Distributional word representations: dimensionality reduction

Chris Potts Stanford Linguistics

CS 244U: Natural language understanding

Goals

- · Eliminate correlations
- Improve similarity measures

Guiding intuitions

Guiding intuitions

Latent Semantics Analayis (LSA)

Singular value decomposition

For any matrix of real numbers A of dimension $(m \times n)$ there exists a factorization into matrices T, S, D such that

$$A_{m\times n} = T_{m\times m}S_{m\times m}D_{n\times m}^{T}$$

Latent Semantics Analayis (LSA)

Singular value decomposition

For any matrix of real numbers A of dimension $(m \times n)$ there exists a factorization into matrices T, S, D such that

$$A_{m\times n} = T_{m\times m}S_{m\times m}D_{n\times m}^{T}$$

Example

	d1	d2	d3	d4	d5	d6
gnarly		0			0	C
wicked			0	1	0	C
awesome	1	1	1	1	0	C
lame	0	0	0	0	1	1
terrible	0	0	0	0	0	1
$\downarrow \uparrow \uparrow$						

Example

Distance from gnarly

- gnarly
- 2. awesome
- 3. terrible
- 4. wicked
- 5. lame

Example

Distance from gnarly

- 1. gnarly
- 2. awesome
- terrible
- 4. wicked
- 5. lame

T(erm)

gnarly 0.41 0.00 0.71 0.00 -0.58 wicked 0.41 0.00 -0.71 0.00 -0.58 \times awesome 0.82 -0.00 -0.00 -0.00 0.58 lame 0.00 0.85 0.00 -0.53 0.00 terrible 0.00 0.53 0.00 0.85 0.00

S(ingular values)

1 2.45 0.00 0.00 0.00 0.00 2 0.00 1.62 0.00 0.00 0.00 3 0.00 0.00 1.41 0.00 0.00 4 0.00 0.00 0.00 0.62 0.00 5 0.00 0.00 0.00 0.00 -0.00

D(ocument) d1 0.50 -0.00 0.50 0.00 -0.71 d2 0.50 0.00 -0.50 0.00 0.00 d3 0.50 -0.00 0.50 0.00 0.71 d4 0.50 -0.00 -0.50 -0.00 0.00 d5 -0.00 0.53 0.00 -0.85 0.00 d6 0.00 0.85 0.00 0.53 0.00

Example

Distance from gnarly

- 1. gnarly
- 2. awesome
- terrible
- 4. wicked
- 5. lame

T(erm)

gnarly 0.41 0.00 0.71 0.00 -0.58 wicked 0.41 0.00 -0.71 0.00 -0.58 awesome 0.82 -0.00 -0.00 0.58 lame 0.00 0.85 0.00 -0.53 0.00 terrible 0.00 0.53 0.00 0.85 0.00

S(ingular values)

1 2.45 0.00 0.00 0.00 0.00 2 0.00 1.62 0.00 0.00 0.00 3 0.00 0.00 1.41 0.00 0.00 4 0.00 0.00 0.00 0.62 0.00 5 0.00 0.00 0.00 0.00 -0.00

D(ocument)

d1 0.50 -0.00 0.50 0.00 -0.71 d2 0.50 0.00 -0.50 0.00 0.00 d3 0.50 -0.00 0.50 0.00 0.71 d4 0.50 -0.00 -0.50 -0.00 0.00 d5 -0.00 0.53 0.00 -0.85 0.00 d6 0.00 0.85 0.00 0.53 0.00

Distance from *gnarly*

gnarly 0.41 0.00 wicked 0.41 0.00 awesome 0.82 -0.00 lame 0.00 0.85 terrible 0.00 0.53

```
\langle \frac{}{0.00} \frac{}{0.00} =
```

gnarly 1.00 0.00 wicked 1.00 0.00 awesome 2.00 0.00 lame 0.00 1.38 terrible 0.00 0.85

1. gnarly

- gnarly
 wicked
- 3. awesome
- 4. terrible
- 5. lame

Other dimensionality reduction techniques

Principal Components Analysis (PCA)

- Principal Components Analysis (PCA)
- Probabilistic LSA (PLSA)

- Principal Components Analysis (PCA)
- Probabilistic LSA (PLSA)
- Latent Dirichlet Allocation

- Principal Components Analysis (PCA)
- Probabilistic LSA (PLSA)
- Latent Dirichlet Allocation
- t-Distributed Stochastic Neighbor Embedding

- Principal Components Analysis (PCA)
- Probabilistic LSA (PLSA)
- Latent Dirichlet Allocation
- t-Distributed Stochastic Neighbor Embedding
- word2vec

- Principal Components Analysis (PCA)
- Probabilistic LSA (PLSA)
- Latent Dirichlet Allocation
- t-Distributed Stochastic Neighbor Embedding
- word2vec
- GloVe

Other dimensionality reduction techniques

- Principal Components Analysis (PCA)
- Probabilistic LSA (PLSA)
- Latent Dirichlet Allocation
- t-Distributed Stochastic Neighbor Embedding
- word2vec
- GloVe

For more: Turney and Pantel 2010, 'From frequency to meaning', p. 160.