Distributed word representations: matrix reweighting

Chris Potts
Stanford Linguistics

CS 244U: Natural language understanding

• Amplify the important, the trustworthy, the unusual; deemphasize the mundane and the quirky.

- Amplify the important, the trustworthy, the unusual; deemphasize the mundane and the quirky.
- Absent a defined objective function, this will remain fuzzy.

- Amplify the important, the trustworthy, the unusual; deemphasize the mundane and the quirky.
- Absent a defined objective function, this will remain fuzzy.
- The intuition behind moving away from raw counts is that frequency is a poor proxy for the above values.

- Amplify the important, the trustworthy, the unusual; deemphasize the mundane and the quirky.
- Absent a defined objective function, this will remain fuzzy.
- The intuition behind moving away from raw counts is that frequency is a poor proxy for the above values.
- So we should ask of each weighting scheme:

- Amplify the important, the trustworthy, the unusual; deemphasize the mundane and the quirky.
- Absent a defined objective function, this will remain fuzzy.
- The intuition behind moving away from raw counts is that frequency is a poor proxy for the above values.
- So we should ask of each weighting scheme:
 - How does it compare to the raw count values?

- Amplify the important, the trustworthy, the unusual; deemphasize the mundane and the quirky.
- Absent a defined objective function, this will remain fuzzy.
- The intuition behind moving away from raw counts is that frequency is a poor proxy for the above values.
- So we should ask of each weighting scheme:
 - How does it compare to the raw count values?
 - How does it compare to the word frequencies?

- Amplify the important, the trustworthy, the unusual; deemphasize the mundane and the quirky.
- Absent a defined objective function, this will remain fuzzy.
- The intuition behind moving away from raw counts is that frequency is a poor proxy for the above values.
- So we should ask of each weighting scheme:
 - How does it compare to the raw count values?
 - How does it compare to the word frequencies?
 - What overall distribution of values does it deliver?

- Amplify the important, the trustworthy, the unusual; deemphasize the mundane and the quirky.
- Absent a defined objective function, this will remain fuzzy.
- The intuition behind moving away from raw counts is that frequency is a poor proxy for the above values.
- So we should ask of each weighting scheme:
 - How does it compare to the raw count values?
 - How does it compare to the word frequencies?
 - What overall distribution of values does it deliver?
- No feature selection based on counts, stopword dictionaries, etc.

Normalization

Definition (L2 norming)

Given a vector u of dimension n, the normalization of u is a vector \hat{u} of dimension n obtained by dividing each element of u by $||u|| = \sqrt{\sum_{i=1}^{n} u_i^2}$.

Definition (Probability distribution)

Given a vector u of dimension n, the probability distribution of u is a vector \hat{u} of dimension n obtained by dividing each element of u by $\sum_{i=1}^{n} u_i$.

Vector L2 (length) normalization

Definition

Given a vector u of dimension n, the normalization of u is a vector \hat{u} of dimension n obtained by dividing each element of u by $||u|| = \sqrt{\sum_{i=1}^{n} u_i^2}$.

4/15

Relative frequencies

	d ₁	d ₂	d ₃	d ₄	d ₅
Α	10	15	0	9	10
В	5	8	1	2	5
С	14	11	0	10	9
D	13	14	10	11	12
(Colu	mns	to P	(w a	1)

Rows to P(d|w) \Rightarrow

		d_1	d_2	d_3	d_4	d_5
)	Α	0.23	0.34	0.00	0.20	0.23
	В	0.24	0.38	0.05	0.10	0.24
	С	0.32	0.25	0.00	0.23	0.20
	D	0.22	0.23	0.17	0.18	0.20

 d1
 d2
 d3
 d4
 d5

 A 0.24 0.31 0.00 0.28 0.28

 B 0.12 0.17 0.09 0.06 0.14

 C 0.33 0.23 0.00 0.31 0.25

D 0.31 0.29 0.91 0.34 0.33

Dangers of prob. values: exaggerated estimates for small counts; comparisons that ignore differences in magnitude

Relative frequencies compared to counts

Raw counts, word x word

Relative frequencies compared to counts

Relative frequency, word x word

Relative frequencies compared to counts

Relative frequency, word x word

Definition

- Term frequency (TF): P(w|d)
 - Inverse document frequency (IDF): $\log \left(\frac{|D|}{|\{d \in D | w \in d\}|} \right)$ (log(0) = 0)
- TF-IDF: TF × IDF

Definition

- Term frequency (TF): P(w|d)
- Inverse document frequency (IDF): $\log\left(\frac{|D|}{\left|\{d\in D|w\in d\}\right|}\right)$ (log(0) = 0)
- TF-IDF: TF × IDF

	d ₁	d ₂	d ₃	d ₄
Α	10	10	10	10
В	10	10	10	0
C	10	10	0	0
D	0	0	0	1

Definition

- Term frequency (TF): P(w|d)
- Inverse document frequency (IDF): $\log\left(\frac{|D|}{|\{d\in D|w\in d\}|}\right)$ (log(0) = 0)
- TF-IDF: TF × IDF

Definition

- Term frequency (TF): P(w|d)
 - Inverse document frequency (IDF): $\log\left(\frac{|D|}{|\{d\in D|w\in d\}|}\right)$ (log(0) = 0)
- TF-IDF: TF × IDF

		d_1	d_2	d_3	d_4		
	Α	10	10	10	10		
	В	10	10	10	0		
	C	10	10	0	0		
	D	0	0	0	1		
			\downarrow				
			TF				
	d	1	d_2	d	3	d_4	
Α	0.3	3 0	.33	0.50) ().91	
В	0.3	3 0	.33	0.50	0 (0.00	
С	0.3		.33	0.0		0.00	
D	0.00	n n	00	0.00	າ (า กด	

	IDF
A	0.00
B	0.29
C	0.69
D	1.39

Definition

- Term frequency (TF): P(w|d)
- Inverse document frequency (IDF): $\log \left(\frac{|D|}{|\{d \in D | w \in d\}|} \right)$ (log(0) = 0)
- TF-IDF: TF × IDF

	d ₁	d ₂	d ₃	d ₄			IDF
A B C D				10 0 0 1	\Rightarrow	A B C D	0.00 0.29 0.69 1.39
		\downarrow			·		
							- 10-

		TF		
	d_1	d_2	d_3	d_4
Α	0.33	0.33	0.50	0.91
В	0.33	0.33	0.50	0.00
С	0.33	0.33	0.00	0.00
D	0.00	0.00	0.00	0.09

		TF-I	DF	
	d-	d_2	d_3	d_4
A	0.00	0.00	0.00	0.00
В	0.10	0.10	0.14	0.00
C	0.23	3 0.23	0.00	0.00
D	0.00	0.00	0.00	0.13

IDF values

TF-IDF values

Selected TF-IDF values

Raw counts, word x doc

TF-IDF, word x doc

TF-IDF, word x doc

Definition (PMI)

$$\log\left(\frac{P(w,d)}{P(w)P(d)}\right)$$
 (assume $\log(0) = 0$)

Definition (PMI)

$$\log\left(\frac{P(w,d)}{P(w)P(d)}\right) \qquad \text{(assume log(0) = 0)}$$

	d ₁	d ₂	d ₃	d ₄
Α	10	10	10	10
В	10	10	10	0
С	10	10	0	0
D	0	0	0	1

Definition (PMI)

$$\log\left(\frac{P(w,d)}{P(w)P(d)}\right) \qquad \text{(assume log(0) = 0)}$$

10 10	10	10	10
10	40		_
10	10	10	0
10	10	0	0
0	0	0	1

Definition (PMI)

$$\log\left(\frac{P(w,d)}{P(w)P(d)}\right) \qquad \text{(assume log(0) = 0)}$$

	d ₁	d ₂	d ₃	d ₄
Α	10	10	10	10
В	10	10	10	0
С	10	10	0	0
D	0	0	0	1

		\				
	d_1	d ₂	d ₃	d ₄		
Α	-0.28	-0.28	0.13	0.73		
В	0.01	0.01	0.42	0.00		
С	0.42	0.42	0.00	0.00		
D	0.00	0.00	0.00	2.11		

PMI

PMI values

Selected PMI values

Raw counts, word x word

PMI, word x word

PMI, word x word

PMI variants

Others

PMI variants

Definition (Lapacian smoothing)

Add a constant amount to all the counts.

PMI variants

Definition (Lapacian smoothing)

Add a constant amount to all the counts.

Definition (Contextual discounting)

For a matrix with *m* rows and *n* columns:

$$\mathsf{newpmi}_{ij} = \mathsf{pmi}_{ij} \times \frac{f_{ij}}{f_{ij} + 1} \times \frac{\min(\sum_{k=1}^{m} f_{kj}, \sum_{k=1}^{n} f_{ik})}{\min(\sum_{k=1}^{m} f_{kj}, \sum_{k=1}^{n} f_{ik}) + 1}$$

Definition (Lapacian smoothing)

Add a constant amount to all the counts.

Definition (Contextual discounting)

For a matrix with m rows and n columns:

$$\mathsf{newpmi}_{ij} = \mathsf{pmi}_{ij} \times \frac{f_{ij}}{f_{ij} + 1} \times \frac{\min(\sum_{k=1}^{m} f_{kj}, \sum_{k=1}^{n} f_{ik})}{\min(\sum_{k=1}^{m} f_{kj}, \sum_{k=1}^{n} f_{ik}) + 1}$$

Definition (Positive PMI)

PPMI(w, d) = max(0, PMI(w, d))

Other weighting/normalization schemes

Other weighting/normalization schemes

• Expected values: $expected_{ij} = \sum_{r} observed_{ir} \times \left(\frac{\sum_{k} observed_{kj}}{\sum_{kr} observed_{kr}}\right)$

Others

Other weighting/normalization schemes

• Expected values: $expected_{ij} = \sum_{r} observed_{ir} \times \left(\frac{\sum_{k} observed_{kj}}{\sum_{kr} observed_{kr}}\right)$

• t-test:
$$\frac{P(w,d)-P(w)P(d)}{\sqrt{P(w)P(d)}}$$

Goals

Others

- Expected values: expected_{ij} = \sum_r observed_{ir} $\times \left(\frac{\sum_k \text{observed}_{kj}}{\sum_i \text{observed}_{kj}}\right)$
- t-test: $\frac{P(w,d)-P(w)P(d)}{\sqrt{P(w)P(d)}}$
- TF-IDF variants that seek to be sensitive to the empirical distribution of words (For discussion and references, see Manning and Schütze's textbook Foundations of Statistical Natural Language Processing, p. 553)

Others

Other weighting/normalization schemes

- Expected values: expected_{ij} = \sum_r observed_{ir} $\times \left(\frac{\sum_k \text{observed}_{kj}}{\sum_i \text{observed}_{kj}}\right)$
- t-test: $\frac{P(w,d)-P(w)P(d)}{\sqrt{P(w)P(d)}}$

Goals

- TF-IDF variants that seek to be sensitive to the empirical distribution of words (For discussion and references, see Manning and Schütze's textbook Foundations of Statistical Natural Language Processing, p. 553)
- Pairwise distance matrices:

	d_x	d_y
Α	2	4
В	10	15
С	14	10

cosine

	Α	В	С
Α	0	0.008	0.116
В	0.008	0	0.065
С	0.116	0.065	0