Distributional word representations: dimensionality reduction

Chris Potts
Stanford Linguistics

CS 244U: Natural language understanding

Goals

- Eliminate correlations
- Improve similarity measures

Guiding intuitions

Guiding intuitions

Latent Semantics Analayis (LSA)

Singular value decomposition

For any matrix of real numbers A of dimension $(m \times n)$ there exists a factorization into matrices T, S, D such that

$$
A_{m \times n}=T_{m \times m} S_{m \times m} D_{n \times m}^{T}
$$

Latent Semantics Analayis (LSA)

Singular value decomposition

For any matrix of real numbers A of dimension $(m \times n)$ there exists a factorization into matrices T, S, D such that

$$
A_{m \times n}=T_{m \times m} S_{m \times m} D_{n \times m}^{T}
$$

$$
\begin{aligned}
\left(\begin{array}{cccc}
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot
\end{array}\right) & =\left(\begin{array}{lll}
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot
\end{array}\right)\left(\begin{array}{lll}
\cdot & \\
& \cdot \\
& \\
& A_{3 \times 4} & \\
& T_{3 \times 3} \quad\left(\begin{array}{lll}
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot
\end{array}\right)^{T} \\
S_{3 \times 3} & D_{4 \times 3}^{T}
\end{array}\right.
\end{aligned}
$$

Example

	d1 d2 d3 d4 d5 d6				
gnarly	10	1	0	0	0
wicked	01	0		0	
awesome	11	1	1	0	0
lame	00	0	0	1	1
terrible	00	0	0	0	

Example

	d1 d2 d3 d4 d5 d6				
gnarly	10	1	0	0	0
wicked	01	0	1	0	0
awesome	11	1	1	0	0
lame	00	0	0	1	1
terrible	00	0	0	0	1

Distance from gnarly

1. gnarly
2. awesome
3. terrible
4. wicked
5. lame

Example

Example

Comparisons before and after LSA with $\mathrm{k}=100$

Comparisons before and after LSA with $\mathrm{k}=100$

PMI with LSA ($k=100$), word x word

Comparisons before and after LSA with $\mathrm{k}=100$

PMI with LSA ($k=100$), word x word

Comparisons before and after LSA with $\mathrm{k}=100$

PMI, word x word

PMI with LSA ($k=100$), word x word

Other dimensionality reduction techniques

Other dimensionality reduction techniques

- Principal Components Analysis (PCA)

Other dimensionality reduction techniques

- Principal Components Analysis (PCA)
- Probabilistic LSA (PLSA)

Other dimensionality reduction techniques

- Principal Components Analysis (PCA)
- Probabilistic LSA (PLSA)
- Latent Dirichlet Allocation

Other dimensionality reduction techniques

- Principal Components Analysis (PCA)
- Probabilistic LSA (PLSA)
- Latent Dirichlet Allocation
- t-Distributed Stochastic Neighbor Embedding

Other dimensionality reduction techniques

- Principal Components Analysis (PCA)
- Probabilistic LSA (PLSA)
- Latent Dirichlet Allocation
- t-Distributed Stochastic Neighbor Embedding
- word2vec

Other dimensionality reduction techniques

- Principal Components Analysis (PCA)
- Probabilistic LSA (PLSA)
- Latent Dirichlet Allocation
- t-Distributed Stochastic Neighbor Embedding
- word2vec
- GloVe

Other dimensionality reduction techniques

- Principal Components Analysis (PCA)
- Probabilistic LSA (PLSA)
- Latent Dirichlet Allocation
- t-Distributed Stochastic Neighbor Embedding
- word2vec
- GloVe

For more: Turney and Pantel 2010, 'From frequency to meaning', p. 160.

