
Overview Materials Conceptual challenges Sentiment analysis in industry Affective computing Our primary datasets

Supervised sentiment analysis:
Overview

Christopher Potts

Stanford Linguistics

CS224u: Natural language understanding

1 / 13

http://creativecommons.org/licenses/by/4.0/


Overview Materials Conceptual challenges Sentiment analysis in industry Affective computing Our primary datasets

Overview of this unit

1. Sentiment as a deep and important NLU problem
2. General practical tips for sentiment analysis
3. The Stanford Sentiment Treebank (SST)
4. The DynaSent dataset
5. sst.py
6. Methods: hyperparameters and classifier comparison
7. Feature representation
8. RNN classifiers
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Associated materials

1. Code
a. sst.py
b. sst_01_overview.ipynb
c. sst_02_hand_build_features.ipynb
d. sst_03_neural_networks.ipynb

2. Homework and bake-off: hw_sentiment.ipynb

3. Core reading: Socher et al. 2013; Potts et al. 2020

4. Auxiliary readings: Pang and Lee 2008; Goldberg 2015
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Conceptual challenges
Which of the following sentences express sentiment? What is their
sentiment polarity (pos/neg), if any?

1. There was an earthquake in California.
2. The team failed to complete the challenge. (We win/lose!)
3. They said it would be great.
4. They said it would be great, and they were right.
5. They said it would be great, and they were wrong.
6. The party fat-cats are sipping their expensive imported wines.
7. Oh, you’re terrible!
8. Here’s to ya, ya bastard!
9. Of 2001, “Many consider the masterpiece bewildering, boring,

slow-moving or annoying, . . . ”
10. long-suffering fans, bittersweet memories, hilariously

embarrassing moments, . . .
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Sentiment analysis in
industry
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Real-world performance falls short

[. . . ]
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Lots of applications, but what’s the real goal?

Many business leaders think they want this:

Positive 70
Negative 30

Positive 65
Negative 35

When they see it, they realize that it does not help them with
decision-making. The distributions (assuming they are
accurately measured) are hiding the phenomena that are
actually relevant.
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Affective computing
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Affective dimensions, relations, and transitions

playful

(Sudhof et al. 2014)
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Related tasks in affective computing
With selected papers that make excellent entry points
because of their positioning and/or associated public data:

• Subjectivity (Pang and Lee 2008)
• Bias (Recasens et al. 2013; Pryzant et al. 2020)
• Stance (Anand et al. 2011)
• Hate-speech (Nobata et al. 2016)
• Microaggressions (Breitfeller et al. 2019)
• Condescension (Wang and Potts 2019)
• Sarcasm (Khodak et al. 2017)
• Deception and betrayal (Niculae et al. 2015)
• Online trolls (Cheng et al. 2017)
• Polarization (Gentzkow et al. 2019)
• Politeness (Danescu-Niculescu-Mizil et al. 2013)
• Linguistic alignment (Doyle et al. 2016)
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Our primary datasets

1. Ternary formulation of the Stanford Sentiment Treebank
(SST-3; Socher et al. 2013)

2. The DynaSent dataset (Potts et al. 2020)

3. Our bakeoff data: dev/test splits from SST-3 and from a
new (unreleased) corpus of sentences from restaurant
reviews

4. Ternary sentiment throughout:
a. Positive
b. Negative
c. Neutral
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