# Distributed word representations: matrix reweighting 

Chris Potts<br>Stanford Linguistics

CS 244U: Natural language understanding


## Goal of reweighting and related questions

- Amplify the important, the trustworthy, the unusual; deemphasize the mundane and the quirky.


## Goal of reweighting and related questions

- Amplify the important, the trustworthy, the unusual; deemphasize the mundane and the quirky.
- Absent a defined objective function, this will remain fuzzy.


## Goal of reweighting and related questions

- Amplify the important, the trustworthy, the unusual; deemphasize the mundane and the quirky.
- Absent a defined objective function, this will remain fuzzy.
- The intuition behind moving away from raw counts is that frequency is a poor proxy for the above values.


## Goal of reweighting and related questions

- Amplify the important, the trustworthy, the unusual; deemphasize the mundane and the quirky.
- Absent a defined objective function, this will remain fuzzy.
- The intuition behind moving away from raw counts is that frequency is a poor proxy for the above values.
- So we should ask of each weighting scheme:


## Goal of reweighting and related questions

- Amplify the important, the trustworthy, the unusual; deemphasize the mundane and the quirky.
- Absent a defined objective function, this will remain fuzzy.
- The intuition behind moving away from raw counts is that frequency is a poor proxy for the above values.
- So we should ask of each weighting scheme:
- How does it compare to the raw count values?


## Goal of reweighting and related questions

- Amplify the important, the trustworthy, the unusual; deemphasize the mundane and the quirky.
- Absent a defined objective function, this will remain fuzzy.
- The intuition behind moving away from raw counts is that frequency is a poor proxy for the above values.
- So we should ask of each weighting scheme:
- How does it compare to the raw count values?
- How does it compare to the word frequencies?


## Goal of reweighting and related questions

- Amplify the important, the trustworthy, the unusual; deemphasize the mundane and the quirky.
- Absent a defined objective function, this will remain fuzzy.
- The intuition behind moving away from raw counts is that frequency is a poor proxy for the above values.
- So we should ask of each weighting scheme:
- How does it compare to the raw count values?
- How does it compare to the word frequencies?
- What overall distribution of values does it deliver?


## Goal of reweighting and related questions

- Amplify the important, the trustworthy, the unusual; deemphasize the mundane and the quirky.
- Absent a defined objective function, this will remain fuzzy.
- The intuition behind moving away from raw counts is that frequency is a poor proxy for the above values.
- So we should ask of each weighting scheme:
- How does it compare to the raw count values?
- How does it compare to the word frequencies?
- What overall distribution of values does it deliver?
- No feature selection based on counts, stopword dictionaries, etc.


## Normalization

## Definition (L2 norming)

Given a vector $u$ of dimension $n$, the normalization of $u$ is a vector $\hat{u}$ of dimension $n$ obtained by dividing each element of $u$ by $\|u\|=\sqrt{\sum_{i=1}^{n} u_{i}^{2}}$.

## Definition (Probability distribution)

Given a vector $u$ of dimension $n$, the probability distribution of $u$ is a vector $\hat{u}$ of dimension $n$ obtained by dividing each element of $u$ by $\sum_{i=1}^{n} u_{i}$.

## Vector L2 (length) normalization

## Definition

Given a vector $u$ of dimension $n$, the normalization of $u$ is a vector $\hat{u}$ of dimension $n$ obtained by dividing each element of $u$ by $\|u\|=\sqrt{\sum_{i=1}^{n} u_{i}^{2}}$.

|  | $d_{x}$ | $d_{y}$ |
| ---: | ---: | ---: |
| $A$ | 2 | 4 |
| $B$ | 10 | 15 |
| $C$ | 14 | 10 |

$(10,15)$
.$B$


| 0 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |



## Relative frequencies

|  | $d_{1}$ | $d_{2}$ | $d_{3}$ | $d_{4}$ | $d_{5}$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| $A$ | 10 | 15 | 0 | 9 | 10 |
| $B$ | 5 | 8 | 1 | 2 | 5 |
| $C$ | 14 | 11 | 0 | 10 | 9 |
| $D$ | 13 | 14 | 10 | 11 | 12 |
| Columns to |  |  |  |  |  |
| $\Downarrow(w)$ |  |  |  |  |  |
|  | $d_{1}$ | $d_{2}$ | $d_{3}$ | $d_{4}$ | $d_{5}$ |
| $A$ | 0.24 | 0.31 | 0.00 | 0.28 | 0.28 |
| $B$ | 0.12 | 0.17 | 0.09 | 0.06 | 0.14 |
| $C$ | 0.33 | 0.23 | 0.00 | 0.31 | 0.25 |
| $D$ | 0.31 | 0.29 | 0.91 | 0.34 | 0.33 |

Dangers of prob. values: exaggerated estimates for small counts; comparisons that ignore differences in magnitude

## Relative frequencies compared to counts

Raw counts, word x word


## Relative frequencies compared to counts

Relative frequency, word x word


## Relative frequencies compared to counts

## Relative frequency, word x word



## Term Frequency-Inverse Document Frequency (TF-IDF)

## Definition

For a corpus of documents $D$ :

- Term frequency (TF): $P(w \mid d)$
- Inverse document frequency (IDF): $\log \left(\frac{|D|}{\mid\{d \in D|w \in d|}\right) \quad(\log (0)=0)$
- TF-IDF: TF $\times$ IDF


## Term Frequency-Inverse Document Frequency (TF-IDF)

## Definition

For a corpus of documents $D$ :

- Term frequency (TF): $P(w \mid d)$
- Inverse document frequency (IDF): $\log \left(\frac{|D|}{\mid\{d \in D|w \in d|}\right) \quad(\log (0)=0)$
- TF-IDF: TF $\times$ IDF

|  | $d_{1}$ | $d_{2}$ | $d_{3}$ | $d_{4}$ |
| ---: | ---: | ---: | ---: | ---: |
| $A$ | 10 | 10 | 10 | 10 |
| $B$ | 10 | 10 | 10 | 0 |
| $C$ | 10 | 10 | 0 | 0 |
| $D$ | 0 | 0 | 0 | 1 |

## Term Frequency-Inverse Document Frequency (TF-IDF)

## Definition

For a corpus of documents $D$ :

- Term frequency (TF): $P(w \mid d)$
- Inverse document frequency (IDF): $\log \left(\frac{|D|}{\mid\{d \in D|w \in d|}\right) \quad(\log (0)=0)$
- TF-IDF: TF $\times$ IDF

|  | $d_{1}$ | $d_{2}$ | $d_{3}$ | $d_{4}$ |
| :--- | ---: | ---: | ---: | ---: |
| $A$ | 10 | 10 | 10 | 10 |
| $B$ | 10 | 10 | 10 | 0 |
| $C$ | 10 | 10 | 0 | 0 |
| $D$ | 0 | 0 | 0 | 1 |

## Term Frequency-Inverse Document Frequency (TF-IDF)

## Definition

For a corpus of documents $D$ :

- Term frequency (TF): $P(w \mid d)$
- Inverse document frequency (IDF): $\log \left(\frac{|D|}{\mid\{d \in D|w \in d|}\right) \quad(\log (0)=0)$
- TF-IDF: TF $\times$ IDF



## Term Frequency-Inverse Document Frequency (TF-IDF)

## Definition

For a corpus of documents $D$ :

- Term frequency (TF): $P(w \mid d)$
- Inverse document frequency (IDF): $\log \left(\frac{|D|}{\mid\{d \in D|w \in d|}\right) \quad(\log (0)=0)$
- TF-IDF: TF $\times$ IDF



## IDF values



## TF-IDF values

## Selected TF-IDF values



## TF-IDF compared to counts

## Raw counts, word x doc



## TF-IDF compared to counts

## TF-IDF, word $x$ doc



## TF-IDF compared to counts

## TF-IDF, word x doc



## TF-IDF compared to counts

## TF-IDF, word x doc



## Pointwise Mutual Information (PMI)

## Definition (PMI)

$$
\log \left(\frac{P(w, d)}{P(w) P(d)}\right) \quad(\text { assume } \log (0)=0)
$$

## Pointwise Mutual Information (PMI)

## Definition (PMI)

$$
\log \left(\frac{P(w, d)}{P(w) P(d)}\right) \quad(\text { assume } \log (0)=0)
$$

|  | $d_{1}$ | $d_{2}$ | $d_{3}$ | $d_{4}$ |
| ---: | ---: | ---: | ---: | ---: |
| $A$ | 10 | 10 | 10 | 10 |
| $B$ | 10 | 10 | 10 | 0 |
| $C$ | 10 | 10 | 0 | 0 |
| $D$ | 0 | 0 | 0 | 1 |

## Pointwise Mutual Information (PMI)

## Definition (PMI)

$$
\log \left(\frac{P(w, d)}{P(w) P(d)}\right) \quad(\text { assume } \log (0)=0)
$$

|  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: |
|  | $d_{1}$ | $d_{2}$ | $d_{3}$ | $d_{4}$ |
| $A$ | 10 | 10 | 10 | 10 |
| $B$ | 10 | 10 | 10 | 0 |
| $C$ | 10 | 10 | 0 | 0 |
| $D$ | 0 | 0 | 0 | 1 |

## Pointwise Mutual Information (PMI)

## Definition (PMI)

$$
\log \left(\frac{P(w, d)}{P(w) P(d)}\right) \quad(\text { assume } \log (0)=0)
$$

|  | $d_{1}$ | $d_{2}$ | $d_{3}$ | $d_{4}$ |
| :--- | ---: | ---: | ---: | ---: |
| $A$ | 10 | 10 | 10 | 10 |
| $B$ | 10 | 10 | 10 | 0 |
| $C$ | 10 | 10 | 0 | 0 |
| $D$ | 0 | 0 | 0 | 1 |


|  | $P(w, d)$ |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $A$ | 0.11 | 0.11 | 0.11 | 0.11 | 0.44 |
| $B$ | 0.11 | 0.11 | 0.11 | 0.00 | 0.33 |
| $C$ | 0.11 | 0.11 | 0.00 | 0.00 | 0.22 |
| $D$ | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 |
| $P(d)$ | 0.33 | 0.33 | 0.22 | 0.12 |  |


| PMI |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: |
|  | $\Downarrow$ |  |  |  |
|  | $d_{1}$ | $d_{2}$ | $d_{3}$ | $d_{4}$ |
| $A$ | -0.28 | -0.28 | 0.13 | 0.73 |
| $B$ | 0.01 | 0.01 | 0.42 | 0.00 |
| $C$ | 0.42 | 0.42 | 0.00 | 0.00 |
| $D$ | 0.00 | 0.00 | 0.00 | 2.11 |

## PMI values

## Selected PMI values



## PMI compared to counts

Raw counts, word x word


## PMI compared to counts

## PMI, word x word



## PMI compared to counts

PMI, word $x$ word


## PMI compared to counts

## PMI, word x word



PMI variants

## PMI variants

Definition (Lapacian smoothing)
Add a constant amount to all the counts.

## PMI variants

## Definition (Lapacian smoothing)

Add a constant amount to all the counts.

## Definition (Contextual discounting)

For a matrix with $m$ rows and $n$ columns:

$$
\text { newpmi }_{i j}=\operatorname{pmi}_{i j} \times \frac{f_{i j}}{f_{i j}+1} \times \frac{\min \left(\sum_{k=1}^{m} f_{k j}, \sum_{k=1}^{n} f_{i k}\right)}{\min \left(\sum_{k=1}^{m} f_{k j}, \sum_{k=1}^{n} f_{i k}\right)+1}
$$

## PMI variants

## Definition (Lapacian smoothing)

Add a constant amount to all the counts.

## Definition (Contextual discounting)

For a matrix with $m$ rows and $n$ columns:

$$
\text { newpmi }_{i j}=\operatorname{pmi}_{i j} \times \frac{f_{i j}}{f_{i j}+1} \times \frac{\min \left(\sum_{k=1}^{m} f_{k j}, \sum_{k=1}^{n} f_{i k}\right)}{\min \left(\sum_{k=1}^{m} f_{k j}, \sum_{k=1}^{n} f_{i k}\right)+1}
$$

## Definition (Positive PMI)

$$
\operatorname{PPMI}(w, d)=\max (0, \operatorname{PMI}(w, d))
$$

## Other weighting/normalization schemes

## Other weighting/normalization schemes

- Expected values: expected $_{i j}=\sum_{r}$ observed $_{i r} \times\left(\frac{\sum_{k} \text { observed }_{j i}}{\sum_{k r} \text { observed }_{k r}}\right)$


## Other weighting/normalization schemes

- Expected values: expected $_{i j}=\sum_{r}$ observed $_{i r} \times\left(\frac{\sum_{k} \text { observed }_{k j}}{\sum_{k r} \text { observed }_{k r}}\right)$
- t-test: $\frac{P(w, d)-P(w) P(d)}{\sqrt{P(w) P(d)}}$


## Other weighting/normalization schemes

- Expected values: expected ${ }_{i j}=\sum_{r}$ observed $_{i r} \times\left(\frac{\sum_{k} \text { observed }_{k j}}{\sum_{k r} \text { observed }_{k_{r}}}\right)$
- t-test: $\frac{P(w, d)-P(w) P(d)}{\sqrt{P(w) P(d)}}$
- TF-IDF variants that seek to be sensitive to the empirical distribution of words (For discussion and references, see Manning and Schütze's textbook Foundations of Statistical Natural Language Processing, p. 553)


## Other weighting/normalization schemes

- Expected values: expected ${ }_{i j}=\sum_{r}$ observed $_{i r} \times\left(\frac{\sum_{k} \text { observed }_{j i}}{\sum_{k r} \text { observed }_{k r}}\right)$
- t-test: $\frac{P(w, d)-P(w) P(d)}{\sqrt{P(w) P(d)}}$
- TF-IDF variants that seek to be sensitive to the empirical distribution of words (For discussion and references, see Manning and Schütze's textbook Foundations of Statistical Natural Language Processing, p. 553)
- Pairwise distance matrices:

|  | $d_{x}$ | $d_{y}$ |
| ---: | ---: | ---: |
| $A$ | 2 | 4 |
| $B$ | 10 | 15 |
| $C$ | 14 | 10 |


| $\stackrel{\text { cosine }}{\Rightarrow}$ |  | A | $B$ | C |
| :---: | :---: | :---: | :---: | :---: |
|  | A | 0 | 0.008 | 0.116 |
|  | $B$ | 0.008 | 0 | 0.065 |
|  | C | 0.116 | 0.065 | 0 |

