Relation extraction

Bill MacCartney CS224u Stanford University

Problem formulation

Overview

- The task of relation extraction
- Data resources
- Problem formulation
- Evaluation
- Simple baselines
- Directions to explore

Problem formulation

- Inputs and outputs
- Joining the corpus and the KB
- Negative instances
- Multi-label classification

Problem formulation Inputs and outputs

What is the input to the prediction?A pair of entity mentions in the context of a sentence?A pair of entities, independent of any specific context?

What is the output to the prediction? A single relation (multi-class classification)? Or multiple relations (multi-label classification)?

Joining the corpus and the KB

Classifying a pair of entity mentions in corpus? Get labels from KB.

Elon Musk, co-founder of PayPal, went on to establish SpaceX, ...

\checkmark	relation	subject	object
	founder	SpaceX	Elon_Musk

Classifying a pair of entities for the KB? Get features from corpus.

Joining the corpus and the KB

dataset = rel_ext.Dataset(corpus, kb)
dataset.count_examples()

			examples
relation	examples	triples	/triple
adjoins	58854	1702	34.58
author	11768	2671	4.41
capital	7443	522	14.26
contains	75952	18681	4.07
film_performance	8994	3947	2.28
founders	5846	1960	2.98
genre	1576	824	1.91
has_sibling	8525	2563	3.33
has_spouse	12013	2994	4.01
is_a	5112	2542	2.01
nationality	3403	1598	2.13
parents	3802	1586	2.40
place_of_birth	1657	1097	1.51
place_of_death	1523	831	1.83
profession	1851	1216	1.52
worked at	3226	1150	2.81

Problem formulation Negative instances

To train a classifier, we also need negative instances!

So, find corpus examples containing pairs of entities not related in KB

```
unrelated_pairs = dataset.find_unrelated_pairs()
print('Found {0:,} unrelated pairs, including:!format(len(unrelated_pairs)))
for pair in list(unrelated_pairs)[:10]:
    print(' ', pair)
```

```
Found 247,405 unrelated pairs, including:
  ('Inglourious_Basterds', 'Christoph_Waltz')
  ('NBCUniversal', 'E!')
  ('The_Beatles', 'Keith_Moon')
  ('Patrick_Lussier', 'Nicolas_Cage')
  ('Townes_Van_Zandt', 'Johnny_Cash')
  ('UAE', 'Italy')
  ('Arshile_Gorky', 'Hans_Hofmann')
  ('Sandra_Bullock', 'Jae_Head')
```

Problem formulation Multi-label classification

Many entity pairs belong to more than one relation:

```
dataset.count_relation_combinations()
```

```
The most common relation combinations are:
    1216 ('is_a', 'profession')
    403 ('capital', 'contains')
    143 ('place_of_birth', 'place_of_death')
    61 ('nationality', 'place_of_birth')
    11 ('adjoins', 'contains')
    9 ('nationality', 'place_of_death')
    7 ('has_sibling', 'has_spouse')
    3 ('nationality', 'place_of_birth', 'place_of_death')
    2 ('parents', 'worked at')
```

This suggests formulating our problem as multi-label classification.

Problem formulation Multi-label classification: binary relevance

Many possible approaches to multi-label classification.

The most obvious is the *binary relevance method:* just train a separate binary classifier for each label.

Disadvantage: fails to exploit correlations between labels.

Advantage: simple.

Problem formulation

Binary classification of KB triples

So here's the problem formulation we've arrived at:

Input: an entity pair and a candidate relationOutput: does the entity pair belong to the relation?

In other words: binary classification of KB triples!

That is, given a candidate KB triple, do we predict that it is valid?

```
(worked_at, Elon_Musk, SpaceX) ?
```