Relation extraction

Bill MacCartney
CS224u
Stanford University
Problem formulation

Overview

- Đataresourees
- Problem formulation
- Evaluation
- Simple baselines
- Directions to explore

Problem formulation

- Inputs and outputs
- Joining the corpus and the KB
- Negative instances
- Multi-label classification

Problem formulation

Inputs and outputs

What is the input to the prediction?
A pair of entity mentions in the context of a sentence?
A pair of entities, independent of any specific context?

What is the output to the prediction?
A single relation (multi-class classification)?
Or multiple relations (multi-label classification)?

Problem formulation

Joining the corpus and the KB

Classifying a pair of entity mentions in corpus? Get labels from KB.

Classifying a pair of entities for the KB? Get features from corpus.

Problem formulation

Joining the corpus and the KB

```
dataset = rel_ext.Dataset(corpus, kb)
dataset.count_examples()
```

relation	examples	examples	
triples	/triple		
adjoins	-------	------	-------
author	58854	1702	34.58
capital	11768	2671	4.41
contains	7443	522	14.26
film_performance	75952	18681	4.07
founders	8994	3947	2.28
genre	5846	1960	2.98
has_sibling	1576	824	1.91
has_spouse	8525	2563	3.33
is_a	12013	2994	4.01
nationality	5112	2542	2.01
parents	3403	1598	2.13
place_of_birth	3802	1586	2.40
place_of_death	1657	1097	1.51
profession	1523	831	1.83
worked_at	1851	1216	1.52
lat	3226	1150	2.81

Problem formulation

Negative instances

To train a classifier, we also need negative instances!
So, find corpus examples containing pairs of entities not related in KB

```
unrelated_pairs = dataset.find_unrelated_pairs()
print('Found {0:,} unrelated pairs, including:!format(len(unrelated_pairs)))
for pair in list(unrelated_pairs)[:10]:
    print(' ', pair)
```

```
Found 247,405 unrelated pairs, including:
    ('Inglourious_Basterds', 'Christoph_Waltz')
    ('NBCUniversal', 'E!')
    ('The_Beatles', 'Keith_Moon')
    ('Patrick_Lussier', 'Nicolas_Cage')
    ('Townes_Van_Zandt', 'Johnny_Cash')
    ('UAE', 'Italy')
    ('Arshile_Gorky', 'Hans_Hofmann')
    ('Sandra_Bullock', 'Jae_Head')
```


Problem formulation

Multi-label classification

Many entity pairs belong to more than one relation:

```
dataset.count_relation_combination$)
The most common relation combinations are:
    1216 ('is_a', 'profession')
    403 ('capital', 'contains')
    143 ('place_of_birth', 'place_of_death')
        6 1 ~ ( ' n a t i o n a l i t y ' , ~ ' p l a c e \& o f ~ b i r t h ' )
        11 ('adjoins', 'contains')
        9 ('nationality', 'place_of_death')
        7 ('has_sibling', 'has_spouse')
        3 ('nationality', 'place_of_birth', 'place_of_death')
        2 ('parents', 'worked_at')
```

This suggests formulating our problem as multi-label classification.

Problem formulation

Multi-label classification: binary relevance

Many possible approaches to multi-label classification.
The most obvious is the binary relevance method: just train a separate binary classifier for each label.

Disadvantage: fails to exploit correlations between labels.
Advantage: simple.

Problem formulation

Binary classification of KB triples

So here's the problem formulation we've arrived at:
Input: an entity pair and a candidate relation
Output: does the entity pair belong to the relation?
In other words: binary classification of KB triples!
That is, given a candidate KB triple, do we predict that it is valid?
(worked_at, Elon_Musk, SpaceX) ?

