Distributed word representations: overview

Chris Potts Stanford Linguistics

CS 244U: Natural language understanding

A typical starting point

Upper left corner of a matrix derived from the training portion of this IMDB data release: http://ai.stanford.edu/~amaas/data/sentiment/.

	d1	d2	d3	d4	d5	d6	d7	d8	d9	d10
against	0	0	0	1	0	0	3	2	3	0
age	0	0	0	1	0	3	1	0	4	0
agent	0	0	0	0	0	0	0	0	0	0
ages	0	0	0	0	0	2	0	0	0	0
ago	0	0	0	2	0	0	0	0	3	0
agree	0	1	0	0	0	0	0	0	0	0
ahead	0	0	0	1	0	0	0	0	0	0
ain't	0	0	0	0	0	0	0	0	0	0
air	0	0	0	0	0	0	0	0	0	0
aka	0	0	0	1	0	0	0	0	0	0

A typical starting point	Guiding hypotheses	Questions	Some matrix designs	Design choices

John Rupert Firth, (1957, 'A synopsis of linguistic theory')

"You shall know a word by the company it keeps."

John Rupert Firth, (1957, 'A synopsis of linguistic theory')

"You shall know a word by the company it keeps."

Firth (1957, 'A synopsis of linguistic theory')

"the complete meaning of a word is always contextual, and no study of meaning apart from context can be taken seriously."

John Rupert Firth, (1957, 'A synopsis of linguistic theory')

"You shall know a word by the company it keeps."

Firth (1957, 'A synopsis of linguistic theory')

"the complete meaning of a word is always contextual, and no study of meaning apart from context can be taken seriously."

Zellig Harris (1954, 'Distributional structure')

"distributional statements can cover all of the material of a language without requiring support from other types of information."

John Rupert Firth, (1957, 'A synopsis of linguistic theory')

"You shall know a word by the company it keeps."

Firth (1957, 'A synopsis of linguistic theory')

"the complete meaning of a word is always contextual, and no study of meaning apart from context can be taken seriously."

Zellig Harris (1954, 'Distributional structure')

"distributional statements can cover all of the material of a language without requiring support from other types of information."

Turney and Pantel (2010, 'From frequency to meaning')

"If units of text have similar vectors in a text frequency matrix, then they tend to have similar meanings."

General questions for vector-space modelers

For a word \times document matrix:

- How do the rows relate to each other?
- · How do the columns relate to each other?
- For a given group of documents D, which words epitomize D?
- For a given a group of words *W*, which documents epitomize *W* (IR)?

Some matrix designs

00000

Design choices

Some matrix designs

Word \times document

Upper left corner of a matrix derived from the training portion of this IMDB data release: http://ai.stanford.edu/~amaas/data/sentiment/.

	d1	d2	d3	d4	d5	d6	d7	d8	d9	d10
against	0	0	0	1	0	0	3	2	3	0
age	0	0	0	1	0	3	1	0	4	0
agent	0	0	0	0	0	0	0	0	0	0
ages	0	0	0	0	0	2	0	0	0	0
ago	0	0	0	2	0	0	0	0	3	0
agree	0	1	0	0	0	0	0	0	0	0
ahead	0	0	0	1	0	0	0	0	0	0
ain't	0	0	0	0	0	0	0	0	0	0
air	0	0	0	0	0	0	0	0	0	0
aka	0	0	0	1	0	0	0	0	0	0

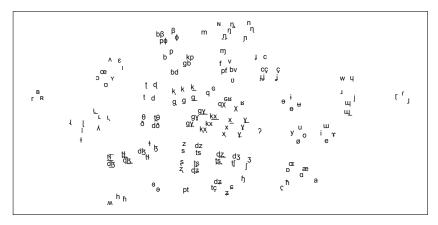
Word \times word

Upper left corner of a matrix derived from the training portion of this IMDB data release: http://ai.stanford.edu/~amaas/data/sentiment/.

	against	age	agent	ages	ago	agree	ahead	ain't	air	aka	al
against	2003	90	39	20	88	57	33	15	58	22	24
age	90	1492	14	39	71	38	12	4	18	4	39
agent	39	14	507	2	21	5	10	3	9	8	25
ages	20	39	2	290	32	5	4	3	6	1	6
ago	88	71	21	32	1164	37	25	11	34	11	38
agree	57	38	5	5	37	627	12	2	16	19	14
ahead	33	12	10	4	25	12	429	4	12	10	7
ain't	15	4	3	3	11	2	4	166	0	3	3
air	58	18	9	6	34	16	12	0	746	5	11
aka	22	4	8	1	11	19	10	3	5	261	9
al	24	39	25	6	38	14	7	3	11	9	861

Word \times discourse context

Upper left corner of an interjection \times dialog-act tag matrix derived from the Switchboard Dialog Act Corpus:


	%	+	^2	^g	^h	^q	aa
absolutely	0	2	0	0	0	0	95
actually	17	12	0	0	1	0	4
anyway	23	14	0	0	0	0	0
boy	5	3	1	0	5	2	1
bye	0	1	0	0	0	0	0
bye-bye	0	0	0	0	0	0	0
dear	0	0	0	0	1	0	0
definitely	0	2	0	0	0	0	56
exactly	2	6	1	0	0	0	294
gee	0	3	0	0	2	1	1
goodness	1	0	0	0	2	0	0

Derived from http://www.linguistics.ucla.edu/people/hayes/120a/. Dimensions: (141×28) .

	syllabic	stress	long	consonantal	sonorant	continuant	delayed.release	approximant	tap	trill	
σ	1	-1	-1	-1	1	1	0	1	-1	-1	
α	1	-1	-1	-1	1	1	0	1	-1	-1	
Œ	1	-1	-1	-1	1	1	0	1	-1	-1	
\mathbf{a}	1	-1	-1	-1	1	1	0	1	-1	-1	
æ	1	-1	-1	-1	1	1	0	1	-1	-1	
Λ	1	-1	-1	-1	1	1	0	1	-1	-1	
С	1	-1	-1	-1	1	1	0	1	-1	-1	
0	1	-1	-1	-1	1	1	0	1	-1	-1	
y	1	-1	-1	-1	1	1	0	1	-1	-1	
ə	1	-1	-1	-1	1	1	0	1	-1	-1	
÷					:						

Phonological segment × feature values

Derived from http://www.linguistics.ucla.edu/people/hayes/120a/. Dimensions: (141×28) .

A typical starting point	Guiding hypotheses	Questions	Some matrix designs ○○○○●	Design choices

Other designs

- word × dependency rel.
- word × syntactic context
- adj. × modified noun
- word × search query
- person × product
- word × person
- word × word × pattern
- verb × subject × object
 - ÷

Matrix type

 $\label{eq:word} \begin{array}{l} \mathsf{word} \times \mathsf{document} \\ \mathsf{word} \times \mathsf{word} \\ \mathsf{word} \times \mathsf{search} \ \mathsf{proximity} \\ \mathsf{adj.} \times \mathsf{modified} \ \mathsf{noun} \\ \mathsf{word} \times \mathsf{dependency} \ \mathsf{rel.} \end{array}$

.

tokenization annotation tagging parsing feature selection

cluster texts by date/author/discourse context/...

↓ [/

Matrix type

 $\label{eq:word} \begin{array}{l} \mathsf{word} \times \mathsf{document} \\ \mathsf{word} \times \mathsf{word} \\ \mathsf{word} \times \mathsf{search} \ \mathsf{proximity} \\ \mathsf{adj.} \times \mathsf{modified} \ \mathsf{noun} \\ \mathsf{word} \times \mathsf{dependency} \ \mathsf{rel.} \end{array}$

tokenization annotation tagging parsing feature selection

: cluster texts by date/author/discourse context/...

↓ 🖉

Matrix	type
--------	------

 $\label{eq:word} \begin{array}{l} \mathsf{word} \times \mathsf{document} \\ \mathsf{word} \times \mathsf{word} \\ \mathsf{word} \times \mathsf{search} \ \mathsf{proximity} \\ \mathsf{adj.} \times \mathsf{modified} \ \mathsf{noun} \\ \mathsf{word} \times \mathsf{dependency} \ \mathsf{rel.} \end{array}$

probabilities length normalization TF-IDF PMI Positive PMI

Reweighting

M

Great power, a great many design choices

tokenization annotation tagging parsing feature selection

: cluster texts by date/author/discourse context/...

↓		
atrix	type	

 $\label{eq:word} \begin{array}{l} \mathsf{word} \times \mathsf{document} \\ \mathsf{word} \times \mathsf{word} \\ \mathsf{word} \times \mathsf{search} \ \mathsf{proximity} \\ \mathsf{adj.} \times \mathsf{modified} \ \mathsf{noun} \\ \mathsf{word} \times \mathsf{dependency} \ \mathsf{rel.} \end{array}$

Rowoighting

Dimensionality reduction LSA PLSA LDA PCA IS

tokenization annotation tagging parsing feature selection

.

.

: cluster texts by date/author/discourse context/...

<u>↓</u> <u>/</u> Matrix type	Reweighting	Dimensionality reduction	Vector comparison
word × document	probabilities	LSA	Euclidean
word \times word	length normalization	PLSA	Cosine
word $ imes$ search proximity	TF-IDF	LDA	Dice
$adj. \times modified noun$	PMI	PCA	Jaccard
word \times dependency rel.	Positive PMI	IS	KL

•

tokenization annotation tagging parsing feature selection

leature selection

: cluster texts by date/author/discourse context/...

↓ 🖉		Dimensionality	Vector
Matrix type	Reweighting	reduction	comparison
word × document	probabilities	LSA	Euclidean
word $ imes$ word	length normalization	PLSA	Cosine
word $ imes$ search proximity	TF-IDF	LDA	Dice
adj. \times modified noun	PMI	PCA	Jaccard
word \times dependency rel.	Positive PMI	IS	KL
:	:	:	:

Nearly the full cross-product to explore; only a handful of the combinations are ruled out mathematically, and the literature contains relatively little guidance.