Introduction to Model Interpretability

JONATHAN MAK May 27th, 2020 CS 224U

Table of Contents

Approach

• What is model interpretability?

Stanford University

• Why is it important?

Model Agnostic Tactics

- LIME
- SHAP

Approaches to Model Interpretability

WHY WE SHOULD CARE

- I have data, and I want to solve a problem. (How do I diagnose Disease X?) So, just deploy a model!

- I have data, and I want to solve a problem. (How do I diagnose Disease X?) So, just deploy a model!
- But in real life, things are much more complicated.

- I have data, and I want to solve a problem. (How do I diagnose Disease X?) So, just deploy a model!
- But in real life, things are much more complicated.
- You have various parties: ML Scientists, Product Managers, End Users.

- I have data, and I want to solve a problem. (How do I diagnose Disease X?) So, just deploy a model!
- But in real life, things are much more complicated.
- You have various parties: ML Scientists, Product Managers, End Users.
 - ML Scientist: Which model features should I use? Does my model perform well?

- I have data, and I want to solve a problem. (How do I diagnose Disease X?) So, just deploy a model!
- But in real life, things are much more complicated.
- You have various parties: ML Scientists, Product Managers, End Users.
 - ML Scientist: Which model features should I use? Does my model perform well?
 - Product Managers: Can I trust/deploy this model? Is it fair for all parties?

- I have data, and I want to solve a problem. (How do I diagnose Disease X?) So, just deploy a model!
- But in real life, things are much more complicated.
- You have various parties: ML Scientists, Product Managers, End Users.
 - ML Scientist: Which model features should I use? Does my model perform well?
 - Product Managers: Can I trust/deploy this model? Is it fair for all parties?
 - End User: Why did it give me this prediction?

- Interpretability is **NOT...**

- Interpretability is **NOT...**
 - About making **all** models interpretable

- Interpretability is **NOT...**
 - About making **all** models interpretable
 - About understanding every single bit about the model

- Interpretability is **NOT...**
 - About making **all** models interpretable
 - About understanding every single bit about the model
 - Against developing highly **complex** models

- Interpretability is **NOT...**
 - About making **all** models interpretable
 - About understanding every single bit about the model
 - Against developing highly **complex** models
 - About **only** gaining user trust or fairness.

- Interpretability is **NOT...**
 - About making **all** models interpretable
 - About understanding every single bit about the model
 - Against developing highly **complex** models
 - About **only** gaining user trust or fairness.
- Interpretability is the ability to understand the overall consequences of the model and ensuring the things we predict are accurate knowledge aligned with our initial research goal.

- Correlation often does not equal causality, so a solid model understanding is needed when it comes to making decisions and explaining them.

- Correlation often does not equal causality, so a solid model understanding is needed when it comes to making decisions and explaining them.
- Helps us identify and mitigate bias, account for context, improve generalization and performance, and is also there for ethical and legal reasons.

- Correlation often does not equal causality, so a solid model understanding is needed when it comes to making decisions and explaining them.
- Helps us identify and mitigate bias, account for context, improve generalization and performance, and is also there for ethical and legal reasons.
- Don't treat the model as a black box!

Model Agnostic Tactics

HOW THEY HELP

- Ability to compare any two models to each other

- Ability to compare any two models to each other
- Ignore internal structure

- Ability to compare any two models to each other
- Ignore internal structure
- Adapt explanation to target user

- Global explanations can be too complicated.

- Global explanations can be too complicated.

- Zoom in to examine local interpretability

X

- Global explanations can be too complicated.

- Zoom in to examine local interpretability

X —

- Summary:

- Global explanations can be too complicated.

- Zoom in to examine local interpretability

- Summary:
 - Simplify a global model by perturbing input to see how predictions change

- Global explanations can be too complicated.

- Zoom in to examine local interpretability

- Summary:
 - Simplify a global model by perturbing input to see how predictions change
 - Approximate underlying model learned on these perturbations

- Steps:

- Steps:
 - Sample points around X

- Steps:
 - Sample points around X
 - Get predictions from our original model (complex)

- Steps:
 - Sample points around X
 - Get predictions from our original model (complex)
 - Weight samples according to our distance from x (cos for text, L2 for images)

- Steps:
 - Sample points around X
 - Get predictions from our original model (complex)
 - Weight samples according to our distance from x (cos for text, L2 for images)
 - Learn a simple model from our weighted samples

- Steps:
 - Sample points around X
 - Get predictions from our original model (complex)
 - Weight samples according to our distance from x (cos for text, L2 for images)
 - Learn a simple model from our weighted samples
 - Utilize simple model for better interpretability!

LIME - Images

Original Image

Interpretable Components

LIME - Images

LIME – Text Classification

On 20 newsgroup dataset ... what happened?

Prediction probabilities

atheism	0.58
christian	0.42

atheism
Posting
0.15
Hos
0.14
NNTE
0.11
edu
0.04
have
0.0
There
0.0

christian

Text with highlighted words

From: johnchad@triton.unm.edu (jchadwic) Subject: Another request for Darwin Fish Organization: University of New Mexico, Albuquerque Lines: 11 NNTP-Posting-Host: triton.unm.edu

Hello Gang,

There have been some notes recently asking where to obtain the DARWIN fish.

This is the same question I have and I have not seen an answer on the

net. If anyone has a contact please post on the net or email me.

LIME – Implementation (with simple Random Forest)

```
from lime import lime_text
from lime.lime_text import LimeTextExplainer
from sklearn.pipeline import make_pipeline
c = make_pipeline(vectorizer, rf)
explainer = LimeTextExplainer(class_names=class_names)
exp = explainer.explain_instance(
    newsgroups_test.data[idx],
    c.predict_proba,
    num_features=6)
    Prediction probabilities
    atheism christian
```

0.59
0.41

Posting 0.16 Host 0.13 NNTP 0.10 edu 0.05 have 0.01 There 0.01

- Linear model approximating local behavior

- Linear model approximating local behavior
- Perturbations can be very use case specific

- Linear model approximating local behavior
- Perturbations can be very use case specific
- Ideally, drive perturbations by variation in dataset

- Linear model approximating local behavior
- Perturbations can be very use case specific
- Ideally, drive perturbations by variation in dataset
- Labor/resource intensive when picking better models

Shapley Additive exPlanations (SHAP)

Shapley Additive exPlanations (SHAP)

- Explain output through optimal credit allocation using Shapley values

Shapley Additive exPlanations (SHAP)

- Explain output through optimal credit allocation using Shapley values
- Allow for both global interpretability (feature contribution) and local interpretability (observation contribution)

Shapley Additive exPlanations (SHAP) – Shapley Values

Shapley Additive exPlanations (SHAP) – Shapley Values

- Shapley value is the average marginal contribution of a feature value across all possible coalitions/orderings! Considers efficiency, symmetry, dummy, and additivity properties.

SHAP - Images

SHAP – Text Classification

SHAP – Implementation (Keras LSTM Model)

```
import shap
explainer = shap.DeepExplainer(model, x_train[:100])
shap_values = explainer.shap_values(x_test[:10])
shap.initjs()
words = imdb.get_word_index()
num2word = {}
for w in words.keys():
    num2word[words[w]] = w
x_test_words = np.stack([np.array(list(map(lambda x: num2word.get(x,
"NONE"), x_test[i]))) for i in range(10)])
shap.force_plot(explainer.expected_value[0], shap_values[0][0],
x_test_words[0])
```


SHAP – Drawbacks

SHAP – Drawbacks

- Can be misinterpreted (don't identify causality, and don't break consistency!)

SHAP – Drawbacks

- Can be misinterpreted (don't identify causality, and don't break consistency!)
- Direct access to data is necessary

LIME vs SHAP

Thank you!

JMAK@STANFORD.EDU

Works Cited

- Intro to AI Interpretability + Model Agnostic Solutions (Marco Ribeiro)
- Interpretability for Everyone (Been Kim)
- Interpreting ML Models/LIME (Lars Hulstaert)
- SHAP A unified approach to interpreting model predictions (Scott Lundberg)

