embeddina

Standard RNN dataset preparation

		E mbedding				
Examples	[a, b, a]	1	-0.42	0.10	0.12	
	[b, c]	2	-0.16	-0.21	0.29	
	\Downarrow	3	-0.26	0.31	0.37	
Indices	[1, 2, 1] [2, 3]					
	₩					
Vectors	[-0.42 0.10 0.	12],[-0.16 -0.2	21 0.29], [–	-0.42 0.10	0.12]
Vectors	[[-0.16 -0.21	0.29]	, [-0.26 0.3	31 0.37]		

A note on LSTMs

- 1. Plain RNNs tend to perform poorly with very long sequences; as information flows back through the network, it is lost or distorted.
- 2. LSTM cells are a prominent response to this problem: they introduce mechanisms that control the flow of information.
- We won't review all the mechanism for this here. I instead recommend these excellent blog posts, which include intuitive diagrams and discuss the motivations for the various pieces in detail:
 - Towards Data Science: Illustrated Guide to LSTM's and GRU's: A step by step explanation
 - colah's blog: Understanding LSTM networks

Code snippets

Model overview

```
[1]: import os
     from torch_rnn_classifier import TorchRNNClassifier
     import torch.nn as nn
     import sst
     import utils
[2]: GLOVE_HOME = os.path.join('data', 'glove.6B')
     SST_HOME = os.path.join('data', 'sentiment')
[3]: GLOVE LOOKUP = utils.glove2dict(os.path.join(GLOVE HOME, 'glove.6B.50d.txt'))
[4]: def rnn_phi(text):
         return text.lower().split()
[5]: def fit rnn(X, y):
         sst_train_vocab = utils.get_vocab(X, mincount=2)
         glove_embedding, sst_glove_vocab = utils.create_pretrained_embedding(
             GLOVE LOOKUP, sst train vocab)
         mod = TorchRNNClassifier(
             sst glove vocab,
             eta=0.01,
             embedding=glove_embedding,
             batch size=1028.
             hidden dim=50,
             12_strength=0.001,
             bidirectional=True.
             max iter=50,
             early_stopping=True)
         mod.fit(X, y)
         return mod
[6]: rnn_experiment = sst.experiment(
         sst.train reader(SST HOME),
         rnn phi,
         fit_rnn,
         vectorize=False)
```