Relation extraction

Bill MacCartney CS224u Stanford University

Evaluation

Overview

- The task of relation extraction
- Data resources
- Problem formulation
- Evaluation
- Simple baselines
- Directions to explore

- Test-driven development
- Splitting the data
- Precision and recall
- F-measure
- Micro-averaging and macro-averaging
- Figure of merit

Test-driven development

Good software engineering uses *test-driven development*: First, write unit tests that check whether the code works. Then, start writing the code, iterating until it passes the tests.

Good model engineering can use a similar paradigm: First, build a test harness that performs a quantitative evaluation. Then, start building models, hill-climbing on your evaluation. Evaluation Splitting the data

As usual, we'll want to partition our data into multiple splits:

Tiny	1%	
Train	74%	
Dev	25%	
Test	?	

Complication: we need to split both corpus and KB.

We want relations to span splits, so that we can assess our success in learning how a given relation is expressed in natural language.

But ideally, we'd like the splits to *partition* the entities, to avoid leaks.

Splitting the data: the ideal

Splitting the data: the achievable

But the world is strongly entangled, and the ideal is hard to achieve.

Instead, we'll approximate the ideal:

- First, split KB triples by subject entity.
- Then, split corpus examples:
 - If entity_1 is in a split, assign example to that split.
 - Or, if entity_2 is in a split, assign example to that split.
 - Otherwise, assign example to split randomly.

Evaluation
Splitting the data: build_splits()

```
splits = dataset.build_splits(
    split_names=['tiny', 'train', 'dev'],
    split_fracs=[0.01, 0.74, 0.25],
    seed=1)
```

splits

{'tiny': Corpus with 3,474 examples; KB with 445 triples, 'train': Corpus with 249,003 examples; KB with 34,229 triples, 'dev': Corpus with 79,219 examples; KB with 11,210 triples, 'all': Corpus with 331,696 examples; KB with 45,884 triples}

Evaluation Precision and recall

Precision and recall are the standard metrics for binary classification.

F₁

The F₁ score combines precision and recall using the harmonic mean.

Evaluation **F-measure**

F-measure is a weighted combination of precision and recall.

$F_{\beta} =$	1 + β ²	
	$1/P + \beta^2/R$	

Р	0.800	high precision
R	0.200	low recall
F ₁	0.320	equal weight to precision and recall
F _{0.5}	0.500	more weight to precision
F_2	0.235	more weight to recall

For relation extraction, precision probably matters more than recall. So, let's use $F_{0.5}$ as our evaluation metric.

Micro-averaging and macro-averaging

Micro-averaging gives equal weight to each problem instance. Macro-averaging gives equal weight to each relation.

relation	instances	F-score
adjoins author contains	100 100 1000	0.700 0.800 0.900
micro-average macro-average		0.875 0.800

We'll use macro-averaging, so that we don't overweight large relations.

Evaluation Figure of merit

Your "figure of merit" is the one metric — a *single* number — you're seeking to optimize in your iterative development process.

We're choosing macro-averaged $F_{0.5}$ as our figure of merit.