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Overview

Behavioral evaluations

e Adversarial testing
o Adversarial training and testing

Structural evaluation methods

» Probing
o Feature attribution

Feature attribution
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Motivations

Motivations

1. Finding the limits of you system
2. Understanding system behavior
3. Achieving more robust systems

The techniques we discuss are powerful and easy
ways to improve the analysis section of a final paper!



Overview

Motivations

Adversarial testing

Adversarial training

The story of an adversarial test

Probing Feature attribution

Premise

Relation

Hypothesis

Train

A little girl kneeling
in the dirt crying.

A little girl is very
sad.

A little girl is very
unhappy.

Train

An elderly couple are
sitting outside a
restaurant, enjoying
wine.

neutral

A couple drinking
wine.

A couple drinking
champagne.

Glockner et al. 2018
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The story of an adversarial test

Model Train set SNLI test set  New test set A
. SNLI 84.7% 51.9% -32.8
De(clfa’x“,iﬁszlbz Az‘(‘)el‘g;m MuliNLI +SNLI  84.9% 658% 191
! - SciTail + SNLI 85.0% 49.0% -36.0
SNLI 87.9% 65.6% -223
ESIM (Chen et al., 2017) ~ MultiNLI + SNLI 86.3% 74.9% -11.4
SciTail + SNLI 88.3% 67.7% -20.6
. SNLI 86.0% 62.2% -23.8
Models that have Reslqual-Stacked-Encoder MultiNLI + SNLI 84.6% 68.2% 168
access to the (Nie and Bansal, 2017) .
resources used to SciTail + SNLI 85.0% 60.1% -249
create the -
adversarial ‘WordNet Baseline - - 85.8% -
examples KIM (Chen et al., 2018) SNLI 88.6% 83.5% 5.1

Table 3: Accuracy of various models trained on SNLI or a union of SNLI with another dataset (MultiNLI,
SciTail), and tested on the original SNLI test set and the new test set.
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RoBERTA-MNLI, off-the-shelf

Feature attribution

[1]:

[2]:

[3]:

[4]:

[5]:

[6]:

[7]:

[8]:

[9]:

import nli, os, torch
from sklearn.metrics import classification_report

# Available from https://github.com/BIU-NLP/Breaking_NLI:

breaking nli_src_filename = os.path.join("../new-data/data/dataset.jsonl")
reader = nli.NLIReader(breaking nli_src_filename)

exs = [((ex.sentencel, ex.sentence2), ex.gold_label) for ex in reader.read()]

X_test_str, y_test = zip(xexs)

model = torch.hub.load('pytorch/fairseq', 'roberta.large.mnli')
_ = model.eval()

Using cache found in /Users/cgpotts/.cache/torch/hub/pytorch_fairseq_master

X_test = [model.encode(*ex) for ex in X_test_str]
pred_indices = [model.predict('mnli', ex).argmax() for ex in X_test]
to_str = {0: 'contradiction', 1: 'neutral', 2: 'entailment'}

preds = [to_str[c.item()] for ¢ in pred_indices]
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RoBERTA-MNLI, off-the-shelf

[10]:

print(classification_report(y_test, preds))

contradiction
entailment
neutral

accuracy
macro avg
weighted avg

precision

0.99
0.86
0.15

0.67
0.97

0.97
1.00
0.15

0.71
0.97

recall fl-score

0.98
0.92
0.15

0.97
0.68
0.97

support

7164
982
47

8193
8193
8193
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Adversarial training (and testing)

1. Commonsense reasoning (Zellers et al. 2018, 2019)
2. NLI (see Nie et al. 2020)
3. QA (see Bartolo et al. 2020)
4. Sentiment (DynaSent; Potts et al. 2020)
5. Hate Speech (Vidgen et al. 2020)
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Feature attribution

True Label Predicted (Prob) Word-level importance

positive  positive (0.85) - [CISH] ey [SSil 1) [ S5 i 1 SR
positive  positive (0.68) [{CESI] [EY REke] =] [esH S50l B B [iSerl
positive  positive (0.97) |CESH| |IiE] [IERES] S \esn] [Spie] [Bis | [Sesi
positive negative (0.15) |CISH] [IiE] [SSiiS] 5] [EESH |SERiE [Bis | [SERl

Integrated gradients; Sundararajan et al. 2017
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