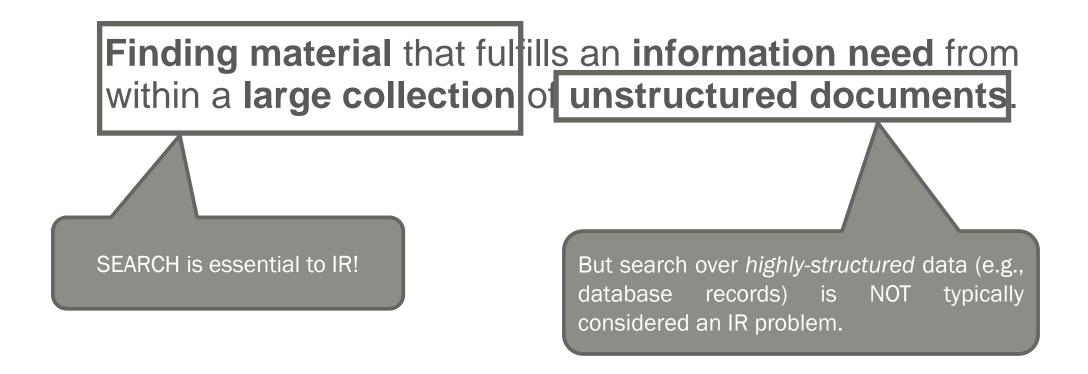


NLU & IR: OVERVIEW

Omar Khattab

CS224U: Natural Language Understanding Spring 2021

What is information retrieval?



What is information retrieval?

Finding material that fulfills an information need from within a large collection of unstructured documents.

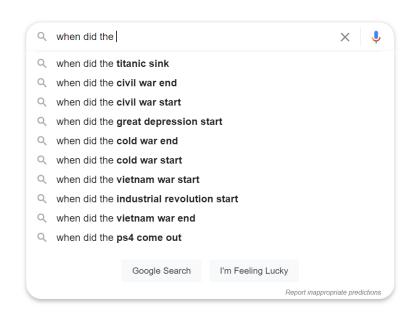
Simplified definition from IIR Book (Manning, Raghavan, and Schütze)

What is information retrieval?

Simplified definition from IIR Book (Manning, Raghavan, and Schütze)

Relevance — and the "Information Need"

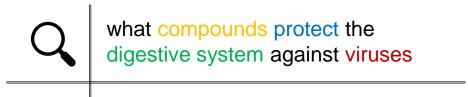
- The goal of a search system is to satisfy an **information need**.
 - Material we retrieve is relevant only if it advances this goal.
- In many (most) tasks, the user will express a query.
 - But queries can be ambiguous, incomplete, or inaccurate.
 - We must rely on our knowledge of the <u>task</u> and the <u>user</u>.


Expression of Information Need	Potential Query	Potential Collection
Find related literature	The full text of the BERT paper	ACL anthology; arXiv CL

Expression of Information Need	Potential Query	Potential Collection
Find related literature	The full text of the BERT paper	ACL anthology; arXiv CL
Recommend me a TV show to watch	[no explicit query!]	Netflix shows

Expression of Information Need	Potential Query	Potential Collection
Find related literature	The full text of the BERT paper	ACL anthology; arXiv CL
Recommend me a TV show to watch	[no explicit query!]	Netflix shows
Find every relevant patent	Boolean query with technical terms	U.S. Patents

Expression of Information Need	Potential Query	Potential Collection
Find related literature	The full text of the BERT paper	ACL anthology; arXiv CL
Recommend me a TV show to watch	[no explicit query!]	Netflix shows
Find every relevant patent	Boolean query with technical terms	U.S. Patents
Buy a new laptop	Short conversation: system asks questions to ascertain your criteria	E-commerce platforms


- Each search task poses unique challenges!
 - Many of them <u>lack</u> key features that make Web search work.
- Unlike, say, Slack search, Web search can often rely on lots of:
 - Popular "head" queries
 - Redundant documents on common topics
 - Explicit (hyper)links between documents

Where does NLU fit in <u>IR</u>?

- Queries and documents are often expressed in natural language.
- Due to **vocabulary mismatch**, lexical matching doesn't suffice!

In the **stomach**, gastric acid and proteases serve as powerful **chemical defenses** against ingested **pathogens**.

Where does IR fit into NLU?

- Advanced models often have information needs too!
- Retrieval in NLU can contribute to:
 - Creating new challenging NLU tasks
 - Improving model efficiency and quality for existing NLU tasks
 - Evaluating NLU systems whenever the output domain is large

Retrieval supports "open-domain" NLU tasks

■ We've briefly introduced SQuAD before...

Context: Chemical barriers also protect against infection. The skin and respiratory tract secrete antimicrobial peptides such as the β -defensins. [...] In the stomach, gastric acid and proteases serve as powerful chemical defenses against ingested pathogens.

Question: What compounds in the stomach protect against ingested pathogens?

Answer: gastric acid and proteases

Standard Question Answering (e.g., SQuAD)

From standard QA to open-domain QA

Drop the passage hint!

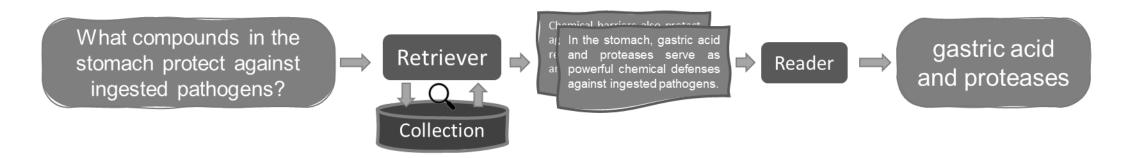
Context: All of [English] Wikipedia, with no special hints about the answer

Question: What compounds in the stomach protect against ingested pathogens?

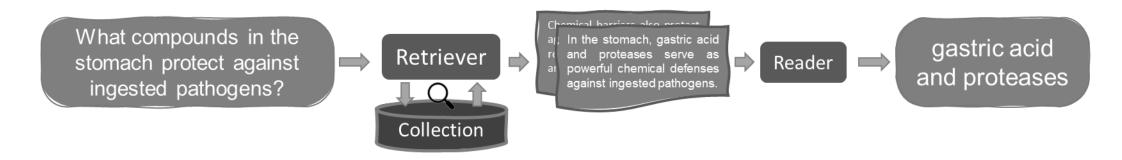
Answer: gastric acid and proteases

Open-Domain Question Answering (e.g., this "Open-SQuAD")

Open-Domain QA: Closed-Book Approaches


- Feed the question to a monolithic black-box generative model!
 - Knowledge is stored implicitly in the model parameters
 - Often as a byproduct of language-model pretraining
 - Need more "knowledge"? Train a larger model on more data!

Open-Domain QA: Open-Book Approaches


- Feed the question to a modular retrieve-and-read architecture
 - Knowledge is stored explicitly in the collection
 - We decouple reasoning and knowledge

The reader has an information need. The retriever's task is to satisfy it efficiently and accurately.

Open-Domain QA: Open-Book Approaches

- ✓ Models can be much smaller.
- ✓ Knowledge can be updated (or customized) without retraining.
- ✓ Model predictions might become more explainable
- X We now need to worry about the interactions between a retriever and reader

Task Name	Input	Output
Open-Domain QA	Question	Answer

Task Name	Input	Output
Open-Domain QA	Question	Answer
Fact Checking	Claim	Binary Label & Justification

Task Name	Input	Output
Open-Domain QA	Question	Answer
Fact Checking	Claim	Binary Label & Justification
Query-Focused Summarization	Topic	Summary
Informative Dialogue	Conversation Turns	Response

Task Name	Input	Output
Open-Domain QA	Question	Answer
Fact Checking	Claim	Binary Label & Justification
Query-Focused Summarization	Topic	Summary
Informative Dialogue	Conversation Turns	Response
Entity Linking	Utterance	Mapping from spans to entities in a knowledge base

Retrieval-based NLP tasks

KILT is a recent benchmark that brings together several datasets for knowledge-intensive language tasks.

■ These are tasks that explicitly have a knowledge component.

Open Question: Can retrieval dramatically improve performance for standard NLU tasks too?

Accurate knowledge matters for most (all?) tasks! "Bring your own book!"

Next...

- The remainder is structured as small crash courses into:
 - Classical Information Retrieval
 - Neural Information Retrieval
 - Open-Domain Question Answering

References

- Manning, Christopher, Prabhakar Raghavan and Schutze, H. "Introduction to Information Retrieval." (2008).
- Manning, Christopher, and Pandu Nayak (2019). CS276 Information Retrieval and Web Search: Inverted Indices [Class handout]. Retrieved from http://web.stanford.edu/class/cs276/19handouts/lecture2-intro-boolean-6per.pdf
- Elsayed, Tamer. CMPT621 Information Retrieval: Introduction to IR [Class handout]. Retrieved from https://www.dropbox.com/sh/8oeivk53ymsj3oy/AABt9M6ve5qYCZShkS7a5BkZa/Lecture%20Slides?dl=0&preview=1-CMPT621-S21-Session1-Intro+to+IR.pdf
- Rajpurkar, Pranav, et al. "SQuAD: 100,000+ questions for machine comprehension of text." EMNLP'16.
- Chen, Danqi, et al. "Reading Wikipedia to answer open-domain questions." ACL'17.
- Roberts, Adam, Colin Raffel, and Noam Shazeer. "How Much Knowledge Can You Pack Into the Parameters of a Language Model?." EMNLP'20.
- Petroni, Fabio, et al. "KILT: a benchmark for knowledge intensive language tasks." NAACL'21.