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Associated materials

• Notebook: contextualreps.ipynb

• Smith 2019

• ELMo: Peters et al. 2018; [project site]

• Transformer
1. Vaswani et al. 2017

2. Alexander Rush: The Annotated Transformer [link]

3. Hugging Face transformers: project site

a. BERT: Devlin et al. 2019; project site

b. RoBERTa: Liu et al. 2019; project site

c. ELECTRA: Clark et al. 2019; project site

d. XLNet: Yang et al. 2019; project site
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https://allennlp.org/elmo
http://nlp.seas.harvard.edu/2018/04/03/attention.html
https://github.com/huggingface/transformers
https://github.com/google-research/bert
https://github.com/pytorch/fairseq/tree/master/examples/roberta
https://github.com/google-research/electra
https://github.com/zihangdai/xlnet


Overview ELMo Transformers BERT RoBERTa ELECTRA XLNet contextualreps.ipynb

Word representations and context

1. a. The vase broke.
b. Dawn broke.
c. The news broke.
d. Sandy broke the world record.
e. Sandy broke the law.
f. The burgler broke into the house.

g. The newscaster broke into the movie broadcast.
h. We broke even.

2. a. flat tire/beer/note/surface
b. throw a party/fight/ball/fit

3. a. A crane caught a fish.
b. A crane picked up the steel beam.
c. I saw a crane.

4. a. Are there typos? I didn’t see any.
b. Are there bookstores downtown? I didn’t see any.
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Model structure and linguistic structure

The Rock
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Guiding idea: Attention (from the NLI slides)

classifier y = softmax(h̃W+ b)

attention combo h̃ = tanh([κ;hC]Wκ)

context κ =mean(α1h1, α2h2, α3h3)

attention weights α = softmax(α̃)

scores α̃ =

�

h>
C
h1 h>

C
h2 h>

C
h3

�

dancedevery dog dancedsome poodle

x3 x2 x1 x27 x21 x11

h1 h2 h3 hA hB hC
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Guiding idea: Subword modeling

r u l e s

Filters of different length, obtained
via dense layers processing the
input character embeddings and
combined via max-pooling:

4 2 6 1

1 7 8 2

1 3 9 3

4 7 9 3

Max-pooling layers concatenated
to form the word representation
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Guiding idea: Word piece tokenization
iQF2MBxBM;

J�`+? ke- kyky

(R), 7`QK i`�Mb7Q`K2`b BKTQ`i "2`ihQF2MBx2`

(k), iQF2MBx2` 4 "2`ihQF2MBx2`X7`QKnT`2i`�BM2/U^#2`i@#�b2@+�b2/^V

(j), iQF2MBx2`XiQF2MBx2U]h?Bb BbM^i iQQ bm`T`BbBM;X]V

(j), (^h?Bb^- ^BbM^- ]^]- ^i^- ^iQQ^- ^bm`T`BbBM;^- ^X^)

(9), iQF2MBx2`XiQF2MBx2U]1M+Q/2 K25]V

(9), (^1M^- ^OO+Q/2^- ^K2^- ^5^)

(8), iQF2MBx2`XiQF2MBx2U]aMm77H2mT�;mb\]V

(8), (^a^- ^OOMm^- ^OO77H2^- ^OOmT^- ^OO�;m^- ^OOb^- ^\^)

(e), iQF2MBx2`XpQ+�#nbBx2

(e), k3NNe

R

8 / 64

Sennrich et al. 2016,
https://github.com/google/sentencepiece

https://github.com/google/sentencepiece
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Guiding idea: Positional encoding

The 1 Rock 2 rules 3

x47 p1 x30 p2 x34 p3

ainput binput cinput

+ + +

From ‘The Annotated Transformer’
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Current issues and efforts
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Floating Point Operations required for training
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GPT

BERT-Base
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190 exaflops

XLNet

RoBERTa
3 zettaflops

Figure 1: The computational demands of modern deep learning 
methods for NLP, measured in Floating Point Operations (FLOPs).
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Clark et al. 2019
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Current issues and efforts
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https://twitter.com/artetxem/status/1178794889229864962

https://twitter.com/artetxem/status/1178794889229864962
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Current issues and efforts

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3645–3650
Florence, Italy, July 28 - August 2, 2019. c�2019 Association for Computational Linguistics

3645

Energy and Policy Considerations for Deep Learning in NLP

Emma Strubell Ananya Ganesh Andrew McCallum
College of Information and Computer Sciences

University of Massachusetts Amherst
{strubell, aganesh, mccallum}@cs.umass.edu

Abstract

Recent progress in hardware and methodol-
ogy for training neural networks has ushered
in a new generation of large networks trained
on abundant data. These models have ob-
tained notable gains in accuracy across many
NLP tasks. However, these accuracy improve-
ments depend on the availability of exception-
ally large computational resources that neces-
sitate similarly substantial energy consump-
tion. As a result these models are costly to
train and develop, both financially, due to the
cost of hardware and electricity or cloud com-
pute time, and environmentally, due to the car-
bon footprint required to fuel modern tensor
processing hardware. In this paper we bring
this issue to the attention of NLP researchers
by quantifying the approximate financial and
environmental costs of training a variety of re-
cently successful neural network models for
NLP. Based on these findings, we propose ac-
tionable recommendations to reduce costs and
improve equity in NLP research and practice.

1 Introduction

Advances in techniques and hardware for train-
ing deep neural networks have recently en-
abled impressive accuracy improvements across
many fundamental NLP tasks (Bahdanau et al.,
2015; Luong et al., 2015; Dozat and Man-
ning, 2017; Vaswani et al., 2017), with the
most computationally-hungry models obtaining
the highest scores (Peters et al., 2018; Devlin et al.,
2019; Radford et al., 2019; So et al., 2019). As
a result, training a state-of-the-art model now re-
quires substantial computational resources which
demand considerable energy, along with the as-
sociated financial and environmental costs. Re-
search and development of new models multiplies
these costs by thousands of times by requiring re-
training to experiment with model architectures
and hyperparameters. Whereas a decade ago most

Consumption CO2e (lbs)
Air travel, 1 person, NY$SF 1984
Human life, avg, 1 year 11,023
American life, avg, 1 year 36,156
Car, avg incl. fuel, 1 lifetime 126,000

Training one model (GPU)
NLP pipeline (parsing, SRL) 39

w/ tuning & experiments 78,468
Transformer (big) 192

w/ neural arch. search 626,155

Table 1: Estimated CO2 emissions from training com-
mon NLP models, compared to familiar consumption.1

NLP models could be trained and developed on
a commodity laptop or server, many now require
multiple instances of specialized hardware such as
GPUs or TPUs, therefore limiting access to these
highly accurate models on the basis of finances.

Even when these expensive computational re-
sources are available, model training also incurs a
substantial cost to the environment due to the en-
ergy required to power this hardware for weeks or
months at a time. Though some of this energy may
come from renewable or carbon credit-offset re-
sources, the high energy demands of these models
are still a concern since (1) energy is not currently
derived from carbon-neural sources in many loca-
tions, and (2) when renewable energy is available,
it is still limited to the equipment we have to pro-
duce and store it, and energy spent training a neu-
ral network might better be allocated to heating a
family’s home. It is estimated that we must cut
carbon emissions by half over the next decade to
deter escalating rates of natural disaster, and based
on the estimated CO2 emissions listed in Table 1,

1Sources: (1) Air travel and per-capita consumption:
https://bit.ly/2Hw0xWc; (2) car lifetime: https:
//bit.ly/2Qbr0w1.
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Strubell et al. 2019
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Current issues and efforts
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https://huggingface.co

https://huggingface.co
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Current issues and efforts
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http://mitchgordon.me/

http://mitchgordon.me/machine/learning/2019/11/18/all-the-ways-to-compress-BERT.html
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Core model structure

〈s〉 The Rock rules 〈/s〉

〈s〉0 The0 Rock0 rules0 〈/s〉0

rules4,1RockThe〈s〉

rules4,2RockThe〈s〉

The Rock rules4,1 〈/s〉

The Rock rules4,2 〈/s〉

The Rock rules 〈/s〉 rulesRockThe〈s〉

rules = stask
0 · rules0 + stask

1 · rules4,1 rules4,1 + stask
2 · rules4,2 rules4,2
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Word embeddings

r u l e s

A series of convolutional filters
with max pooling, concatenated
to form the initial representation.

Highway layers introduce gating
information between layers

x

A final linear projection into the
embedding dimensionality, which
must be twice the RNN hidden di-
mensionality

13 / 64



Overview ELMo Transformers BERT RoBERTa ELECTRA XLNet contextualreps.ipynb

ELMo model releases

LSTM
Model Parameters Hidden size Output size Highway layers

Small 13.6M 1024 128 1
Medium 28.0M 2048 256 1
Original 93.6M 4096 512 2
Original (5.5B) 93.6M 4096 512 2

Additional details at https://allennlp.org/elmo; the options files reveal
additional information about the subword convolutional filters, activation
functions, thresholds, and layer dimensions.
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https://allennlp.org/elmo
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Transformers
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Core model structure

The 1 Rock 2 rules 3

x47 p1 x30 p2 x34 p3

ainput binput cinput

+ + +

cinput = x34 + p3

aattn battn cattn c
attn

= sum
��

α1ainput, α2binput
��

α = softmax(α̃)

α̃ =

�

cinput
>ainput
p

dk
,
cinput

>binput
p

dk

�

calayer calayer =Dropout
�

c
attn

+ cinput

�

+ + +

canorm canorm =
calayer−mean(calayer)

std(calayer)+ϵ

norm norm norm

cff cff = ReLU(canormW1 + b1)W2 + b2

cfflayer cfflayer = canorm +Dropout(cff)

+ + +

cout cout =
cfflayer−mean(cfflayer)

std(cfflayer)+ϵ

norm norm norm
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Computing the attention representations

Calculation as previously given

cattn = sum
��

α1ainput, α2binput
��

α = softmax(α̃)

α̃ =

�

cinput
>ainput
p

dk
,
cinput

>binput
p

dk

�

Matrix format

softmax









cinput

�

ainput
binput

�>

p

dk









�

ainput
binput

�
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Computing the attention representations
�ii2MiBQMn+QKTmi�iBQMb

J�`+? k3- kyky

(R), BKTQ`i MmKTv �b MT

(k), b2[nH2M;i? 4 j
/nF 4 9

(j), BMTmib 4 MTX`�M/QKXmMB7Q`KUbBx24Ub2[nH2M;i?- /nFVV
BMTmib

(j), �``�vU((yXjR9jeNkk- yXeeNeNjyd- yXkdy3y9 - yXdkykj8y9)-
(yX3dR3yRjk- yXkdejd998- yX9jyNR3ed- yXj9Rj3dy9)-
(yXkykNky89- yXej98RjR - yXyRy83j9j- yXkk39eeje))V

(9), �nBMTmi 4 BMTmib(y)
#nBMTmi 4 BMTmib(R)
+nBMTmi 4 BMTmib(k)

( ),

( ),

( ),

( ),

( ),

( ),

( ),

( ),

( ),

( ),

( ),

R
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Computing the attention representations( ),

(8), /27 bQ7iK�tUsV,
x 4 MTX2tTUsV
`2im`M Ux f xXbmKU�tBb4yVVXh

(e), +n�HT?� 4 bQ7iK�tU(
U+nBMTmiX/QiU�nBMTmiV f MTXb[`iU/nFVV-
U+nBMTmiX/QiU#nBMTmiV f MTXb[`iU/nFVV)V

(d), +n�iiM 4 bmKU(+n�HT?�(y) �nBMTmi- +n�HT?�(R) #nBMTmi)V
+n�iiM

(d), �``�vU(yX8dde3ykd- yX93jNyjj3- yXj9e9je9e- yX89Rk3yde)V

(3), �# 4 BMTmib(,@R)

(N), bQ7iK�tU+nBMTmiX/QiU�#XhV f MTXb[`iU/nFVVX/QiU�#V

(N), �``�vU(yX8dde3ykd- yX93jNyjj3- yXj9e9je9e- yX89Rk3yde)V

(Ry), O A7 r2 �HHQr 2p2`v BMTmi iQ �ii2M/ iQ Bib2H7,
bQ7iK�tUBMTmibX/QiUBMTmibXhV f MTXb[`iU/nFVVX/QiUBMTmibV

(Ry), �``�vU((yX9eR9j33 - yX8jky9999- yXk98RkRk - yX98RjeRkd)-
(yX8yRdjRkj- yX8yeR3kdk- yXkeR399y9- yX9jed3k33)-
(yX989Nj9ed- yX8jjkjk3 - yXkje9j9yj- yX9j33k9k ))V

k
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Multi-headed attention

The 1 Rock 2 rules 3
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Repeated transformer blocks

The 1 Rock 2 rules 3

x47 p1 x30 p2 x34 p3

ainput binput cinput

+ + +

aattn battn cattn

calayer

+ + +

canorm

norm norm norm

cff

cfflayer

+ + +

cout

norm norm norm

Repeated 6 times with
cout serving as cinput at
each successive layer.

Includes multi-headed
attention in each block
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The architecture diagram

Each decoder state self-attends 
with all of its fellow decoder states 

and with all the encoder states.

The left side is repeated for 
every state in the encoder.

The right side is repeated for 
every decoder state, with 
outputs for each state that has 
them (all of them for dialogue 
and machine translation, only 
the final one for NLI).

In the decoder, 
self-attention is limited to 
preceding words.
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BERT
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Core model structure

[CLS] 0 SentA The 1 SentA Rock 2 SentA rules 3 SentA [SEG] 4 SentA

x47 p0 sA x47 p1 sA x30 p2 sA x34 p3 sA x1 p4 sA

CLSin ain bin cin Sin

+ + + + +

CLSout aout bout coutaout Sout

Transformer blocks
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Masked Language Modeling (MLM)

[CLS] 0 SentA The 1 SentA Rock 2 SentA rules 3 SentA [SEG] 4 SentA

x47 p0 sA x47 p1 sA x30 p2 sA x34 p3 sA x1 p4 sA

CLSin ain bin cin Sin

+ + + + +

CLSout aout bout coutaout Sout

Transformer blocks

rules

masking: none
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Masked Language Modeling (MLM)

[CLS] 0 SentA The 1 SentA Rock 2 SentA [MASK] 3 SentA [SEG] 4 SentA

x47 p0 sA x47 p1 sA x30 p2 sA x0 p3 sA x1 p4 sA

CLSin ain bin cin Sin

+ + + + +

CLSout aout bout coutaout Sout

Transformer blocks

rules

masking: [MASK]
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Masked Language Modeling (MLM)

[CLS] 0 SentA The 1 SentA Rock 2 SentA every 3 SentA [SEG] 4 SentA

x47 p0 sA x47 p1 sA x30 p2 sA x10 p3 sA x1 p4 sA

CLSin ain bin cin Sin

+ + + + +

CLSout aout bout coutaout Sout

Transformer blocks

rules

masking: random word
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MLM loss function

For Transformer parameters Hθ and sequence x = [x1, . . . ,xT ]
with masked version x̂:

max
θ

T
∑

t=1

mt log
exp

�

e(xt)>Hθ(x̂)t
�

∑

x′∈V exp
�

e(x′)>Hθ(x̂)t
�

where V is the vocabulary, xt is the actual token at step t,
mt = 1 if token t was masked, else 0, and e(x) is the
embedding for x.
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Binary sentence prediction pretraining

Positive: Actual sentence sequences

• [CLS] the man went to [MASK] store [SEP]
• he bought a gallon [MASK] milk [SEP]
• Label: IsNext

Negative: Randomly chosen second sentence

• [CLS] the man went to [MASK] store [SEP]
• penguin [MASK] are flight ##less birds [SEP]
• Label: NotNext
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Transfer learning and fine-tuning

[CLS] 0 SentA The 1 SentA Rock 2 SentA rules 3 SentA [SEG] 4 SentA

x47 p0 sA x47 p1 sA x30 p2 sA x34 p3 sA x1 p4 sA

CLSin ain bin cin Sin

+ + + + +

CLSout aout bout coutaout Sout

Transformer blocks

your task
params

your task labels
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Tokenization and the BERT embedding spaceiQF2MBxBM;

J�`+? ke- kyky

(R), 7`QK i`�Mb7Q`K2`b BKTQ`i "2`ihQF2MBx2`

(k), iQF2MBx2` 4 "2`ihQF2MBx2`X7`QKnT`2i`�BM2/U^#2`i@#�b2@+�b2/^V

(j), iQF2MBx2`XiQF2MBx2U]h?Bb BbM^i iQQ bm`T`BbBM;X]V

(j), (^h?Bb^- ^BbM^- ]^]- ^i^- ^iQQ^- ^bm`T`BbBM;^- ^X^)

(9), iQF2MBx2`XiQF2MBx2U]1M+Q/2 K25]V

(9), (^1M^- ^OO+Q/2^- ^K2^- ^5^)

(8), iQF2MBx2`XiQF2MBx2U]aMm77H2mT�;mb\]V

(8), (^a^- ^OOMm^- ^OO77H2^- ^OOmT^- ^OO�;m^- ^OOb^- ^\^)

(e), iQF2MBx2`XpQ+�#nbBx2

(e), k3NNe

R
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Initial BERT model releases

Base
• Transformer layers: 12
• Hidden representations: 768 dimensions
• Attention heads: 12
• Total parameters: 110M

Large

• Transformer layers: 24
• Hidden representations: 1024 dimensions
• Attention heads: 16
• Total parameters: 340M

Limited to sequences of 512 tokens due to dimensionality of
the positional embeddings.

Many new releases at the project site and on Hugging Face.
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Efforts to make BERT smaller

Particularly relevant to this lecture:

• Sanh et al. (2019): DistilBERT
• Michel et al. (2019): Fewer attention heads
• Lan et al. (2019): ALBERT
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Known limitations with BERT

1. Devlin et al. (2019:§5): admirably detailed but still
partial ablation studies and optimization studies.

2. Devlin et al. (2019): “The first [downside] is that we are
creating a mismatch between pre-training and
fine-tuning, since the [MASK] token is never seen during
fine-tuning.”

3. Devlin et al. (2019): “The second downside of using an
MLM is that only 15% of tokens are predicted in each
batch”

4. Yang et al. (2019): “BERT assumes the predicted tokens
are independent of each other given the unmasked
tokens, which is oversimplified as high-order, long-range
dependency is prevalent in natural language”
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RoBERTa

1. Overview: Resources and guiding insights

2. ELMo: Embeddings from Language Models

3. Transformers

4. BERT: Bidirectional Encoder Representations from
Transformers

5. RoBERTa: Robustly optimized BERT approach

6. ELECTRA: Efficiently Learning an Encoder that Classifies
Token Replacements Accurately

7. XLNet

8. contextualreps.ipynb: Easy ways to bring ELMo and
BERT into your project
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Addressing the known limitations with BERT

1. Devlin et al. (2019:§5): admirably detailed but still
partial ablation studies and optimization studies.

2. Devlin et al. (2019): “The first [downside] is that we are
creating a mismatch between pre-training and
fine-tuning, since the [MASK] token is never seen during
fine-tuning.”

3. Devlin et al. (2019): “The second downside of using an
MLM is that only 15% of tokens are predicted in each
batch”

4. Yang et al. (2019): “BERT assumes the predicted tokens
are independent of each other given the unmasked
tokens, which is oversimplified as high-order, long-range
dependency is prevalent in natural language”
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Robustly optimized BERT approach

BERT RoBERTa

Static masking/substitution Dynamic masking/substitution

Inputs are two concatenated
document segments

Inputs are sentence sequences that
may span document boundaries

Next Sentence Prediction (NSP) No NSP

Training batches of 256 examples Training batches of 2,000 examples

Word-piece tokenization Character-level byte-pair encoding

Pretraining on BooksCorpus and
English Wikipedia

Pretraining on BooksCorpus,
CC-News, OpenWebText, and Stories

Train for 1M steps Train for up to 500K steps

Train on short sequences first Train only on full-length sequences

Additional differences in the optimizer and data presentation (sec 3.1).
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RoBERTa results informing final system design

V2.0 some questions are not answered in the pro-
vided context, making the task more challenging.

For SQuAD V1.1 we adopt the same span pre-
diction method as BERT (Devlin et al., 2019). For
SQuAD V2.0, we add an additional binary classi-
fier to predict whether the question is answerable,
which we train jointly by summing the classifica-
tion and span loss terms. During evaluation, we
only predict span indices on pairs that are classi-
fied as answerable.

RACE The ReAding Comprehension from Ex-
aminations (RACE) (Lai et al., 2017) task is a
large-scale reading comprehension dataset with
more than 28,000 passages and nearly 100,000
questions. The dataset is collected from English
examinations in China, which are designed for
middle and high school students. In RACE, each
passage is associated with multiple questions. For
every question, the task is to select one correct an-
swer from four options. RACE has significantly
longer context than other popular reading compre-
hension datasets and the proportion of questions
that requires reasoning is very large.

4 Training Procedure Analysis

This section explores and quantifies which choices
are important for successfully pretraining BERT
models. We keep the model architecture fixed.7

Specifically, we begin by training BERT models
with the same configuration as BERTBASE (L =
12, H = 768, A = 12, 110M params).

4.1 Static vs. Dynamic Masking

As discussed in Section 2, BERT relies on ran-
domly masking and predicting tokens. The orig-
inal BERT implementation performed masking
once during data preprocessing, resulting in a sin-
gle static mask. To avoid using the same mask for
each training instance in every epoch, training data
was duplicated 10 times so that each sequence is
masked in 10 different ways over the 40 epochs of
training. Thus, each training sequence was seen
with the same mask four times during training.

We compare this strategy with dynamic mask-
ing where we generate the masking pattern every
time we feed a sequence to the model. This be-
comes crucial when pretraining for more steps or
with larger datasets.

7Studying architectural changes, including larger archi-
tectures, is an important area for future work.

Masking SQuAD 2.0 MNLI-m SST-2

reference 76.3 84.3 92.8

Our reimplementation:
static 78.3 84.3 92.5
dynamic 78.7 84.0 92.9

Table 1: Comparison between static and dynamic
masking for BERTBASE . We report F1 for SQuAD and
accuracy for MNLI-m and SST-2. Reported results are
medians over 5 random initializations (seeds). Refer-
ence results are from Yang et al. (2019).

Results Table 1 compares the published
BERTBASE results from Devlin et al. (2019) to our
reimplementation with either static or dynamic
masking. We find that our reimplementation
with static masking performs similar to the
original BERT model, and dynamic masking is
comparable or slightly better than static masking.

Given these results and the additional efficiency
benefits of dynamic masking, we use dynamic
masking in the remainder of the experiments.

4.2 Model Input Format and Next Sentence
Prediction

In the original BERT pretraining procedure, the
model observes two concatenated document seg-
ments, which are either sampled contiguously
from the same document (with p = 0.5) or from
distinct documents. In addition to the masked lan-
guage modeling objective, the model is trained to
predict whether the observed document segments
come from the same or distinct documents via an
auxiliary Next Sentence Prediction (NSP) loss.

The NSP loss was hypothesized to be an impor-
tant factor in training the original BERT model.
Devlin et al. (2019) observe that removing NSP
hurts performance, with significant performance
degradation on QNLI, MNLI, and SQuAD 1.1.
However, some recent work has questioned the
necessity of the NSP loss (Lample and Conneau,
2019; Yang et al., 2019; Joshi et al., 2019).

To better understand this discrepancy, we com-
pare several alternative training formats:

• SEGMENT-PAIR+NSP: This follows the original
input format used in BERT (Devlin et al., 2019),
with the NSP loss. Each input has a pair of seg-
ments, which can each contain multiple natural
sentences, but the total combined length must
be less than 512 tokens.
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Model SQuAD 1.1/2.0 MNLI-m SST-2 RACE

Our reimplementation (with NSP loss):
SEGMENT-PAIR 90.4/78.7 84.0 92.9 64.2
SENTENCE-PAIR 88.7/76.2 82.9 92.1 63.0

Our reimplementation (without NSP loss):
FULL-SENTENCES 90.4/79.1 84.7 92.5 64.8
DOC-SENTENCES 90.6/79.7 84.7 92.7 65.6

BERTBASE 88.5/76.3 84.3 92.8 64.3
XLNetBASE (K = 7) –/81.3 85.8 92.7 66.1
XLNetBASE (K = 6) –/81.0 85.6 93.4 66.7

Table 2: Development set results for base models pretrained over BOOKCORPUS and WIKIPEDIA. All models are
trained for 1M steps with a batch size of 256 sequences. We report F1 for SQuAD and accuracy for MNLI-m,
SST-2 and RACE. Reported results are medians over five random initializations (seeds). Results for BERTBASE and
XLNetBASE are from Yang et al. (2019).

• SENTENCE-PAIR+NSP: Each input contains a
pair of natural sentences, either sampled from
a contiguous portion of one document or from
separate documents. Since these inputs are sig-
nificantly shorter than 512 tokens, we increase
the batch size so that the total number of tokens
remains similar to SEGMENT-PAIR+NSP. We re-
tain the NSP loss.

• FULL-SENTENCES: Each input is packed with
full sentences sampled contiguously from one
or more documents, such that the total length is
at most 512 tokens. Inputs may cross document
boundaries. When we reach the end of one doc-
ument, we begin sampling sentences from the
next document and add an extra separator token
between documents. We remove the NSP loss.

• DOC-SENTENCES: Inputs are constructed sim-
ilarly to FULL-SENTENCES, except that they
may not cross document boundaries. Inputs
sampled near the end of a document may be
shorter than 512 tokens, so we dynamically in-
crease the batch size in these cases to achieve
a similar number of total tokens as FULL-
SENTENCES. We remove the NSP loss.

Results Table 2 shows results for the four dif-
ferent settings. We first compare the original
SEGMENT-PAIR input format from Devlin et al.
(2019) to the SENTENCE-PAIR format; both for-
mats retain the NSP loss, but the latter uses sin-
gle sentences. We find that using individual
sentences hurts performance on downstream
tasks, which we hypothesize is because the model
is not able to learn long-range dependencies.

We next compare training without the NSP
loss and training with blocks of text from a sin-
gle document (DOC-SENTENCES). We find that
this setting outperforms the originally published
BERTBASE results and that removing the NSP loss
matches or slightly improves downstream task
performance, in contrast to Devlin et al. (2019).
It is possible that the original BERT implementa-
tion may only have removed the loss term while
still retaining the SEGMENT-PAIR input format.

Finally we find that restricting sequences to
come from a single document (DOC-SENTENCES)
performs slightly better than packing sequences
from multiple documents (FULL-SENTENCES).
However, because the DOC-SENTENCES format
results in variable batch sizes, we use FULL-
SENTENCES in the remainder of our experiments
for easier comparison with related work.

4.3 Training with large batches

Past work in Neural Machine Translation has
shown that training with very large mini-batches
can both improve optimization speed and end-task
performance when the learning rate is increased
appropriately (Ott et al., 2018). Recent work has
shown that BERT is also amenable to large batch
training (You et al., 2019).

Devlin et al. (2019) originally trained
BERTBASE for 1M steps with a batch size of
256 sequences. This is equivalent in computa-
tional cost, via gradient accumulation, to training
for 125K steps with a batch size of 2K sequences,
or for 31K steps with a batch size of 8K.

In Table 3 we compare perplexity and end-

RoBERTa choice
for effificient
batching, and
comparisons with
related work.
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bsz steps lr ppl MNLI-m SST-2

256 1M 1e-4 3.99 84.7 92.7
2K 125K 7e-4 3.68 85.2 92.9
8K 31K 1e-3 3.77 84.6 92.8

Table 3: Perplexity on held-out training data (ppl) and
development set accuracy for base models trained over
BOOKCORPUS and WIKIPEDIA with varying batch
sizes (bsz). We tune the learning rate (lr) for each set-
ting. Models make the same number of passes over the
data (epochs) and have the same computational cost.

task performance of BERTBASE as we increase the
batch size, controlling for the number of passes
through the training data. We observe that train-
ing with large batches improves perplexity for the
masked language modeling objective, as well as
end-task accuracy. Large batches are also easier to
parallelize via distributed data parallel training,8

and in later experiments we train with batches of
8K sequences.

Notably You et al. (2019) train BERT with even
larger batche sizes, up to 32K sequences. We leave
further exploration of the limits of large batch
training to future work.

4.4 Text Encoding

Byte-Pair Encoding (BPE) (Sennrich et al., 2016)
is a hybrid between character- and word-level rep-
resentations that allows handling the large vocab-
ularies common in natural language corpora. In-
stead of full words, BPE relies on subwords units,
which are extracted by performing statistical anal-
ysis of the training corpus.

BPE vocabulary sizes typically range from
10K-100K subword units. However, unicode char-
acters can account for a sizeable portion of this
vocabulary when modeling large and diverse cor-
pora, such as the ones considered in this work.
Radford et al. (2019) introduce a clever imple-
mentation of BPE that uses bytes instead of uni-
code characters as the base subword units. Using
bytes makes it possible to learn a subword vocab-
ulary of a modest size (50K units) that can still en-
code any input text without introducing any “un-
known” tokens.

8Large batch training can improve training efficiency even
without large scale parallel hardware through gradient ac-
cumulation, whereby gradients from multiple mini-batches
are accumulated locally before each optimization step. This
functionality is supported natively in FAIRSEQ (Ott et al.,
2019).

The original BERT implementa-
tion (Devlin et al., 2019) uses a character-level
BPE vocabulary of size 30K, which is learned
after preprocessing the input with heuristic tok-
enization rules. Following Radford et al. (2019),
we instead consider training BERT with a larger
byte-level BPE vocabulary containing 50K sub-
word units, without any additional preprocessing
or tokenization of the input. This adds approxi-
mately 15M and 20M additional parameters for
BERTBASE and BERTLARGE, respectively.

Early experiments revealed only slight dif-
ferences between these encodings, with the
Radford et al. (2019) BPE achieving slightly
worse end-task performance on some tasks. Nev-
ertheless, we believe the advantages of a univer-
sal encoding scheme outweighs the minor degre-
dation in performance and use this encoding in
the remainder of our experiments. A more de-
tailed comparison of these encodings is left to fu-
ture work.

5 RoBERTa

In the previous section we propose modifications
to the BERT pretraining procedure that improve
end-task performance. We now aggregate these
improvements and evaluate their combined im-
pact. We call this configuration RoBERTa for
Robustly optimized BERT approach. Specifi-
cally, RoBERTa is trained with dynamic mask-
ing (Section 4.1), FULL-SENTENCES without NSP
loss (Section 4.2), large mini-batches (Section 4.3)
and a larger byte-level BPE (Section 4.4).

Additionally, we investigate two other impor-
tant factors that have been under-emphasized in
previous work: (1) the data used for pretraining,
and (2) the number of training passes through the
data. For example, the recently proposed XLNet
architecture (Yang et al., 2019) is pretrained us-
ing nearly 10 times more data than the original
BERT (Devlin et al., 2019). It is also trained with
a batch size eight times larger for half as many op-
timization steps, thus seeing four times as many
sequences in pretraining compared to BERT.

To help disentangle the importance of these fac-
tors from other modeling choices (e.g., the pre-
training objective), we begin by training RoBERTa
following the BERTLARGE architecture (L = 24,
H = 1024, A = 16, 355M parameters). We
pretrain for 100K steps over a comparable BOOK-
CORPUS plus WIKIPEDIA dataset as was used in
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Model data bsz steps SQuAD MNLI-m SST-2
(v1.1/2.0)

RoBERTa
with BOOKS + WIKI 16GB 8K 100K 93.6/87.3 89.0 95.3
+ additional data (§3.2) 160GB 8K 100K 94.0/87.7 89.3 95.6
+ pretrain longer 160GB 8K 300K 94.4/88.7 90.0 96.1
+ pretrain even longer 160GB 8K 500K 94.6/89.4 90.2 96.4

BERTLARGE

with BOOKS + WIKI 13GB 256 1M 90.9/81.8 86.6 93.7
XLNetLARGE

with BOOKS + WIKI 13GB 256 1M 94.0/87.8 88.4 94.4
+ additional data 126GB 2K 500K 94.5/88.8 89.8 95.6

Table 4: Development set results for RoBERTa as we pretrain over more data (16GB → 160GB of text) and pretrain
for longer (100K → 300K → 500K steps). Each row accumulates improvements from the rows above. RoBERTa
matches the architecture and training objective of BERTLARGE . Results for BERTLARGE and XLNetLARGE are from
Devlin et al. (2019) and Yang et al. (2019), respectively. Complete results on all GLUE tasks can be found in the
Appendix.

Devlin et al. (2019). We pretrain our model using
1024 V100 GPUs for approximately one day.

Results We present our results in Table 4. When
controlling for training data, we observe that
RoBERTa provides a large improvement over the
originally reported BERTLARGE results, reaffirming
the importance of the design choices we explored
in Section 4.

Next, we combine this data with the three ad-
ditional datasets described in Section 3.2. We
train RoBERTa over the combined data with the
same number of training steps as before (100K).
In total, we pretrain over 160GB of text. We ob-
serve further improvements in performance across
all downstream tasks, validating the importance of
data size and diversity in pretraining.9

Finally, we pretrain RoBERTa for significantly
longer, increasing the number of pretraining steps
from 100K to 300K, and then further to 500K. We
again observe significant gains in downstream task
performance, and the 300K and 500K step mod-
els outperform XLNetLARGE across most tasks. We
note that even our longest-trained model does not
appear to overfit our data and would likely benefit
from additional training.

In the rest of the paper, we evaluate our best
RoBERTa model on the three different bench-
marks: GLUE, SQuaD and RACE. Specifically

9Our experiments conflate increases in data size and di-
versity. We leave a more careful analysis of these two dimen-
sions to future work.

we consider RoBERTa trained for 500K steps over
all five of the datasets introduced in Section 3.2.

5.1 GLUE Results

For GLUE we consider two finetuning settings.
In the first setting (single-task, dev) we finetune
RoBERTa separately for each of the GLUE tasks,
using only the training data for the correspond-
ing task. We consider a limited hyperparameter
sweep for each task, with batch sizes ∈ {16, 32}
and learning rates ∈ {1e−5, 2e−5, 3e−5}, with a
linear warmup for the first 6% of steps followed by
a linear decay to 0. We finetune for 10 epochs and
perform early stopping based on each task’s eval-
uation metric on the dev set. The rest of the hyper-
parameters remain the same as during pretraining.
In this setting, we report the median development
set results for each task over five random initial-
izations, without model ensembling.

In the second setting (ensembles, test), we com-
pare RoBERTa to other approaches on the test set
via the GLUE leaderboard. While many submis-
sions to the GLUE leaderboard depend on multi-
task finetuning, our submission depends only on
single-task finetuning. For RTE, STS and MRPC
we found it helpful to finetune starting from the
MNLI single-task model, rather than the baseline
pretrained RoBERTa. We explore a slightly wider
hyperparameter space, described in the Appendix,
and ensemble between 5 and 7 models per task.
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Related work

A Primer in BERTology: What we know about how BERT works

Anna Rogers, Olga Kovaleva, Anna Rumshisky
Department of Computer Science, University of Massachusetts Lowell

Lowell, MA 01854
{arogers, okovalev, arum}@cs.uml.edu

Abstract

Transformer-based models are now widely
used in NLP, but we still do not understand a
lot about their inner workings. This paper de-
scribes what is known to date about the famous
BERT model (Devlin et al., 2019), synthesiz-
ing over 40 analysis studies. We also provide
an overview of the proposed modifications to
the model and its training regime. We then out-
line the directions for further research.

1 Introduction

Since their introduction in 2017, Transformers
(Vaswani et al., 2017) took NLP by storm, of-
fering enhanced parallelization and better model-
ing of long-range dependencies. The best known
Transformer-based model is BERT (Devlin et al.,
2019) which obtained state-of-the-art results in nu-
merous benchmarks, and was integrated in Google
search1, improving an estimated 10% of queries.

While it is clear that BERT and other
Transformer-based models work remarkably well,
it is less clear why, which limits further hypothesis-
driven improvement of the architecture. Unlike
CNNs, the Transformers have little cognitive mo-
tivation, and the size of these models limits our
ability to experiment with pre-training and perform
ablation studies. This explains a large number of
studies over the past year that attempted to under-
stand the reasons behind BERT’s performance.

This paper provides an overview of what has
been learned to date, highlighting the questions
which are still unresolved. We focus on the studies
investigating the types of knowledge learned by
BERT, where this knowledge is represented, how it
is learned, and the methods proposed to improve it.

1https://blog.google/products/search/
search-language-understanding-bert

2 Overview of BERT architecture

Fundamentally, BERT is a stack of Transformer
encoder layers (Vaswani et al., 2017) which consist
of multiple “heads”, i.e., fully-connected neural
networks augmented with a self-attention mecha-
nism. For every input token in a sequence, each
head computes key, value and query vectors, which
are used to create a weighted representation. The
outputs of all heads in the same layer are combined
and run through a fully-connected layer. Each layer
is wrapped with a skip connection and layer nor-
malization is applied after it.

The conventional workflow for BERT consists
of two stages: pre-training and fine-tuning. Pre-
training uses two semi-supervised tasks: masked
language modeling (MLM, prediction of randomly
masked input tokens) and next sentence prediction
(NSP, predicting if two input sentences are adjacent
to each other). In fine-tuning for downstream ap-
plications, one or more fully-connected layers are
typically added on top of the final encoder layer.

The input representations are computed as fol-

Figure 1: BERT fine-tuning (Devlin et al., 2019).
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1. Overview: Resources and guiding insights

2. ELMo: Embeddings from Language Models

3. Transformers

4. BERT: Bidirectional Encoder Representations from
Transformers

5. RoBERTa: Robustly optimized BERT approach

6. ELECTRA: Efficiently Learning an Encoder that Classifies
Token Replacements Accurately

7. XLNet

8. contextualreps.ipynb: Easy ways to bring ELMo and
BERT into your project

36 / 64



Overview ELMo Transformers BERT RoBERTa ELECTRA XLNet contextualreps.ipynb

Addressing the known limitations with BERT

1. Devlin et al. (2019:§5): admirably detailed but still
partial ablation studies and optimization studies.

2. Devlin et al. (2019): “The first [downside] is that we are
creating a mismatch between pre-training and
fine-tuning, since the [MASK] token is never seen during
fine-tuning.”

3. Devlin et al. (2019): “The second downside of using an
MLM is that only 15% of tokens are predicted in each
batch”

4. Yang et al. (2019): “BERT assumes the predicted tokens
are independent of each other given the unmasked
tokens, which is oversimplified as high-order, long-range
dependency is prevalent in natural language”
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Core model structure (Clark et al. 2019)
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Generator/Discriminator relationships

Where Generator and Discriminator are the same size, they
can share Transformer parameters, and more sharing is
better. However, the best results come from having a
Generator that is small compared to the Discriminator:

Published as a conference paper at ICLR 2020

Figure 3: Left: GLUE scores for different generator/discriminator sizes (number of hidden units).
Interestingly, having a generator smaller than the discriminator improves results. Right: Comparison
of different training algorithms. As our focus is on efficiency, the x-axis shows FLOPs rather than
train steps (e.g., ELECTRA is trained for fewer steps than BERT because it includes the generator).

tied token embeddings because masked language modeling is particularly effective at learning these
representations: while the discriminator only updates tokens that are present in the input or are
sampled by the generator, the generator’s softmax over the vocabulary densely updates all token
embeddings. On the other hand, tying all encoder weights caused little improvement while incurring
the significant disadvantage of requiring the generator and discriminator to be the same size. Based
on these findings, we use tied embeddings for further experiments in this paper.

Smaller Generators If the generator and discriminator are the same size, training ELECTRA
would take around twice as much compute per step as training only with masked language mod-
eling. We suggest using a smaller generator to reduce this factor. Specifically, we make models
smaller by decreasing the layer sizes while keeping the other hyperparameters constant. We also
explore using an extremely simple “unigram” generator that samples fake tokens according their
frequency in the train corpus. GLUE scores for differently-sized generators and discriminators are
shown in the left of Figure 3. All models are trained for 500k steps, which puts the smaller gen-
erators at a disadvantage in terms of compute because they require less compute per training step.
Nevertheless, we find that models work best with generators 1/4-1/2 the size of the discriminator. We
speculate that having too strong of a generator may pose a too-challenging task for the discriminator,
preventing it from learning as effectively. In particular, the discriminator may have to use many of
its parameters modeling the generator rather than the actual data distribution. Further experiments
in this paper use the best generator size found for the given discriminator size.

Training Algorithms Lastly, we explore other training algorithms for ELECTRA, although these
did not end up improving results. The proposed training objective jointly trains the generator and
discriminator. We experiment with instead using the following two-stage training procedure:

1. Train only the generator with LMLM for n steps.
2. Initialize the weights of the discriminator with the weights of the generator. Then train the

discriminator with LDisc for n steps, keeping the generator’s weights frozen.

Note that the weight initialization in this procedure requires having the same size for the generator
and discriminator. We found that without the weight initialization the discriminator would some-
times fail to learn at all beyond the majority class, perhaps because the generator started so far ahead
of the discriminator. Joint training on the other hand naturally provides a curriculum for the dis-
criminator where the generator starts off weak but gets better throughout training. We also explored
training the generator adversarially as in a GAN, using reinforcement learning to accommodate the
discrete operations of sampling from the generator. See Appendix F for details.

Results are shown in the right of Figure 3. During two-stage training, downstream task performance
notably improves after the switch from the generative to the discriminative objective, but does not
end up outscoring joint training. Although still outperforming BERT, we found adversarial training
to underperform maximum-likelihood training. Further analysis suggests the gap is caused by two

5
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Efficiency

Published as a conference paper at ICLR 2020

Figure 3: Left: GLUE scores for different generator/discriminator sizes (number of hidden units).
Interestingly, having a generator smaller than the discriminator improves results. Right: Comparison
of different training algorithms. As our focus is on efficiency, the x-axis shows FLOPs rather than
train steps (e.g., ELECTRA is trained for fewer steps than BERT because it includes the generator).

tied token embeddings because masked language modeling is particularly effective at learning these
representations: while the discriminator only updates tokens that are present in the input or are
sampled by the generator, the generator’s softmax over the vocabulary densely updates all token
embeddings. On the other hand, tying all encoder weights caused little improvement while incurring
the significant disadvantage of requiring the generator and discriminator to be the same size. Based
on these findings, we use tied embeddings for further experiments in this paper.

Smaller Generators If the generator and discriminator are the same size, training ELECTRA
would take around twice as much compute per step as training only with masked language mod-
eling. We suggest using a smaller generator to reduce this factor. Specifically, we make models
smaller by decreasing the layer sizes while keeping the other hyperparameters constant. We also
explore using an extremely simple “unigram” generator that samples fake tokens according their
frequency in the train corpus. GLUE scores for differently-sized generators and discriminators are
shown in the left of Figure 3. All models are trained for 500k steps, which puts the smaller gen-
erators at a disadvantage in terms of compute because they require less compute per training step.
Nevertheless, we find that models work best with generators 1/4-1/2 the size of the discriminator. We
speculate that having too strong of a generator may pose a too-challenging task for the discriminator,
preventing it from learning as effectively. In particular, the discriminator may have to use many of
its parameters modeling the generator rather than the actual data distribution. Further experiments
in this paper use the best generator size found for the given discriminator size.

Training Algorithms Lastly, we explore other training algorithms for ELECTRA, although these
did not end up improving results. The proposed training objective jointly trains the generator and
discriminator. We experiment with instead using the following two-stage training procedure:

1. Train only the generator with LMLM for n steps.
2. Initialize the weights of the discriminator with the weights of the generator. Then train the

discriminator with LDisc for n steps, keeping the generator’s weights frozen.

Note that the weight initialization in this procedure requires having the same size for the generator
and discriminator. We found that without the weight initialization the discriminator would some-
times fail to learn at all beyond the majority class, perhaps because the generator started so far ahead
of the discriminator. Joint training on the other hand naturally provides a curriculum for the dis-
criminator where the generator starts off weak but gets better throughout training. We also explored
training the generator adversarially as in a GAN, using reinforcement learning to accommodate the
discrete operations of sampling from the generator. See Appendix F for details.

Results are shown in the right of Figure 3. During two-stage training, downstream task performance
notably improves after the switch from the generative to the discriminative objective, but does not
end up outscoring joint training. Although still outperforming BERT, we found adversarial training
to underperform maximum-likelihood training. Further analysis suggests the gap is caused by two
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ELECTRA efficiency analyses

Model GLUE score

ELECTRA 85.0
All-tokens MLM 84.3

Replace MLM 82.4
ELECTRA 15% 82.4

BERT 82.2
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ELECTRA model releases

Available from the project site:

Model Layers Hidden Size Params GLUE test

Small 12 256 14M 77.4
Base 12 768 110M 82.7
Large 24 1024 335M 85.2

‘Small’ is the model designed to be “quickly trained on a
single GPU”.
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Addressing the known limitations with BERT

1. Devlin et al. (2019:§5): admirably detailed but still
partial ablation studies and optimization studies.

2. Devlin et al. (2019): “The first [downside] is that we are
creating a mismatch between pre-training and
fine-tuning, since the [MASK] token is never seen during
fine-tuning.”

3. Devlin et al. (2019): “The second downside of using an
MLM is that only 15% of tokens are predicted in each
batch”

4. Yang et al. (2019): “BERT assumes the predicted tokens
are independent of each other given the unmasked
tokens, which is oversimplified as high-order, long-range
dependency is prevalent in natural language”
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The two objective functions

For vocabulary V, sequence x = [x1, . . . ,xT ], and word-level
embedding e:

Language model

max
θ

T
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log
exp

�

e(xt)>hθ(x1:t−1)
�

∑

x′∈V exp
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for RNN parameters hθ.

BERT

max
θ

T
∑

t=1

mt log
exp

�

e(xt)>Hθ(x̂)t
�

∑

x′∈V exp
�

e(x′)>Hθ(x̂)t
�

for Transformer parameters Hθ, with mt = 1 if token t was
masked, else 0.
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XLNet permutation orders
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Lack of sensitivity to the target position
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Figure 5: A detailed illustration of the content stream of the proposed objective with both the joint
view and split views based on a length-4 sequence under the factorization order [3, 2, 4, 1].
Note that if we ignore the query representation, the computation in this figure is simply the standard
self-attention, though with a particular attention mask.
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Figure 6: A detailed illustration of the query stream of the proposed objective with both the joint
view and split views based on a length-4 sequence under the factorization order [3, 2, 4, 1].
The dash arrows indicate that the query stream cannot access the token (content) at the same position,
but only the location information.
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Figure 5: A detailed illustration of the content stream of the proposed objective with both the joint
view and split views based on a length-4 sequence under the factorization order [3, 2, 4, 1].
Note that if we ignore the query representation, the computation in this figure is simply the standard
self-attention, though with a particular attention mask.
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XLNet model releases

From https://github.com/zihangdai/xlnet:

Model Layers Hidden Size Heads

Large, Cased 24 1024 16
Base, Cased 12 768 12

See also https://huggingface.co/models?search=xlnet
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Conditional dependencies

For sampled permutation order [is, a, city, New, York] and
prediction targets {New, York}:

we follow the two-segment data format, XLNet-Large does not use the objective of next sentence
prediction [10] as it does not show consistent improvement in our ablation study (see Section 3.4).

Relative Segment Encodings Architecturally, different from BERT that adds an absolute segment
embedding to the word embedding at each position, we extend the idea of relative encodings from
Transformer-XL to also encode the segments. Given a pair of positions i and j in the sequence, if
i and j are from the same segment, we use a segment encoding sij = s+ or otherwise sij = s�,
where s+ and s� are learnable model parameters for each attention head. In other words, we only
consider whether the two positions are within the same segment, as opposed to considering which
specific segments they are from. This is consistent with the core idea of relative encodings; i.e., only
modeling the relationships between positions. When i attends to j, the segment encoding sij is used
to compute an attention weight aij = (qi + b)>sij , where qi is the query vector as in a standard
attention operation and b is a learnable head-specific bias vector. Finally, the value aij is added to
the normal attention weight. There are two benefits of using relative segment encodings. First, the
inductive bias of relative encodings improves generalization [9]. Second, it opens the possibility of
finetuning on tasks that have more than two input segments, which is not possible using absolute
segment encodings.

2.6 Discussion

Comparing Eq. (2) and (5), we observe that both BERT and XLNet perform partial prediction, i.e.,
only predicting a subset of tokens in the sequence. This is a necessary choice for BERT because if all
tokens are masked, it is impossible to make any meaningful predictions. In addition, for both BERT
and XLNet, partial prediction plays a role of reducing optimization difficulty by only predicting
tokens with sufficient context. However, the independence assumption discussed in Section 2.1
disables BERT to model dependency between targets.

To better understand the difference, let’s consider a concrete example [New, York, is, a, city]. Suppose
both BERT and XLNet select the two tokens [New, York] as the prediction targets and maximize
log p(New York | is a city). Also suppose that XLNet samples the factorization order [is, a, city,
New, York]. In this case, BERT and XLNet respectively reduce to the following objectives:

JBERT = log p(New | is a city) + log p(York | is a city),

JXLNet = log p(New | is a city) + log p(York | New, is a city).

Notice that XLNet is able to capture the dependency between the pair (New, York), which is omitted
by BERT. Although in this example, BERT learns some dependency pairs such as (New, city) and
(York, city), it is obvious that XLNet always learns more dependency pairs given the same target and
contains “denser” effective training signals.

For more formal analysis and further discussion, please refer to Appendix A.5.

3 Experiments

3.1 Pretraining and Implementation

Following BERT [10], we use the BooksCorpus [40] and English Wikipedia as part of our pretraining
data, which have 13GB plain text combined. In addition, we include Giga5 (16GB text) [26],
ClueWeb 2012-B (extended from [5]), and Common Crawl [6] for pretraining. We use heuristics
to aggressively filter out short or low-quality articles for ClueWeb 2012-B and Common Crawl,
which results in 19GB and 110GB text respectively. After tokenization with SentencePiece [17], we
obtain 2.78B, 1.09B, 4.75B, 4.30B, and 19.97B subword pieces for Wikipedia, BooksCorpus, Giga5,
ClueWeb, and Common Crawl respectively, which are 32.89B in total.

Our largest model XLNet-Large has the same architecture hyperparameters as BERT-Large, which
results in a similar model size. During pretraining, we always use a full sequence length of 512.
Firstly, to provide a fair comparison with BERT (section 3.2), we also trained XLNet-Large-wikibooks
on BooksCorpus and Wikipedia only, where we reuse all pretraining hyper-parameters as in the
original BERT. Then, we scale up the training of XLNet-Large by using all the datasets described
above. Specifically, we train on 512 TPU v3 chips for 500K steps with an Adam weight decay
optimizer, linear learning rate decay, and a batch size of 8192, which takes about 5.5 days. It was

6
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contextualreps.ipynb

1. Overview: Resources and guiding insights

2. ELMo: Embeddings from Language Models

3. Transformers

4. BERT: Bidirectional Encoder Representations from
Transformers

5. RoBERTa: Robustly optimized BERT approach

6. ELECTRA: Efficiently Learning an Encoder that Classifies
Token Replacements Accurately

7. XLNet

8. contextualreps.ipynb: Easy ways to bring ELMo and
BERT into your project
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Guiding idea

1. Your existing architecture can benefit from contextual
representations.

2. contextualreps.ipynb shows you how to bring in ELMo
and BERT representations:
É Simple featurization
É Fine-tuning

3. By extending existing PyTorch modules for this course,
you can create customized fine-tuning models with just a
few lines of code.

4. (This is possible only because of the amazing work that
the Hugging Face and AllenNLP groups have done.)!
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Standard RNN dataset preparation

Examples
[a, b, a]
[b, c]
⇓

Indices
[1, 2, 1]
[2, 3]
⇓

Vectors

h

[−0.42 0.10 0.12], [−0.16 −0.21 0.29], [−0.42 0.10 0.12]
i

h

[−0.16 −0.21 0.29], [−0.26 0.31 0.37]
i

Embedding

1 −0.42 0.10 0.12
2 −0.16 −0.21 0.29
3 −0.26 0.31 0.37
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RNN contextual representation inputs

Examples
[a, b, a]
[b, c]
⇓

Vectors

h

[−0.41 −0.08 0.27], [0.17 −0.22 0.78][−0.46 0.24 0.12]
i

h

[−0.02 −0.56 0.11][−0.45 0.43 0.32]
i
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Code snippet: ELMo RNN inputs
2HKQn72�im`2b

J�`+? kd- kyky

(R), 7`QK �HH2MMHTX+QKK�M/bX2HKQ BKTQ`i 1HKQ1K#2//2`
7`QK iQ`+?n`MMn+H�bbB7B2` BKTQ`i hQ`+?_LL*H�bbB7B2`
BKTQ`i Qb- bbi

(k), bj4]?iiTb,ff�HH2MMHTXbjX�K�xQM�rbX+QKfKQ/2Hbf2HKQfkt9yNen8Rknky93+MMnkt?B;?r�vf]
QTiBQMbn7BH2 4 bj Y ]2HKQnkt9yNen8Rknky93+MMnkt?B;?r�vnQTiBQMbXDbQM]
r2B;?ibn7BH2 4 bj Y ]2HKQnkt9yNen8Rknky93+MMnkt?B;?r�vnr2B;?ibX?/78]

(j), aahn>PJ1 4 QbXT�i?XDQBMU]/�i�]- ]i`22b]V

(9), 2HKQn2K#2//2` 4 1HKQ1K#2//2`UQTiBQMbn7BH2- r2B;?ibn7BH2V

(8), /27 2HKQnb2Mi2M+2nT?BUi`22V,
p2+b 4 2HKQn2K#2//2`X2K#2/nb2Mi2M+2Ui`22XH2�p2bUVV
`2im`M p2+b(@R)

(e), /27 7BinT`272�im`Bx2/n`MMUs- vV,
KQ/ 4 hQ`+?_LL*H�bbB7B2`U

pQ+�#4()-
K�tnBi2`48y-
mb2n2K#2//BM;46�Hb2V

KQ/X7BiUs- vV
`2im`M KQ/

(d), n 4 bbiX2tT2`BK2MiU
aahn>PJ1-
2HKQnb2Mi2M+2nT?B-
7BinT`272�im`Bx2/n`MM-
i`�BMn`2�/2`4bbiXi`�BMn`2�/2`-
�bb2bbn`2�/2`4bbiX/2pn`2�/2`-
+H�bbn7mM+4bbiXi2`M�`vn+H�bbn7mM+-
p2+iQ`Bx246�Hb2V

R
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Code snippet: BERT RNN inputs
#2`in72�im`2bn`MM

J�`+? kd- kyky

(R), BKTQ`i iQ`+?
7`QK iQ`+?n`MMn+H�bbB7B2` BKTQ`i hQ`+?_LL*H�bbB7B2`
7`QK i`�Mb7Q`K2`b BKTQ`i "2`iJQ/2H- "2`ihQF2MBx2`
BKTQ`i Qb- bbi

(k), aahn>PJ1 4 QbXT�i?XDQBMU]/�i�]- ]i`22b]V

(j), ?7nr2B;?ibnM�K2 4 ^#2`i@#�b2@+�b2/^

(9), ?7niQF2MBx2` 4 "2`ihQF2MBx2`X7`QKnT`2i`�BM2/U?7nr2B;?ibnM�K2V

(8), ?7nKQ/2H 4 "2`iJQ/2HX7`QKnT`2i`�BM2/U?7nr2B;?ibnM�K2V

(e), /27 ?m;;BM;n7�+2n#2`inT?BUi`22V,
b 4 ] ]XDQBMUi`22XH2�p2bUVV
BMTminB/b 4 ?7niQF2MBx2`X2M+Q/2Ub- �//nbT2+B�HniQF2Mb4h`m2V
s 4 iQ`+?Xi2MbQ`U(BMTminB/b)V
rBi? iQ`+?XMQn;`�/UV,

7BM�Hn?B//2Mnbi�i2b- +HbnQmiTmi 4 ?7nKQ/2HUsV
`2im`M 7BM�Hn?B//2Mnbi�i2bXb[m22x2UyVXMmKTvUV

(d), /27 7BinT`272�im`Bx2/n`MMUs- vV,
KQ/ 4 hQ`+?_LL*H�bbB7B2`U

pQ+�#4()-
K�tnBi2`48y-
mb2n2K#2//BM;46�Hb2V

KQ/X7BiUs- vV
`2im`M KQ/

(3), 2tT2`BK2Mi 4 bbiX2tT2`BK2MiU
aahn>PJ1-
?m;;BM;n7�+2n#2`inT?B-
7BinT`272�im`Bx2/n`MM-
i`�BMn`2�/2`4bbiXi`�BMn`2�/2`-
�bb2bbn`2�/2`4bbiX/2pn`2�/2`-
+H�bbn7mM+4bbiXi2`M�`vn+H�bbn7mM+-
p2+iQ`Bx246�Hb2V O S�bb BM i?2 "1_h ?B//2M bi�i2b /B`2+iHv5

R
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Code snippet: ELMo fine-tuning with AllenNLP
2HKQn}M2imMBM;

J�`+? kd- kyky

(R), 7`QK �HH2MMHTXKQ/mH2bX2HKQ BKTQ`i 1HKQ- #�i+?niQnB/b
BKTQ`i iQ`+?
BKTQ`i iQ`+?XMM �b MM
7`QK iQ`+?n`MMn+H�bbB7B2` BKTQ`i hQ`+?_LL*H�bbB7B2`- hQ`+?_LL*H�bbB7B2`JQ/2H
BKTQ`i Qb- bbi

(k), bj4]?iiTb,ff�HH2MMHTXbjX�K�xQM�rbX+QKfKQ/2Hbf2HKQfkt9yNen8Rknky93+MMnkt?B;?r�vf]
QTiBQMbn7BH2 4 bj Y ]2HKQnkt9yNen8Rknky93+MMnkt?B;?r�vnQTiBQMbXDbQM]
r2B;?ibn7BH2 4 bj Y ]2HKQnkt9yNen8Rknky93+MMnkt?B;?r�vnr2B;?ibX?/78]

(j), +H�bb 1HKQ_LL*H�bbB7B2`JQ/2HUhQ`+?_LL*H�bbB7B2`JQ/2HV,
/27 nnBMBinnUb2H7- QTiBQMbn7BH2- r2B;?ibn7BH2-

?B//2Mn/BK- QmiTmin/BK- #B/B`2+iBQM�H- /2pB+2V,
bmT2`UVXnnBMBinnUpQ+�#nbBx24y-

2K#2/n/BK4Ryk9- O b2H7X2HKQX;2inQmiTmin/BKUV
mb2n2K#2//BM;46�Hb2- 2K#2//BM;4LQM2-
?B//2Mn/BK4?B//2Mn/BK- QmiTmin/BK4QmiTmin/BK-
#B/B`2+iBQM�H4#B/B`2+iBQM�H- /2pB+24/2pB+2V

b2H7XQTiBQMbn7BH2 4 QTiBQMbn7BH2
b2H7Xr2B;?ibn7BH2 4 r2B;?ibn7BH2
b2H7X2HKQ 4 1HKQU

b2H7XQTiBQMbn7BH2-
b2H7Xr2B;?ibn7BH2-
MmKnQmiTmin`2T`2b2Mi�iBQMb4k-
/`QTQmi4yV

/27 7Q`r�`/Ub2H7- s- b2[nH2M;i?bV,
s 4 sXiQUb2H7X/2pB+2- MQMn#HQ+FBM;4h`m2V
`2bmHi 4 b2H7X2HKQUsV
s 4 `2bmHi(^2HKQn`2T`2b2Mi�iBQMb^)(@R)
bi�i2 4 b2H7X`MMn7Q`r�`/Us- b2[nH2M;i?b- b2H7X`MMV
HQ;Bib 4 b2H7X+H�bbB7B2`nH�v2`Ubi�i2V
`2im`M HQ;Bib

( ),

( ),

R
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Code snippet: ELMo fine-tuning with AllenNLP

( ),

( ),

( ),

( ),

(9), +H�bb 1HKQ_LL*H�bbB7B2`UhQ`+?_LL*H�bbB7B2`V,
/27 nnBMBinnUb2H7- QTiBQMbn7BH2- r2B;?ibn7BH2-  �`;b-   Fr�`;bV,

b2H7XQTiBQMbn7BH2 4 QTiBQMbn7BH2
b2H7Xr2B;?ibn7BH2 4 r2B;?ibn7BH2
pQ+�# 4 ()
bmT2`UVXnnBMBinnU

pQ+�#-  �`;b- mb2n2K#2//BM;46�Hb2- 2K#2//BM;4LQM2-   Fr�`;bV

/27 #mBH/n;`�T?Ub2H7V,
2HKQ 4 1HKQ_LL*H�bbB7B2`JQ/2HU

QTiBQMbn7BH24b2H7XQTiBQMbn7BH2-
r2B;?ibn7BH24b2H7Xr2B;?ibn7BH2-
?B//2Mn/BK4b2H7X?B//2Mn/BK-
QmiTmin/BK4b2H7XMn+H�bb2bn-
#B/B`2+iBQM�H4b2H7X#B/B`2+iBQM�H-
/2pB+24b2H7X/2pB+2V

2HKQXi`�BMUV
`2im`M 2HKQ

/27 nT`2T�`2n/�i�b2iUb2H7- sV,
b2[nH2M;i?b 4 (bmKU(R 7Q` r BM 2t B7 rXbmKUV = y)V 7Q` 2t BM s)
`2im`M s- iQ`+?Xi2MbQ`Ub2[nH2M;i?bV

!bi�iB+K2i?Q/
/27 2M+Q/2UsV,

`2im`M #�i+?niQnB/bUsV

(8), KQ/ 4 1HKQ_LL*H�bbB7B2`U
QTiBQMbn7BH2-
r2B;?ibn7BH2-
#�i+?nbBx24Re-
K�tnBi2`4Ry- O JQ`2 Bi2`b BKT`Qp2b i?BM;bX >Qr K�Mv /B/ i?2 1GJQ i2�K /Q\
2i�4yXyyyR-
Hknbi`2M;i?4yXyyyRV

k
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Code: BERT fine-tuning with Hugging Face

#2`in}M2imMBM;

J�`+? kd- kyky

(R), BKTQ`i iQ`+?
BKTQ`i iQ`+?XMM �b MM
7`QK iQ`+?nb?�HHQrnM2m`�Hn+H�bbB7B2` BKTQ`i hQ`+?a?�HHQrL2m`�H*H�bbB7B2`
7`QK i`�Mb7Q`K2`b BKTQ`i "2`iJQ/2H- "2`ihQF2MBx2`

(k), +H�bb >7"2`i*H�bbB7B2`JQ/2HUMMXJQ/mH2V,
/27 nnBMBinnUb2H7- Mn+H�bb2b- r2B;?ibnM�K24^#2`i@#�b2@+�b2/^V,

bmT2`UVXnnBMBinnUV
b2H7XMn+H�bb2b 4 Mn+H�bb2b
b2H7Xr2B;?ibnM�K2 4 r2B;?ibnM�K2
b2H7X#2`i 4 "2`iJQ/2HX7`QKnT`2i`�BM2/Ub2H7Xr2B;?ibnM�K2V
b2H7X?B//2Mn/BK 4 b2H7X#2`iX2K#2//BM;bXrQ`/n2K#2//BM;bX2K#2//BM;n/BK
b2H7Xq 4 MMXGBM2�`Ub2H7X?B//2Mn/BK- b2H7XMn+H�bb2bV

/27 7Q`r�`/Ub2H7- sV,
BM/B+2b 4 s(, - y- , )
BM/B+2b 4 BM/B+2bXHQM;UV
K�bF 4 s(, - R- , )
U7BM�Hn?B//2Mnbi�i2b- +HbnQmiTmiV 4 b2H7X#2`iU

BM/B+2b- �ii2MiBQMnK�bF4K�bFV
`2im`M b2H7XqU+HbnQmiTmiV

( ),

( ),

( ),

( ),

( ),

( ),

( ),

( ),

R
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Code: BERT fine-tuning with Hugging Face

( ),

( ),

( ),

( ),

( ),

(j), +H�bb >7"2`i*H�bbB7B2`UhQ`+?a?�HHQrL2m`�H*H�bbB7B2`V,
/27 nnBMBinnUb2H7- r2B;?ibnM�K2-  �`;b-   Fr�`;bV,

b2H7Xr2B;?ibnM�K2 4 r2B;?ibnM�K2
b2H7XiQF2MBx2` 4 "2`ihQF2MBx2`X7`QKnT`2i`�BM2/Ub2H7Xr2B;?ibnM�K2V
bmT2`UVXnnBMBinnU �`;b-   Fr�`;bV

/27 /27BM2n;`�T?Ub2H7V,
#2`i 4 >7"2`i*H�bbB7B2`JQ/2HU

b2H7XMn+H�bb2bn- r2B;?ibnM�K24b2H7Xr2B;?ibnM�K2V
#2`iXi`�BMUV
`2im`M #2`i

/27 2M+Q/2Ub2H7- s- K�tnH2M;i?4LQM2V,
/�i� 4 b2H7XiQF2MBx2`X#�i+?n2M+Q/2nTHmbU

s-
K�tnH2M;i?4K�tnH2M;i?-
�//nbT2+B�HniQF2Mb4h`m2-
T�/niQnK�tnH2M;i?4h`m2-
`2im`Mn�ii2MiBQMnK�bF4h`m2V

BM/B+2b 4 /�i�(^BMTminB/b^)
K�bF 4 /�i�(^�ii2MiBQMnK�bF^)
`2im`M ((B- K) 7Q` B- K BM xBTUBM/B+2b- K�bFV)

(9), KQ/ 4 >7"2`i*H�bbB7B2`U
^#2`i@#�b2@+�b2/^-
#�i+?nbBx24Re- O *`m+B�Hc H�`;2 #�i+?2b rBHH 2�i mT �HH vQm` K2KQ`v5
K�tnBi2`49-
2i�4yXyyyykV

k
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