

NLU & IR: NEURAL IR (III)

Omar Khattab

CS224U: Natural Language Understanding

Spring 2021

Learning term weights: DeepCT and doc2query

- We get to learn the term weights with BERT and to **re-use** them!
- But our query is back to being a "bag of words".

Neural IR Paradigms: Representation Similarity

- Tokenize the query and the document
- Independently encode the query and the document
- … into a <u>single-vector</u> representation each
- Estimate relevance a dot product
 - Or a cosine similarity

Like learning term weights, this paradigm offers strong **efficiency** advantages:

- ✓ Document representations can be pre-computed!
- ✓ Query computations can be amortized.
- Similarity computations are very cheap.

Representation Similarity: Models

- Many pre-BERT IR models fall under this paradigm!
 - DSSM and SNRM

- Numerous BERT-based models exist
 - SBERT, ORQA, **DPR**, DE-BERT, RepBERT, ANCE

Cuery Document

Many of these BERT-based representation similarity models are *concurrent* to one another (late 2019 / early 2020).

The largest differences are in the **specific tasks** each targets and the **supervision approach**.

Representation Similarity: DPR

Dense Passage Retriever (DPR) by Karpukhin et al.

- Encodes each passage into a 768-dimensional vector
- Encodes each query into a 768-dimensional vector
- Trained with N-way cross-entropy loss, over the similarity scores between the query and:
 - A positive passage
 - A negative passage, sampled from BM25 top-100
 - Many in-batch negative passages
 - the positive passages for the *other* queries in the same training batch

Document

Query

Representation Similarity: DPR

Dense Passage Retriever (DPR) by Karpukhin et al.

- Encodes each passage into a 768-dimensional vector
- Encodes each query into a 768-dimensional vector
 - Xiong et al. (2020) test a DPR-style retriever on MS MARCO: **31% MRR**. They show that a sophisticated supervision scheme can achieve **33%**.

Both constitute progress over "learned term weights" like DeepCT, but they are still considerably lower than standard BERT's >36% MRR.

- Many in-batch negative passages
 - the positive passages for the *other* queries in the same training batch

Documen

Representation Similarity: Downsides

X Single-Vector Representations

- They "cram" queries and documents into a **coarse-grained** representation!

X No Fine-Grained Interactions

- They estimate relevance as **single dot product**!
- We lose term-level interactions, which we had in:
 - Query–Document interaction models (e.g., BERT or Duet)
 - And even term-weighting models (e.g., DeepCT and BM25)

Can we keep precomputation and still have fine-grained interactions?

Summary: Neural Ranking Paradigms

(a) Learned Term Weights

- (b) Representation Similarity
- Independent, Dense Encoding
 Coarse-Grained Representation

(c) Query–Document Interaction

Beyond Re-ranking: End-to-end Retrieval

 Query–Document Interaction models forced us to use a re-ranking pipeline, where we just re-scored the top-1000 documents retrieved by BM25.

End-to-end retrieval is essential toward improving RECALL.

- Learning Term Weights and Representation Similarity models alleviate this!
 - They allow us to do end-to-end retrieval: quickly searching over all documents <u>directly</u>.
 - We can save term weights in the inverted index. This means that we do NOT need a re-ranking pipeline.
 - We can also index vector representations for fast vector-similarity search, which allows <u>PRUNING</u> to find the top-K matches without exhaustive enumeration.
 - Libraries like **FAISS** abstract away the details.

Neural IR Paradigms: Late Interaction

Can we keep precomputation and still have fine-grained interactions?

Desired Properties:

- Independent Encoding
- Fine-Grained Representations
- End-to-End Retrieval (pruning!)

Omar Khattab and Matei Zaharia. "ColBERT: Efficient and effective passage search via contextualized late interaction over BERT." SIGIR'20.

Late Interaction: Real Example of Matching

when did the transformers cartoon series come out?

[...] the animated [...] The Transformers [...] [...] It was released [...] on August 8, 1986

when did the **transformers** cartoon series come out?

[...] the animated [...] The Transformers [...] [...] It was released [...] on August 8, 1986

when did the transformers <u>cartoon</u> series come out?

[...] the **animated** [...] The Transformers [...] [...] It was released [...] on August 8, 1986

when did the transformers cartoon series <u>come out</u>?

[...] the animated [...] The Transformers [...] [...] It was released [...] on August 8, 1986

Late Interaction: ColBERT

Notice that CoIBERT represents the document as a MATRIX, not a vector.

(d) Late Interaction (i.e., ColBERT)

Late Interaction: ColBERT

Omar Khattab and Matei Zaharia. "ColBERT: Efficient and effective passage search via contextualized late interaction over BERT." SIGIR'20.

Robustness: Out-of-Domain Quality

- So far, we've looked at <u>in-domain</u> effectiveness evaluations.
 - We had training and evaluation data for MS MARCO.

- We often want to use retrieval in new, out-of-domain settings.
 - ... with NO training data and NO validation data.
 - This is sometimes called a "zero-shot" setting; it emphasizes transfer.

BEIR is a recent benchmark for IR models in "zero-shot" scenarios

Thakur, Nandan, et al. "BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information Retrieval Models." *arXiv:2104.08663* (2021)

Robustness: Out-of-Domain NDCG@10

• Fine-grained interaction is key to robustly high precision

IR Task	Classical IR BM25	Interaction Models ELECTRA re-ranker	Representation Similarity DPR	Representation Similarity SBERT	Late Interaction COIBERT
BioMed	48	49	22	34	49
QA	38	51	33	41	48
Tweet	39	31	16	26	27
News	37	43	16	37	39
Arguments	52	35	15	34	25
Duplicates	53	56	20	58	60
Entity	29	38	26	34	39
Citation	16	15	8	13	15
Fact-Check	48	52	34	47	54
Overall Avg	(42)	(45)	23	39	(44)

Table aggregated from the BEIR results (Table 2) by Thakur, Nandan, et al. "BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information Retrieval Models." *arXiv:2104.08663* (2021)

Robustness: Out-of-Domain Recall@100

• Scalable fine-grained interaction is key to robustly high recall

IR Task	Classical IR BM25	Interaction Models ELECTRA re-ranker	Representation Similarity DPR	Representation Similarity SBERT	Late Interaction CoIBERT
BioMed	45	45	23	35	45
QA	67	67	60	68	75
Tweet	38	38	16	26	28
News	40	40	22	37	37
Arguments	70	70	46	62	61
Duplicates	77	77	44	79	81
Entity	38	38	35	40	46
Citation	35	35	22	30	34
Fact-Check	71	71	65	74	75
Overall Avg	(59)	(59)	43	57	61

Table aggregated from the BEIR results (Table 4) by Thakur, Nandan, et al. "BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information Retrieval Models." *arXiv:2104.08663* (2021)

Final Thoughts on Neural IR

- Speed vs. **Scalability**: not always the same!
 - Inductive biases are crucial to **effective** models that **scale**.

- Next...
 - Can scalability drive new gains in quality?
 - YES! We will see examples of this in the Open-QA screencast.
 - How can we tune a neural IR model for open-domain NLU tasks?

References

Vladimir Karpukhin, et al. "Dense passage retrieval for open-domain question answering." EMNLP'20 Lee Xiong, et al. "Approximate nearest neighbor negative contrastive learning for dense text retrieval." ICLR'21 Omar Khattab and Matei Zaharia. "ColBERT: Efficient and effective passage search via contextualized late interaction over BERT." SIGIR'20 Nandan, et al. "BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information Retrieval Models." arXiv:2104.08663 (2021)