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Addressing the known limitations with BERT

2. Devlin et al. (2019): “The first [downside] is that we are
creating a mismatch between pre-training and
fine-tuning, since the [MASK] token is never seen during
fine-tuning.”

3. Devlin et al. (2019): “The second downside of using an
MLM is that only 15% of tokens are predicted in each
batch”
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Generator/Discriminator relationships

Core model structure (Clark et al. 2019)
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Generator/Discriminator relationships

Where Generator and Discriminator are the same size, they
can share Transformer parameters, and more sharing is
better. However, the best results come from having a
Generator that is small compared to the Discriminator:

Which generator size works best?
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Clark et al. 2019, Figure 3
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Comparison of Training Algorithms
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ELECTRA efficiency analyses
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ELECTRA efficiency analyses
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ELECTRA efficiency analyses
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ELECTRA efficiency analyses

Model GLUE score
ELECTRA 85.0
All-tokens MLM 84.3
Replace MLM 82.4
ELECTRA 15% 82.4
BERT 82.2

Model releases
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ELECTRA model releases

Available from the project site:

Model Layers Hidden Size Params GLUE test

Small 12 256 14M 77.4
Base 12 768 110M 82.7
Large 24 1024 335M 85.2

‘Small’” is the model designed to be “quickly trained on a
single GPU".

Model releases
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https://github.com/google-research/electra
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