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Train/Dev/Test No fixed splits Cross-validation

Train/Dev/Test

• Common in large publicly available datasets.
• Presupposes a fairly large dataset.
• We’re all on the honor system to do test-set runs only

when development is complete.
• The test part ensures consistent evaluations, but

encourages hill climbing.
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No fixed splits

• Small public datasets might not have predefined splits.
• A challenge for assessment: for robust comparisons, you

really have to run all models using your assessment
regime on your splits.

• For large datasets, you can impose splits and use them
for the entire project:
É Simplifies your experimental set-up.
É Reduces hyperparameter optimization.

• For small datasets, imposing a split might leave too little
data, leading to highly variable performance.
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Cross-validation

In cross-validation, we take a set of examples and partition
them into two or more train/test splits, and then we average
over the results in some way.
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Random splits
Method
For k times:
1. Shuffle.
2. Split: t percent train, usually 1− t test.
3. Conduct an evaluation.

In general (but not always), we want these splits to be
stratified in the sense that the train and test splits have
approximately the same distribution over the classes.

Trade-offs
• Good: you can create as many as you want without

having this impact the ratio of training to testing
examples.

• Bad: no guarantee that every example will be used the
same number of times for training and testing.

from sklearn.model_selection import ShuffleSplit,
StratifiedShuffleSplit, train_test_split
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K-folds

Method

Splits

fold 1
fold 2
fold 3

Experiment 1

Test fold 1

Train fold 2
fold 3

Experiment 2

Test fold 2

Train fold 1
fold 3

Experiment 3

Test fold 3

Train fold 1
fold 2

Trade-offs

• Good: every example appears in a train set exactly k − 1
times and in a test set exactly once.

• Bad: the size of k determines the size train/test:

É 3-fold: train 67%, test 33%.
É 10-fold: train 90%, test 10%.

from sklearn.model_selection import KFold,
StratifiedKFold, LeaveOneOut, cross_val_score
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