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Addressing the known limitations with BERT

1. Devlin et al. (2019:§5): admirably detailed but still
partial ablation studies and optimization studies.

2. Devlin et al. (2019): “The first [downside] is that we are
creating a mismatch between pre-training and
fine-tuning, since the [MASK] token is never seen during
fine-tuning.”

3. Devlin et al. (2019): “The second downside of using an
MLM is that only 15% of tokens are predicted in each
batch”

4. Yang et al. (2019): “BERT assumes the predicted tokens
are independent of each other given the unmasked
tokens, which is oversimplified as high-order, long-range
dependency is prevalent in natural language”
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Core model structure (Clark et al. 2019)
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Generator/Discriminator relationships

Where Generator and Discriminator are the same size, they
can share Transformer parameters, and more sharing is
better. However, the best results come from having a
Generator that is small compared to the Discriminator:
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Figure 3: Left: GLUE scores for different generator/discriminator sizes (number of hidden units).
Interestingly, having a generator smaller than the discriminator improves results. Right: Comparison
of different training algorithms. As our focus is on efficiency, the x-axis shows FLOPs rather than
train steps (e.g., ELECTRA is trained for fewer steps than BERT because it includes the generator).

tied token embeddings because masked language modeling is particularly effective at learning these
representations: while the discriminator only updates tokens that are present in the input or are
sampled by the generator, the generator’s softmax over the vocabulary densely updates all token
embeddings. On the other hand, tying all encoder weights caused little improvement while incurring
the significant disadvantage of requiring the generator and discriminator to be the same size. Based
on these findings, we use tied embeddings for further experiments in this paper.

Smaller Generators If the generator and discriminator are the same size, training ELECTRA
would take around twice as much compute per step as training only with masked language mod-
eling. We suggest using a smaller generator to reduce this factor. Specifically, we make models
smaller by decreasing the layer sizes while keeping the other hyperparameters constant. We also
explore using an extremely simple “unigram” generator that samples fake tokens according their
frequency in the train corpus. GLUE scores for differently-sized generators and discriminators are
shown in the left of Figure 3. All models are trained for 500k steps, which puts the smaller gen-
erators at a disadvantage in terms of compute because they require less compute per training step.
Nevertheless, we find that models work best with generators 1/4-1/2 the size of the discriminator. We
speculate that having too strong of a generator may pose a too-challenging task for the discriminator,
preventing it from learning as effectively. In particular, the discriminator may have to use many of
its parameters modeling the generator rather than the actual data distribution. Further experiments
in this paper use the best generator size found for the given discriminator size.

Training Algorithms Lastly, we explore other training algorithms for ELECTRA, although these
did not end up improving results. The proposed training objective jointly trains the generator and
discriminator. We experiment with instead using the following two-stage training procedure:

1. Train only the generator with LMLM for n steps.
2. Initialize the weights of the discriminator with the weights of the generator. Then train the

discriminator with LDisc for n steps, keeping the generator’s weights frozen.

Note that the weight initialization in this procedure requires having the same size for the generator
and discriminator. We found that without the weight initialization the discriminator would some-
times fail to learn at all beyond the majority class, perhaps because the generator started so far ahead
of the discriminator. Joint training on the other hand naturally provides a curriculum for the dis-
criminator where the generator starts off weak but gets better throughout training. We also explored
training the generator adversarially as in a GAN, using reinforcement learning to accommodate the
discrete operations of sampling from the generator. See Appendix F for details.

Results are shown in the right of Figure 3. During two-stage training, downstream task performance
notably improves after the switch from the generative to the discriminative objective, but does not
end up outscoring joint training. Although still outperforming BERT, we found adversarial training
to underperform maximum-likelihood training. Further analysis suggests the gap is caused by two
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Efficiency
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Interestingly, having a generator smaller than the discriminator improves results. Right: Comparison
of different training algorithms. As our focus is on efficiency, the x-axis shows FLOPs rather than
train steps (e.g., ELECTRA is trained for fewer steps than BERT because it includes the generator).
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ELECTRA efficiency analyses
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ELECTRA efficiency analyses
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ELECTRA efficiency analyses
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ELECTRA efficiency analyses

Model GLUE score

ELECTRA 85.0
All-tokens MLM 84.3

Replace MLM 82.4
ELECTRA 15% 82.4

BERT 82.2
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ELECTRA model releases

Available from the project site:

Model Layers Hidden Size Params GLUE test

Small 12 256 14M 77.4
Base 12 768 110M 82.7
Large 24 1024 335M 85.2

‘Small’ is the model designed to be “quickly trained on a
single GPU”.
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https://github.com/google-research/electra
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