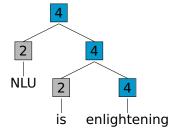
Supervised sentiment analysis: Stanford Sentiment Treebank

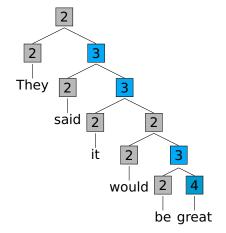
Christopher Potts

Stanford Linguistics

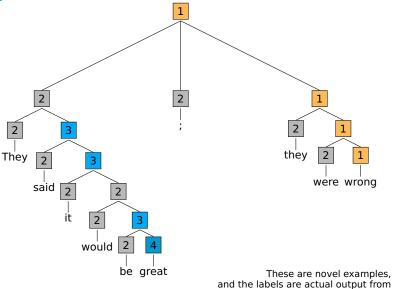
CS224u: Natural language understanding



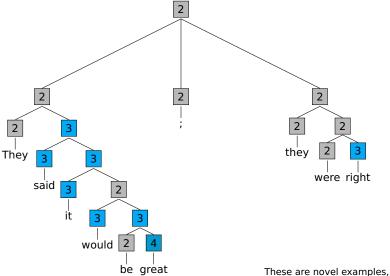
SST project overview


- 1. Socher et al. (2013)
- 2. Full code and data release:
 https://nlp.stanford.edu/sentiment/
- 3. Sentence-level corpus (10,662 sentences)
- 4. Original data from Rotten Tomatoes (Pang and Lee 2005)
- 5. Fully-labeled trees (crowdsourced labels)
- The 5-way labels were extracted from workers' slider responses.

Fully labeled trees


These are novel examples, and the labels are actual output from https://nlp.stanford.edu/sentiment/

Fully labeled trees


These are novel examples, and the labels are actual output from https://nlp.stanford.edu/sentiment/

Fully labeled trees

https://nlp.stanford.edu/sentiment/

Fully labeled trees

and the labels are actual output from https://nlp.stanford.edu/sentiment/

Root-level tasks Five-way problem

L	.abel	Meaning	Train	Dev
)	very negative	1,092	139
1	L	negative	2,218	289
2	<u> </u>	neutral	1,624	229
3	3	positive	2,322	279
4	ļ	very positive	1,288	165
			8,544	1,101

Note: 4 > 3 (more positive) but 0 > 1 (more negative)

Root-level tasks

Five-way problem

Label	Meaning	Train	Dev
0	very negative	1,092	139
1	negative	2,218	289
2	neutral	1,624	229
3	positive	2,322	279
4	very positive	1,288	165
		8,544	1,101

Note: 4 > 3 (more positive) but 0 > 1 (more negative)

Ternary problem

Label	Meaning	Train	Dev
0, 1	negative neutral	3,310 1,624	428 229
3, 4	positive	3,610 8,544	444 1,101

Root-level tasks

Five-way problem

Label	Meaning	Train	Dev
0	very negative	1,092	139
1	negative	2,218	289
2	neutral	1,624	229
3	positive	2,322	279
4	very positive	1,288	165
		8,544	1,101

Note: 4 > 3 (more positive) but 0 > 1 (more negative)

Binary problem (neutral data simply excluded)

Label	Meaning	Train	Dev
0, 1 3, 4	negative positive	3,310 3,610	428 444
		6,920	872

All-nodes tasks

Five-way problem

Label	Meaning	Train	Dev
0	very negative	40,774	5,217
1	negative	82,854	10,757
2	neutral	58,398	8,227
3	positive	89,308	11,001
4	very positive	47,248	6,245
		318,582	41,447

Note: 4 > 3 (more positive) but 0 > 1 (more negative)

All-nodes tasks

Five-way problem

Label	Meaning	Train	Dev
0	very negative	40,774	5,217
1	negative	82,854	10,757
2	neutral	58,398	8,227
3	positive	89,308	11,001
4	very positive	47,248	6,245
		318,582	41,447

Note: 4 > 3 (more positive) but 0 > 1 (more negative)

Ternary problem

Label	Meaning	Train	Dev
0, 1 2 3, 4	negative neutral positive	123,628 58,398 136,556	15,974 8,227 17,246
		318,582	41,447

All-nodes tasks

Five-way problem

Label	Meaning	Train	Dev
0	very negative	40,774	5,217
1	negative	82,854	10,757
2	neutral	58,398	8,227
3	positive	89,308	11,001
4	very positive	47,248	6,245
		318,582	41,447

Note: 4 > 3 (more positive) but 0 > 1 (more negative)

Binary problem (neutral data simply excluded)

Label	Meaning	Train	Dev
0, 1 3, 4	negative positive	123,628 136,556	15,974 17,246
		260,184	33,220

Train/dev/test scenarios

Train

Full examples and/or subphrases with or without repeats:

NLU is enlightening	positive
is enlightening	positive
enlightening	positive
is	neutral
NLU	neutral
Not enlightening	negative
enlightening	positive
Not	negative

Dev/test

Full sentences only.

Additional details and analyses

References I

- Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. In Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics, pages 115–124, Ann Arbor, MI. Association for Computational Linguistics.
- Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Y. Ng, and Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 1631–1642, Stroudsburg, PA. Association for Computational Linguistics.