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Hypothesis-only baselines
• In his project for this course (2016), Leonid Keselman

observed that hypothesis-only models are strong.

• Other groups have since further supported this (Poliak
et al. 2018; Gururangan et al. 2018; Tsuchiya 2018;
Belinkov et al. 2019)

• SNLI hypothesis-only baselines typically 65–70% vs.
chance at 33%

• Likely due to artifacts:
É Specific claims are likely to be premises in

entailment cases.

É General claims are likely to be hypotheses in
entailment pairs.

É Specific claims are more likely to lead to
contradiction.
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NLI dataset artifacts

1. Artifact: A dataset bias that would make a system
susceptible to adversarial attack even if the bias is
linguistically motivated.

2. Tricky example: negated hypotheses signal contradiction
É Linguistically motivated: negation is our best way of

establishing relevant contradictions.

É An artifact because we would curate a dataset in
which negation correlated with the other labels but
led to no human confusion.
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Known artifacts in SNLI and MultiNLI

• These datasets contain words whose appearance nearly
perfectly correlates with specific labels [1, 2].

• Entailment hypotheses over-represent general and
approximating words [2].

• Neutral hypotheses often introduce modifiers [2].

• Contradiction hypotheses over-represent negation [1, 2].

• Neutral hypotheses tend to be longer [2].
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1 = Poliak et al. 2018, 2 = Gururangan et al. 2018
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Artifacts in other tasks

• Visual Question Answering: Kafle and Kanan 2017; Chen
et al. 2020

• Story Completion: Schwartz et al. 2017

• Reading Comprehension/Question Answering: Kaushik
and Lipton 2018

• Stance Detection: Schiller et al. 2020

• Fact Verification: Schuster et al. 2019
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Adversarial testing

Premise Relation Hypothesis

A turtle danced. entails A turtle moved.

Every reptile danced. neutral A turtle ate.

Some turtles walk. contradicts No turtles move.
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Adversarial testing

Premise Relation Hypothesis

Train
A little girl
kneeling
in the dirt crying.

entails A little girl is very
sad.

Adversarial

entails A little girl is very
unhappy.
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Glockner et al. 2018
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Adversarial testing

Premise Relation Hypothesis

Train

A woman is
pulling a child on
a sled in the snow.

entails

A child is sitting
on a sled in the
snow.

Adversarial

A child is pulling
a woman on a
sled in the snow.

neutral
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Nie et al. 2019
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