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Overview

Behavioral evaluations
• Adversarial testing
• Adversarial training and testing

Structural evaluation methods
• Probing
• Feature attribution
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Motivations

1. Finding the limits of you system
2. Understanding system behavior
3. Achieving more robust systems

The techniques we discuss are powerful and easy
ways to improve the analysis section of a final paper!
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The story of an adversarial test

Premise Relation Hypothesis

Train A little girl kneeling
in the dirt crying.

entails A little girl is very
sad.

Adversarial

entails A little girl is very
unhappy.

Train
An elderly couple are
sitting outside a
restaurant, enjoying
wine.

entails A couple drinking
wine.

Adversarial

neutral A couple drinking
champagne.
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The story of an adversarial test

653

Model Train set SNLI test set New test set �

Decomposable Attention
(Parikh et al., 2016)

SNLI 84.7% 51.9% -32.8
MultiNLI + SNLI 84.9% 65.8% -19.1

SciTail + SNLI 85.0% 49.0% -36.0

ESIM (Chen et al., 2017)
SNLI 87.9% 65.6% -22.3

MultiNLI + SNLI 86.3% 74.9% -11.4
SciTail + SNLI 88.3% 67.7% -20.6

Residual-Stacked-Encoder
(Nie and Bansal, 2017)

SNLI 86.0% 62.2% -23.8
MultiNLI + SNLI 84.6% 68.2% -16.8

SciTail + SNLI 85.0% 60.1% -24.9

WordNet Baseline - - 85.8% -
KIM (Chen et al., 2018) SNLI 88.6% 83.5% -5.1

Table 3: Accuracy of various models trained on SNLI or a union of SNLI with another dataset (MultiNLI,
SciTail), and tested on the original SNLI test set and the new test set.

We chose models which are amongst the best
performing within their approaches (excluding en-
sembles) and have available code. All models
are based on pre-trained GloVe embeddings (Pen-
nington et al., 2014), which are either fine-tuned
during training (RESIDUAL-STACKED-ENCODER

and ESIM) or stay fixed (DECOMPOSABLE AT-
TENTION). All models predict the label using a
concatenation of features derived from the sen-
tence representations (e.g. maximum, mean), for
example as in Mou et al. (2016). We use the rec-
ommended hyper-parameters for each model, as
they appear in the provided code.

With External Knowledge. We provide a sim-
ple WORDNET BASELINE, in which we classify
a sentence-pair according to the WordNet relation
that holds between the original word wp and the
replaced word wh. We predict entailment if wp is
a hyponym of wh or if they are synonyms, neutral
if wp is a hypernym of wh, and contradiction if wp

and wh are antonyms or if they share a common
hypernym ancestor (up to 2 edges). Word pairs
with no WordNet relations are classified as other.

We also report the performance of KIM

(Knowledge-based Inference Model, Chen et al.,
2018), an extension of ESIM with external knowl-
edge from WordNet, which was kindly provided
to us by Qian Chen. KIM improves the attention
mechanism by taking into account the existence
of WordNet relations between the words. The lex-
ical inference component, operating over pairs of
aligned words, is enriched with a vector encoding
the specific WordNet relations between the words.

4.2 Experimental Settings

We trained each model on 3 different datasets: (1)
SNLI train set, (2) a union of the SNLI train set

and the MultiNLI train set, and (3) a union of the
SNLI train set and the SciTail train set. The mo-
tivation is that while SNLI might lack the training
data needed to learn the required lexical knowl-
edge, it may be available in the other datasets,
which are presumably richer.

4.3 Results
Table 3 displays the results for all the models on
the original SNLI test set and the new test set. De-
spite the task being considerably simpler, the drop
in performance is substantial, ranging from 11 to
33 points in accuracy. Adding MultiNLI to the
training data somewhat mitigates this drop in ac-
curacy, thanks to almost doubling the amount of
training data. We note that adding SciTail to the
training data did not similarly improve the perfor-
mance; we conjecture that this stems from the dif-
ferences between the datasets.

KIM substantially outperforms the other neural
models, demonstrating that lexical knowledge is
the only requirement for good performance on the
new test set, and stressing the inability of the other
models to learn it. Both WordNet-informed mod-
els leave room for improvement: possibly due to
limited WordNet coverage and the implications of
applying lexical inferences within context.

5 Analysis

We take a deeper look into the predictions of the
models that don’t employ external knowledge, fo-
cusing on the models trained on SNLI.

5.1 Accuracy by Category
Table 4 displays the accuracy of each model per
replacement-word category. The neural models
tend to perform well on categories which are fre-
quent in the training set, such as colors, and badly

Models that have
access to the 
resources used to 
create the 
adversarial 
examples
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The story of an adversarial test
RoBERTA-MNLI, off-the-shelf

KmHiBMHBn;HQ+FM2`n�/p2`b�`B�Hn`Q#2`i�

J�`+? kj- kyky

(R), BKTQ`i MHB- Qb- iQ`+?
7`QK bFH2�`MXK2i`B+b BKTQ`i +H�bbB7B+�iBQMn`2TQ`i

(k), O �p�BH�#H2 7`QK ?iiTb,ff;Bi?m#X+QKf"Al@LGSf"`2�FBM;nLGA,
#`2�FBM;nMHBnb`+n7BH2M�K2 4 QbXT�i?XDQBMU]XXfM2r@/�i�f/�i�f/�i�b2iXDbQMH]V
`2�/2` 4 MHBXLGA_2�/2`U#`2�FBM;nMHBnb`+n7BH2M�K2V

(j), 2tb 4 (UU2tXb2Mi2M+2R- 2tXb2Mi2M+2kV- 2tX;QH/nH�#2HV 7Q` 2t BM `2�/2`X`2�/UV)

(9), sni2binbi`- vni2bi 4 xBTU 2tbV

(8), KQ/2H 4 iQ`+?X?m#XHQ�/U^TviQ`+?f7�B`b2[^- ^`Q#2`i�XH�`;2XKMHB^V
n 4 KQ/2HX2p�HUV

lbBM; +�+?2 7QmM/ BM flb2`bf+;TQiibfX+�+?2fiQ`+?f?m#fTviQ`+?n7�B`b2[nK�bi2`

(e), sni2bi 4 (KQ/2HX2M+Q/2U 2tV 7Q` 2t BM sni2binbi`)

(d), T`2/nBM/B+2b 4 (KQ/2HXT`2/B+iU^KMHB^- 2tVX�`;K�tUV 7Q` 2t BM sni2bi)

(3), iQnbi` 4 &y, ^+QMi`�/B+iBQM^- R, ^M2mi`�H^- k, ^2Mi�BHK2Mi^'

(N), T`2/b 4 (iQnbi`(+XBi2KUV) 7Q` + BM T`2/nBM/B+2b)

(Ry), T`BMiU+H�bbB7B+�iBQMn`2TQ`iUvni2bi- T`2/bVV

T`2+BbBQM `2+�HH 7R@b+Q`2 bmTTQ`i

+QMi`�/B+iBQM yXNN yXNd yXN3 dRe9
2Mi�BHK2Mi yX3e RXyy yXNk N3k

M2mi`�H yXR8 yXR8 yXR8 9d

�++m`�+v yXNd 3RNj
K�+`Q �p; yXed yXdR yXe3 3RNj

r2B;?i2/ �p; yXNd yXNd yXNd 3RNj

R
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The story of an adversarial test
RoBERTA-MNLI, off-the-shelf
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Adversarial training (and testing)

1. Commonsense reasoning (Zellers et al. 2018, 2019)
2. NLI (see Nie et al. 2020)
3. QA (see Bartolo et al. 2020)
4. Sentiment (DynaSent; Potts et al. 2020)
5. Hate Speech (Vidgen et al. 2020)
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Probing internal representations

4595

Figure 1: Summary statistics on BERT-large. Columns
on left show F1 dev-set scores for the baseline (P (0)

⌧ )
and full-model (P (L)

⌧ ) probes. Dark (blue) are the mix-
ing weight center of gravity (Eq. 2); light (purple) are
the expected layer from the cumulative scores (Eq. 4).

idence that the corresponding layer contains more
information related to that particular task.

Center-of-Gravity. As a summary statistic, we
define the mixing weight center of gravity as:

Ēs[`] =

LX

`=0

` · s(`)
⌧ (2)

This reflects the average layer attended to for each
task; intuitively, we can interpret a higher value to
mean that the information needed for that task is
captured by higher layers.

3.2 Cumulative Scoring
We would like to estimate at which layer in the
encoder a target (s1, s2, label) can be correctly
predicted. Mixing weights cannot tell us this di-
rectly, because they are learned as parameters and
do not correspond to a distribution over data. A
naive classifier at a single layer cannot either, be-
cause information about a particular span may be
spread out across several layers, and as observed
in Peters et al. (2018b) the encoder may choose to
discard information at higher layers.

To address this, we train a series of classifiers
{P

(`)
⌧ }` which use scalar mixing (Eq. 1) to attend

to layer ` as well as all previous layers. P
(0)
⌧ corre-

sponds to a non-contextual baseline that uses only
a bag of word(piece) embeddings, while P

(L)
⌧ =

P⌧ corresponds to probing all layers of the BERT
model.

These classifiers are cumulative, in the sense
that P

(`+1)
⌧ has a similar number of parameters but

with access to strictly more information than P
(`)
⌧ ,

Figure 2: Layer-wise metrics on BERT-large. Solid
(blue) are mixing weights s

(`)
⌧ (§3.1); outlined (purple)

are differential scores �(`)
⌧ (§3.2), normalized for each

task. Horizontal axis is encoder layer.

and we see intuitively that performance (F1 score)
generally increases as more layers are added.3 We
can then compute a differential score �

(`)
⌧ , which

measures how much better we do on the probing
task if we observe one additional encoder layer `:

�(`)
⌧ = Score(P (`)

⌧ ) � Score(P (`�1)
⌧ ) (3)

Expected Layer. Again, we compute a
(pseudo)4 expectation over the differential scores
as a summary statistic. To focus on the behavior
of the contextual encoder layers, we omit the con-
tribution of both the “trivial” examples resolved at
layer 0, as well as the remaining headroom from

3Note that if a new layer provides distracting features, the
probing model can overfit and performance can drop. We see
this in particular in the last 1-2 layers (Figure 2).

4This is not a true expectation because the F1 score is not
an expectation over examples.
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Feature attribution

True Label Predicted (Prob) Word-level importance

positive positive (0.85) [CLS] They sell a mean apple pie . [SEP]

positive positive (0.68) [CLS] They make a mean apple pie . [SEP]

positive positive (0.97) [CLS] He makes a mean apple pie . [SEP]

positive negative (0.15) [CLS] He sells a mean apple pie . [SEP]
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