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Plan

1. High-level goals and guiding hypotheses
2. Matrix designs
3. Vector comparison
4. Basic reweighting
5. Subword information
6. Visualization
7. Dimensionality reduction
8. Retrofitting
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Meaning latent in co-occurrence patterns

against age agent ages ago agree ahead ain’t air aka al

against 2003 90 39 20 88 57 33 15 58 22 24
age 90 1492 14 39 71 38 12 4 18 4 39

agent 39 14 507 2 21 5 10 3 9 8 25
ages 20 39 2 290 32 5 4 3 6 1 6
ago 88 71 21 32 1164 37 25 11 34 11 38

agree 57 38 5 5 37 627 12 2 16 19 14
ahead 33 12 10 4 25 12 429 4 12 10 7

ain’t 15 4 3 3 11 2 4 166 0 3 3
air 58 18 9 6 34 16 12 0 746 5 11

aka 22 4 8 1 11 19 10 3 5 261 9
al 24 39 25 6 38 14 7 3 11 9 861
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Meaning latent in co-occurrence patterns

Class Word

0 awful
0 terrible
0 lame
0 worst
0 disappointing
1 nice
1 amazing
1 wonderful
1 good
1 awesome

Pr(Class = 1) Word

? w1
? w2
? w3
? w4

A hopeless learning scenario
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Meaning latent in co-occurrence patterns

Class Word excellent terrible

0 awful −0.69 1.13
0 terrible −0.13 3.09
0 lame −1.00 0.69
0 worst −0.94 1.04
0 disappointing 0.19 0.09
1 nice 0.08 −0.07
1 amazing 0.71 −0.06
1 wonderful 0.66 −0.76
1 good 0.21 0.11
1 awesome 0.67 0.26

Pr(Class=1) Word excellent terrible

≈0 w1 −0.47 0.82
≈0 w2 −0.55 0.84
≈1 w3 0.49 −0.13
≈1 w4 0.41 −0.11

A promising learning scenario
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High-level goals

1. Begin thinking about how vectors can encode the
meanings of linguistic units.

2. Foundational concepts for vector-space model (VSMs).

3. A foundation for deep learning NLU models.

4. In your assignment and projects, you’re likely to use
representations like these:
É to understand and model linguistic and social

phenomena; and/or
É as inputs to other machine learning models.
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Associated materials

1. Code
a. vsm.py
b. vsm_01_distributional.ipynb
c. vsm_02_dimreduce.ipynb
d. vsm_03_retrofitting.ipynb

2. Homework 1 and bake-off 1: hw1_wordsim.ipynb
3. Screencasts:

a. Overview [link]
b. Vector comparison [link]
c. Reweighting [link]
d. Dimensionality reduction [link]

4. Core readings: Turney & Pantel 2010; Smith 2019;
Pennington et al. 2014; Faruqui et al. 2015
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Guiding hypotheses
Firth (1957)
“You shall know a word by the company it keeps.”

Firth (1957)
“the complete meaning of a word is always contextual, and
no study of meaning apart from context can be taken
seriously.”

Wittgenstein (1953)
“the meaning of a word is its use in the language”

Harris (1954)
“distributional statements can cover all of the material of a
language without requiring support from other types of
information.”

Turney & Pantel (2010)
“If units of text have similar vectors in a text frequency
matrix, then they tend to have similar meanings.”
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Great power, a great many design choices

tokenization
annotation
tagging
parsing
feature selection
... cluster texts by date/author/discourse context/. . .
⇓ w

Matrix design

word × document
word × word
word × search proximity
adj. × modified noun
word × dependency rel.

...

Reweighting

probabilities
length norm.
TF-IDF
PMI
Positive PMI

...

Dimensionality
reduction

LSA
PLSA
LDA
PCA
NNMF

...

Vector
comparison

Euclidean
Cosine
Dice
Jaccard
KL

...

 Nearly the full cross-product to explore; only a handful of the com-
binations are ruled out mathematically. Models like GloVe and
word2vec offer packaged solutions to design/weighting/reduction.

!
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Designs

1. High-level goals and guiding hypotheses
2. Matrix designs
3. Vector comparison
4. Basic reweighting
5. Subword information
6. Visualization
7. Dimensionality reduction
8. Retrofitting
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word x word

against age agent ages ago agree ahead ain’t air aka al

against 2003 90 39 20 88 57 33 15 58 22 24
age 90 1492 14 39 71 38 12 4 18 4 39

agent 39 14 507 2 21 5 10 3 9 8 25
ages 20 39 2 290 32 5 4 3 6 1 6
ago 88 71 21 32 1164 37 25 11 34 11 38

agree 57 38 5 5 37 627 12 2 16 19 14
ahead 33 12 10 4 25 12 429 4 12 10 7

ain’t 15 4 3 3 11 2 4 166 0 3 3
air 58 18 9 6 34 16 12 0 746 5 11

aka 22 4 8 1 11 19 10 3 5 261 9
al 24 39 25 6 38 14 7 3 11 9 861
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word x document

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

against 0 0 0 1 0 0 3 2 3 0
age 0 0 0 1 0 3 1 0 4 0

agent 0 0 0 0 0 0 0 0 0 0
ages 0 0 0 0 0 2 0 0 0 0
ago 0 0 0 2 0 0 0 0 3 0

agree 0 1 0 0 0 0 0 0 0 0
ahead 0 0 0 1 0 0 0 0 0 0

ain’t 0 0 0 0 0 0 0 0 0 0
air 0 0 0 0 0 0 0 0 0 0

aka 0 0 0 1 0 0 0 0 0 0
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word x discourse context

Upper left corner of an interjection × dialog-act tag matrix
derived from the Switchboard Dialog Act Corpus:

% + ˆ2 ˆg ˆh ˆq aa

absolutely 0 2 0 0 0 0 95
actually 17 12 0 0 1 0 4
anyway 23 14 0 0 0 0 0

boy 5 3 1 0 5 2 1
bye 0 1 0 0 0 0 0

bye-bye 0 0 0 0 0 0 0
dear 0 0 0 0 1 0 0

definitely 0 2 0 0 0 0 56
exactly 2 6 1 0 0 0 294

gee 0 3 0 0 2 1 1
goodness 1 0 0 0 2 0 0
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phonological segment × feature values
Derived from http://www.linguistics.ucla.edu/people/hayes/120a/.
Dimensions: (141× 28).
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6 1 −1 −1 −1 1 1 0 1 −1 −1

· · ·

A 1 −1 −1 −1 1 1 0 1 −1 −1
Œ 1 −1 −1 −1 1 1 0 1 −1 −1
a 1 −1 −1 −1 1 1 0 1 −1 −1
æ 1 −1 −1 −1 1 1 0 1 −1 −1
2 1 −1 −1 −1 1 1 0 1 −1 −1
O 1 −1 −1 −1 1 1 0 1 −1 −1
o 1 −1 −1 −1 1 1 0 1 −1 −1
G 1 −1 −1 −1 1 1 0 1 −1 −1
@ 1 −1 −1 −1 1 1 0 1 −1 −1
...

...
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phonological segment × feature values
Derived from http://www.linguistics.ucla.edu/people/hayes/120a/.
Dimensions: (141× 28).
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Feature representations of data

• the movie was horrible becomes [4,0,1/4].

• The complex, real-world response of an experimental
subject to a particular example becomes [0,1] or [118,1].

• A human is modeled as a vector [24,140,5,12].

• A continuous, noisy speech stream is reduced to a
restricted set of acoustic features.
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Other designs

• word × dependency rel.
• word × syntactic context
• adj. × modified noun
• word × search query
• person × product
• word × person
• word × word × pattern
• verb × subject × object
...
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Windows and scaling: What is a co-occurrence?

from swerve of shore to bend of bay , brings

4 3 2 1 0 1 2 3 4 5

• Larger, flatter windows capture more semantic
information.

• Small, more scaled windows capture more syntactic
(collocational) information.

• Textual boundaries can be separately controlled; core
unit as the sentence/paragraph/document will have
major consequences.
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Code snippets

snippets

March 31, 2019

In [1]: import sys
sys.path.append("../cs224u")

In [3]: import os
import pandas as pd

DATA_HOME = os.path.join('data', 'vsmdata')

# IMDB: Window size = 5; scaling = 1/n
imdb5 = pd.read_csv(

os.path.join(DATA_HOME, 'imdb_window5-scaled.csv.gz'), index_col=0)

# IMDB: Window size = 20; scaling = flat
imdb20 = pd.read_csv(

os.path.join(DATA_HOME, 'imdb_window20-flat.csv.gz'), index_col=0)

# Gigaword: Window size = 5; scaling = 1/n
giga5 = pd.read_csv(

os.path.join(DATA_HOME, 'giga_window5-scaled.csv.gz'), index_col=0)

# Gigaword: Window size = 20; scaling = flat
giga20 = pd.read_csv(

os.path.join(DATA_HOME, 'giga_window20-flat.csv.gz'), index_col=0)

In [48]: import os
import pandas as pd
import vsm

In [32]: ABC = pd.DataFrame([
[ 2.0, 4.0],
[10.0, 15.0],
[14.0, 10.0]],
index=['A', 'B', 'C'],
columns=['x', 'y'])

In [33]: A = ABC.loc['A']
B = ABC.loc['B']

1
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Vector comparison

1. High-level goals and guiding hypotheses
2. Matrix designs
3. Vector comparison
4. Basic reweighting
5. Subword information
6. Visualization
7. Dimensionality reduction
8. Retrofitting
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Running example

dx dy

A 2 4
B 10 15
C 14 10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(10,15)
B

(2,4)
A

(14,10)
C

●

●

●

• Focus on distance measures
• Illustrations with row vectors
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Euclidean
Between vectors u and v of dimension n:

euclidean(u,v) =

√

√

√

√

n
∑

i=1

|ui − vi|2

dx dy

A 2 4
B 10 15
C 14 10
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Euclidean
Between vectors u and v of dimension n:

euclidean(u,v) =

√

√

√

√
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10 − 142 + 15 − 102 = 6.4

2 − 102 + 4 − 152 = 13.6

●

●

●
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Length normalization

Given a vector u of dimension n, the L2-length of u is

||u||2 =

√

√

√

√

n
∑

i=1

u2
i

and the length normalization of u is
�

u1

||u||2
,

u2

||u||2
, · · · ,

un

||u||2

�
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Length normalization

dx dy ||u||2
A 2 4 4.47
B 10 15 18.03
C 14 10 17.20

row L2 norm
⇒

dx dy

A 2
4.47

4
4.47

B 10
18.03

15
18.03

C 14
17.20
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(0.81,0.58)
C

●

●

●
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Cosine distance
Between vectors u and v of dimension n:

cosine(u,v) = 1−

∑n
i=1 ui × vi

||u||2 × ||v||2

dx dy

A 2 4
B 10 15
C 14 10
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Cosine distance
Between vectors u and v of dimension n:

cosine(u,v) = 1−

∑n
i=1 ui × vi

||u||2 × ||v||2

dx dy

A 2 4
B 10 15
C 14 10
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Matching-based methods

Matching coefficient
matching(u,v) =

n
∑

i=1

min(ui,vi)

Jaccard distance
jaccard(u,v) = 1−

matching(u,v)
∑n

i=1 max(ui,vi)

Dice distance
dice(u,v) = 1−

2×matching(u,v)
∑n

i=1 ui + vi

Overlap
overlap(u,v) = 1−

matching(u,v)

min
�∑n

i=1 ui ,
∑n

i=1 vi
�
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KL divergence
Between probability distributions p and q:

D(p ‖ q) =
n
∑

i=1

pi log
�

pi

qi

�

p is the reference distribution. Before calculation, smooth by
adding ε.
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KL divergence

dx dy

A 2 4
B 10 15
C 14 10

Normalize the rows
⇒

dx dy

A 0.33 0.67
B 0.40 0.60
C 0.58 0.42
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(0.33 × log(0.33
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)) + (0.67 × log(0.67
0.6

)) = 0.01
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KL variants
Symmetric KL

D(p ‖ q) +D(q ‖ p)

KL-divergence with skew

D(p ‖ αq+ (1− α)p) 0 ≤ α ≤ 1

p q

α = 1 ; SkewKL =  1.17

0.1
0.2

0.7

0.1
0.2

0.7

p q

α = 0.8 ; SkewKL =  0.63

0.1
0.2

0.7

0.200.22

0.58

p q

α = 0.5 ; SkewKL =  0.25

0.1
0.2

0.7

0.2

0.40.4

p q

α = 0.2 ; SkewKL =  0.05

0.1
0.2

0.7

0.200.22

0.58

p q

α = 0 ; SkewKL =  0

0.1
0.2

0.7

0.1
0.2

0.7

Jensen–Shannon distance
√

√

√
1

2
D
�

p ‖
p+ q

2

�

+
1

2
D
�

q ‖
p+ q

2

�
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Relationships and generalizations

1. Euclidean, Jaccard, and Dice with raw count vectors will
tend to favor raw frequency over distributional patterns.

2. Euclidean with L2-normed vectors is equivalent to cosine
w.r.t. ranking (Manning & Schütze 1999:301).

3. Jaccard and Dice are equivalent w.r.t. ranking.

4. Both L2-norms and probability distributions can obscure
differences in the amount/strength of evidence, which
can in turn have an effect on the reliability of cosine,
normed-euclidean, and KL divergence. These
shortcomings might be addressed through weighting
schemes.

5. Skew is KL but with a preliminary step that gives special
credence to the reference distribution.
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Proper distance metric?
To qualify as a distance metric, a vector comparison method
d has to be symmetric (d(x,y) = d(y,x)), assign 0 to identical
vectors (d(x,x) = 0), and satisfy the triangle inequality:

d(x, z) ¶ d(x,y) + d(y, z)

Cosine distance as I defined it
doesn’t satify this:

Distance metric?

Yes: Euclidean, Jensen–
Shannon, cosine as

cos−1
�∑n

i=1 ui × vi

||u||2×||v||2

�

π

No: Matching, Jaccard,
Dice, Overlap, KL diver-
gence, Symmetric KL, KL
with skew
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Code snippets
In [ ]: import sys

sys.path.append("../cs224u")

DATA_HOME = os.path.join('../cs224u/data', 'vsmdata')

In [1]: import os
import pandas as pd
import vsm

In [2]: ABC = pd.DataFrame([
[ 2.0, 4.0],
[10.0, 15.0],
[14.0, 10.0]], index=['A', 'B', 'C'], columns=['x', 'y'])

In [3]: vsm.euclidean(ABC.loc['A'], ABC.loc['B'])

Out[3]: 13.601470508735444

In [4]: vsm.vector_length(ABC.loc['A'])

Out[4]: 4.47213595499958

In [5]: vsm.length_norm(ABC.loc['A']).values

Out[5]: array([0.4472136 , 0.89442719])

In [6]: vsm.cosine(ABC.loc['A'], ABC.loc['B'])

Out[6]: 0.007722123286332261

In [7]: vsm.matching(ABC.loc['A'], ABC.loc['B'])

Out[7]: 6.0

In [8]: vsm.jaccard(ABC.loc['A'], ABC.loc['B'])

Out[8]: 0.76

In [9]: DATA_HOME = os.path.join('data', 'vsmdata')

imdb5 = pd.read_csv(
os.path.join(DATA_HOME, 'imdb_window5-scaled.csv.gz'), index_col=0)

In [10]: vsm.cosine(imdb5.loc['good'], imdb5.loc['excellent'])

Out[10]: 0.9644382411451131

In [11]: vsm.cosine(imdb5.loc['good'], imdb5.loc['bad'])

Out[11]: 0.9480014759326252

2
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Code snippetsIn [ ]:

In [ ]:

In [9]: DATA_HOME = os.path.join('data', 'vsmdata')

imdb5 = pd.read_csv(
os.path.join(DATA_HOME, 'imdb_window5-scaled.csv.gz'), index_col=0)

In [10]: vsm.cosine(imdb5.loc['good'], imdb5.loc['excellent'])

Out[10]: 0.9644382411451131

In [11]: vsm.cosine(imdb5.loc['good'], imdb5.loc['bad'])

Out[11]: 0.9480014759326252

In [12]: vsm.neighbors('bad', imdb5).head()

Out[12]: bad 0.000000
guys 0.823744
. 0.844851
taste 0.893747
guy 0.896312
dtype: float64

In [13]: vsm.neighbors('bad', imdb5, distfunc=vsm.jaccard).head(3)

Out[13]: bad 0.000000
think 0.783744
better 0.788782
dtype: float64

In [ ]:

3
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Basic reweighting

1. High-level goals and guiding hypotheses
2. Matrix designs
3. Vector comparison
4. Basic reweighting
5. Subword information
6. Visualization
7. Dimensionality reduction
8. Retrofitting
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Goals of reweighting

• Amplify the important, the trustworthy, the unusual;
deemphasize the mundane and the quirky.

• Absent a defined objective function, this will remain
fuzzy.

• The intuition behind moving away from raw counts is
that frequency is a poor proxy for the above values.

• So we should ask of each weighting scheme:
É How does it compare to the raw count values?
É How does it compare to the word frequencies?
É What overall distribution of values does it deliver?

• We hope to do no feature selection based on counts,
stopword dictionaries, etc. Rather, we want our methods
to reveal what’s important without these ad hoc
interventions.
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Normalization
L2 norming (repeated from earlier)
Given a vector u of dimension n, the L2-length of u is

||u||2 =

√

√

√

√

n
∑

i=1

u2
i

and the length normalization of u is
�

u1

||u||2
,

u2

||u||2
, · · · ,

un

||u||2

�

Probability distribution
Given a vector u of dimension n containing all positive values, let

sum(u) =
n
∑

i=1

ui

and then the probability distribution of u is
�

u1

sum(u)
,

u2

sum(u)
, · · · ,

un

sum(u)

�
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Observed/Expected

rowsum(X, i) =
n
∑

j=1

Xij colsum(X, j) =
m
∑

i=1

Xij sum(X) =
m
∑

i=1

n
∑

j=1

Xij

expected(X, i, j) =
rowsum(X, i) · colsum(X, j)

sum(X)

oe(X, i, j) =
Xij

expected(X, i, j)
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Observed/Expected

rowsum(X, i) =
n
∑

j=1

Xij colsum(X, j) =
m
∑

i=1

Xij sum(X) =
m
∑

i=1

n
∑

j=1

Xij

expected(X, i, j) =
rowsum(X, i) · colsum(X, j)

sum(X)

oe(X, i, j) =
Xij

expected(X, i, j)

a b rowsum

x 34 11 45
y 47 7 54

colsum 81 18 99

oe
⇒

a b

x 34
45·81

99

11
45·18

99

y 47
54·81

99

7
54·18

99
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Observed/Expected

rowsum(X, i) =
n
∑

j=1

Xij colsum(X, j) =
m
∑

i=1

Xij sum(X) =
m
∑

i=1

n
∑

j=1

Xij

expected(X, i, j) =
rowsum(X, i) · colsum(X, j)

sum(X)

oe(X, i, j) =
Xij

expected(X, i, j)

Observed

tabs reading birds

keep 20 20 20
enjoy 1 20 20

keep and tabs co-occur more than
expected given their frequencies,
enjoy and tabs less than expected

Expected

tabs reading birds

keep 60·21
101

60·40
101

60·40
101

enjoy 41·21
101

41·40
101

41·40
101

=

tabs reading birds

keep 12.48 23.76 23.76
enjoy 8.5 16.24 16.24
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Pointwise Mutual Information (PMI)

PMI is observed/expected in log-space (with log(0) = 0):

pmi(X, i, j) = log
�

Xij

expected(X, i, j)

�

= log(
�

P(Xij)

P(Xi∗) · P(X∗j)

�

d1 d2 d3 d4

A 10 10 10 10
B 10 10 10 0
C 10 10 0 0
D 0 0 0 1

⇒

P(w,d) P(w)

A 0.11 0.11 0.11 0.11 0.44
B 0.11 0.11 0.11 0.00 0.33
C 0.11 0.11 0.00 0.00 0.22
D 0.00 0.00 0.00 0.01 0.01

P(d) 0.33 0.33 0.22 0.12

PMI
⇓

d1 d2 d3 d4

A −0.28 −0.28 0.13 0.73
B 0.01 0.01 0.42 0.00
C 0.42 0.42 0.00 0.00
D 0.00 0.00 0.00 2.11
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Pointwise Mutual Information (PMI)

PMI is observed/expected in log-space (with log(0) = 0):

pmi(X, i, j) = log
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Xij

expected(X, i, j)

�

= log(
�

P(Xij)

P(Xi∗) · P(X∗j)

�

d1 d2 d3 d4

A 10 10 10 10
B 10 10 10 0
C 10 10 0 0
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⇒
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A 0.11 0.11 0.11 0.11 0.44
B 0.11 0.11 0.11 0.00 0.33
C 0.11 0.11 0.00 0.00 0.22
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PMI
⇓
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Selected PMI values
Selected PMI values

P(word)

P
(c
on
te
xt
)

P(word, context) = 

1.02

0

-0.67

-1.18

0.51 0.17 -0.08
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Positive PMI

The issue
PMI is actually undefined when Xij = 0. The usual response is
the one given above: set PMI to 0 in such cases. However,
this is arguably not coherent (Levy & Goldberg 2014):

• Larger than expected count ⇒ large PMI
• Smaller than expected count ⇒ small PMI
• 0 count ⇒ placed right in the middle!?

PPMI

ppmi(X, i, j) = max(0,pmi(X, i, j))
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TF-IDF
For a corpus of documents D:

• Term frequency (TF): P(w|d)

• Inverse document frequency (IDF): log
�

|D|
�

�{d∈D:w∈d}
�

�

�

(log(0) = 0)

• TF-IDF: TF × IDF

d1 d2 d3 d4

A 10 10 10 10
B 10 10 10 0
C 10 10 0 0
D 0 0 0 1

⇒
IDF

A 0.00
B 0.29
C 0.69
D 1.39

⇓
TF

d1 d2 d3 d4

A 0.33 0.33 0.50 0.91
B 0.33 0.33 0.50 0.00
C 0.33 0.33 0.00 0.00
D 0.00 0.00 0.00 0.09

TF-IDF
d1 d2 d3 d4

A 0.00 0.00 0.00 0.00
B 0.10 0.10 0.14 0.00
C 0.23 0.23 0.00 0.00
D 0.00 0.00 0.00 0.13
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IDF values

docCount
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Selected TF-IDF values
Selected TF-IDF values
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Other weighting/normalization schemes

• t-test: P(w,d)−P(w)P(d)p
P(w)P(d)

• TF-IDF variants that seek to be sensitive to the empirical
distribution of words (For discussion and references,
Manning & Schütze 1999:553.)

• Pairwise distance matrices:

dx dy

A 2 4
B 10 15
C 14 10

cosine
⇒

A B C

A 0 0.008 0.116
B 0.008 0 0.065
C 0.116 0.065 0
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Weighting scheme cell-value distributions
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TF-IDF

Uses the giga5 matrix loaded earlier. Others look similar.
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Weighting scheme relationships to counts

Uses the giga5 matrix loaded earlier. Others look similar.
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Relationships and generalizations
• The theme running through nearly all these schemes is

that we want to weight a cell value Xij relative to the
value we expect given Xi∗ and X∗j.

• Many weighting schemes end up favoring rare events
that may not be trustworthy.

• The magnitude of counts can be important; [1,10] and
[1000,10000] might represent very different situations;
creating probability distributions or length normalizing
will obscure this.

• PMI and its variants will amplify the values of counts that
are tiny relative to their rows and columns.
Unfortunately, with language data, these are often noise

• TF-IDF severely punishes words that appear in many
documents – it behaves oddly for dense matrices, which
can include word × word matrices.
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Code snippets

vsm_01_code4_solved

April 1, 2019

In [1]: import os
import pandas as pd
import vsm

DATA_HOME = os.path.join('data', 'vsmdata')

imdb5 = pd.read_csv(
os.path.join(DATA_HOME, 'imdb_window5-scaled.csv.gz'), index_col=0)

imdb5_oe = vsm.observed_over_expected(imdb5)

imdb5_norm = imdb5.apply(vsm.length_norm, axis=1)

imdb5_ppmi = vsm.pmi(imdb5)

imdb5_pmi = vsm.pmi(imdb5, positive=False)

imdb5_tfidf = vsm.tfidf(imdb5)

In [2]: vsm.neighbors('bad', imdb5).head()

Out[2]: bad 0.000000
guys 0.823744
. 0.844851
taste 0.893747
guy 0.896312
dtype: float64

In [3]: vsm.neighbors('bad', imdb5_ppmi).head()

Out[3]: bad 0.000000
good 0.701241
awful 0.757309
terrible 0.763324
horrible 0.763637
dtype: float64

1
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Code snippets

vsm_01_code4_solved

April 1, 2019

In [1]: import os
import pandas as pd
import vsm

DATA_HOME = os.path.join('data', 'vsmdata')

imdb5 = pd.read_csv(
os.path.join(DATA_HOME, 'imdb_window5-scaled.csv.gz'), index_col=0)

imdb5_oe = vsm.observed_over_expected(imdb5)

imdb5_norm = imdb5.apply(vsm.length_norm, axis=1)

imdb5_ppmi = vsm.pmi(imdb5)

imdb5_pmi = vsm.pmi(imdb5, positive=False)

imdb5_tfidf = vsm.tfidf(imdb5)

In [2]: vsm.neighbors('bad', imdb5).head()

Out[2]: bad 0.000000
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. 0.844851
taste 0.893747
guy 0.896312
dtype: float64

In [3]: vsm.neighbors('bad', imdb5_ppmi).head()

Out[3]: bad 0.000000
good 0.701241
awful 0.757309
terrible 0.763324
horrible 0.763637
dtype: float64
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Subword information

1. High-level goals and guiding hypotheses
2. Matrix designs
3. Vector comparison
4. Basic reweighting
5. Subword information
6. Visualization
7. Dimensionality reduction
8. Retrofitting
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Motivation

1. Schütze (1993) pioneered subword modeling to improve
representations by reducing sparsity, thereby increasing
the density of connections in a VSM.

2. Subword modeling will also

a. Pull morphological variants closer together
b. Facilitate modeling out-of-vocabulary items
c. Reduce the importance of any particular tokenization

scheme
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Technique

Bojanowski et al. (2016) (the fastText team) motivate a
straightforward approach:

1. Given a word-level VSM, the vector for a character-level
n-gram x is the sum of all the vectors of words
containing x.

2. Represent each word w as the sum of its character-level
n-grams.

3. Add in the representation of w if available

A linguistically richer variant might use sequences of
morphemes rather than characters.

Example with 4-grams
superbly becomes

[<w>sup, supe, uper, perb, erbl, rbly, bly</w>]
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Code snippets

vsm_01_code5_solved

April 1, 2019

In [1]: import os
import pandas as pd
import vsm

DATA_HOME = os.path.join('data', 'vsmdata')

imdb5 = pd.read_csv(
os.path.join(DATA_HOME, 'imdb_window5-scaled.csv.gz'), index_col=0)

In [2]: imdb5_ngrams = vsm.ngram_vsm(imdb5, n=4)

In [3]: imdb5_ngrams.loc['<w>sup'].values

Out[3]: array([3.41545000e+03, 3.70000000e+01, 4.95458333e+04, ...,
2.23950000e+02, 4.64833333e+01, 3.12166667e+01])

In [4]: imdb5_ngrams.shape

Out[4]: (9806, 5000)

In [5]: vsm.get_character_ngrams("superbly", n=4)

Out[5]: ['<w>sup', 'supe', 'uper', 'perb', 'erbl', 'rbly', 'bly</w>']

In [6]: def character_level_rep(word, cf, n=4):
ngrams = vsm.get_character_ngrams(word, n)
ngrams = [n for n in ngrams if n in cf.index]
reps = cf.loc[ngrams].values
return reps.sum(axis=0)

In [7]: superbly = character_level_rep("superbly", imdb5_ngrams)

In [8]: superbly.shape

Out[8]: (5000,)

1
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Visualization

1. High-level goals and guiding hypotheses
2. Matrix designs
3. Vector comparison
4. Basic reweighting
5. Subword information
6. Visualization
7. Dimensionality reduction
8. Retrofitting
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Techniques

• Our goal is to visualize very high-dimensional spaces in
two or three dimensions. This will inevitably involve
compromises.

• Still, visualization can give you a feel for what is in your
VSM, especially if you pair it with other kinds of
qualitative exploration (e.g., using vsm.neighbors).

• There are many visualization techniques implemented in
sklearn.manifold; see this user guide for an overview
and discussion of trade-offs.
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t-SNE on the imdb20 PPMI VSM

positivity negativity
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Code snippets

vsm_01_code6_solved

April 1, 2019

In [1]: %matplotlib inline
from nltk.corpus import opinion_lexicon
import os
import pandas as pd
import vsm

In [2]: DATA_HOME = os.path.join('data', 'vsmdata')

imdb5 = pd.read_csv(
os.path.join(DATA_HOME, 'imdb_window5-scaled.csv.gz'), index_col=0)

In [3]: imdb5_ppmi = vsm.pmi(imdb5)

In [4]: # Supply a str filename to write the output to a file:
vsm.tsne_viz(imdb5_ppmi, output_filename=None)

In [5]: # To display words in different colors based on external criteria:
positive = set(opinion_lexicon.positive())
negative = set(opinion_lexicon.negative())

colors = []
for w in imdb5_ppmi.index:

if w in positive:
color = 'red'

elif w in negative:
color = 'blue'

else:
color = 'gray'

colors.append(color)

vsm.tsne_viz(imdb5_ppmi, colors=colors)

1
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Dimensionality reduction

1. High-level goals and guiding hypotheses
2. Matrix designs
3. Vector comparison
4. Basic reweighting
5. Subword information
6. Visualization
7. Dimensionality reduction
8. Retrofitting
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Latent Semantic Analysis (LSA)

• Due to Deerwester et al. 1990.

• One of the oldest and most widely used dimensionality
reduction techniques.

• Also known as Truncated Singular Value Decomposition
(Truncated SVD).

• Standard baseline, often very tough to beat.
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LSA: Guiding intuitions
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LSA: Guiding intuitions
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LSA: The method

Singular value decomposition
For any matrix of real numbers A of dimension (m× n) there
exists a factorization into matrices T, S, D such that

Am×n = Tm×mSm×mDT
n×m
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 =





· · ·
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T

A3×4 = T3×3 S3×3 DT
4×3

55 / 85



Overview Designs Vector comparison Basic reweighting Subwords Viz Dimensionality reduction Retrofitting

LSA: The method

Singular value decomposition
For any matrix of real numbers A of dimension (m× n) there
exists a factorization into matrices T, S, D such that

Am×n = Tm×mSm×mDT
n×m





· · · ·
· · · ·
· · · ·



 =





· · ·
· · ·
· · ·









·
·
·











· · ·
· · ·
· · ·
· · ·







T

A3×4 = T3×3 S3×3 DT
4×3

55 / 85



Overview Designs Vector comparison Basic reweighting Subwords Viz Dimensionality reduction Retrofitting

LSA: Example

d1 d2 d3 d4 d5 d6

gnarly 1 0 1 0 0 0
wicked 0 1 0 1 0 0

awesome 1 1 1 1 0 0
lame 0 0 0 0 1 1

terrible 0 0 0 0 0 1

⇓⇑

Distance from gnarly

1. gnarly
2. awesome
3. terrible
4. wicked
5. lame

T(erm)

gnarly 0.41 0.00 0.71 0.00 -0.58
wicked 0.41 0.00 -0.71 0.00 -0.58

awesome 0.82 -0.00 -0.00 -0.00 0.58
lame 0.00 0.85 0.00 -0.53 0.00

terrible 0.00 0.53 0.00 0.85 0.00

×

S(ingular values)

2.45 0.00 0.00 0.00 0.00
0.00 1.62 0.00 0.00 0.00
0.00 0.00 1.41 0.00 0.00
0.00 0.00 0.00 0.62 0.00
0.00 0.00 0.00 0.00 -0.00

×





















D(ocument)

d1 0.50 -0.00 0.50 0.00 -0.71
d2 0.50 0.00 -0.50 0.00 0.00
d3 0.50 -0.00 0.50 0.00 0.71
d4 0.50 -0.00 -0.50 -0.00 0.00
d5 -0.00 0.53 0.00 -0.85 0.00
d6 0.00 0.85 0.00 0.53 0.00





















T

gnarly 0.41 0.00
wicked 0.41 0.00

awesome 0.82 -0.00
lame 0.00 0.85

terrible 0.00 0.53

× 2.45 0.00
0.00 1.62 =

gnarly 1.00 0.00
wicked 1.00 0.00

awesome 2.00 0.00
lame 0.00 1.38

terrible 0.00 0.85

Distance from gnarly

1. gnarly
2. wicked
3. awesome
4. terrible
5. lame
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awesome 2.00 0.00
lame 0.00 1.38

terrible 0.00 0.85

Distance from gnarly

1. gnarly
2. wicked
3. awesome
4. terrible
5. lame
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LSA: Cell-value comparisons (k = 100)
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LSA: Choosing the dimensionality
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Related dimensionality reduction techniques

• Principal Components Analysis (PCA)
• Non-negative Matrix Factorization (NMF)
• Probabilistic LSA (PLSA; Hofmann 1999)
• Latent Dirichlet Allocation (LDA; Blei et al. 2003)
• t-SNE (van der Maaten & Hinton 2008)

See sklearn.decomposition and sklearn.manifold
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LSA code snippets
vsm_01_code6_solved

April 1, 2019

In [1]: import os
import pandas as pd
import vsm

In [2]: DATA_HOME = os.path.join('data', 'vsmdata')

giga5 = pd.read_csv(
os.path.join(DATA_HOME, 'giga_window5-scaled.csv.gz'), index_col=0)

In [3]: giga5.shape

Out[3]: (5000, 5000)

In [4]: giga5_lsa100 = vsm.lsa(giga5, k=100)

In [5]: giga5_lsa100.shape

Out[5]: (5000, 100)

1
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Autoencoders

• Autoencoders are a flexible class of deep learning
architectures for learning reduced dimensional
representations.

• Chapter 14 of Goodfellow et al. (2016) is an excellent
discussion.
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The basic autoencoder model

x

x_hat = hW_hy + b_hy

h = f(xW_xh + b_xh)

This might be preceded by a 
separate dimensionality 

reduction step (e.g., LSA)

Seeks to predict its own input.

High-dimensional inputs are fed 
through a narrow hidden layer 

(or multiple hidden layers).
This is the representation of 

interest – akin to LSA output.
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The basic autoencoder model

x

x_hat = hW_hy + b_hy

h = f(xW_xh + b_xh)

Seeks to predict its own input.

High-dimensional inputs are fed 
through a narrow hidden layer 

(or multiple hidden layers).
This is the representation of 

interest – akin to LSA output.

This might be preceded by a 
separate dimensionality 

reduction step (e.g., LSA)

y_err = x_hat - x

d_b_hy = y_err

h_err = 
 y_err.dot(W_hy.T) * f’(h)

d_W_hy outer(h, y_err)

d_W_xh = outer(x, h_err)

d_b_xh = h_err

Assume f = tanh  and so f’(z) = 1.0 - z 2. Per example error is ∑i 0.5 * (x_hati - xi)
2
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Autoencoder code snippets

vsm_01_code7

April 2, 2019

In [1]: from np_autoencoder import Autoencoder
import os
import pandas as pd
from torch_autoencoder import TorchAutoencoder
import vsm

In [2]: DATA_HOME = os.path.join('data', 'vsmdata')

giga5 = pd.read_csv(
os.path.join(DATA_HOME, 'giga_window5-scaled.csv.gz'), index_col=0)

In [3]: # You'll likely need a larger network, trained longer, for good results.
ae = Autoencoder(max_iter=10, hidden_dim=50)

In [4]: # Scaling the values first will help the network learn:
giga5_l2 = giga5.apply(vsm.length_norm, axis=1)

In [5]: # The `fit` method returns the hidden reps:
giga5_ae = ae.fit(giga5_l2)

Finished epoch 10 of 10; error is 0.4883386066987744

In [6]: torch_ae = TorchAutoencoder(max_iter=10, hidden_dim=50)

In [7]: # A potentially interesting pipeline:
giga5_ppmi_lsa100 = vsm.lsa(vsm.pmi(giga5), k=100)

In [8]: giga5_ppmi_lsa100_ae = torch_ae.fit(giga5_ppmi_lsa100)

Finished epoch 10 of 10; error is 1.2230274677276611

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

1
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Autoencoder code snippets
In [9]: vsm.neighbors("finance", giga5).head()

Out[9]: finance 0.000000
minister 0.870300
. 0.880074
</p> 0.896013
ministry 0.897051
dtype: float64

In [10]: vsm.neighbors("finance", giga5_ae).head()

Out[10]: finance 0.000000
article 0.504076
style 0.526473
domain 0.538920
investigators 0.548903
dtype: float64

In [11]: vsm.neighbors("finance", giga5_ppmi_lsa100_ae).head()

Out[11]: finance 0.000000
affairs 0.232635
management 0.248080
commerce 0.255099
banking 0.256428
dtype: float64

2
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Global Vectors (GloVe)

• Pennington et al. (2014)

• Roughly speaking, the objective is to learn vectors for
words such that their dot product is proportional to their
probability of co-occurrence.

• We’ll use the implementation in the mittens package
(Dingwall & Potts 2018). There is a reference
implementation in vsm.py. For really big vocabularies,
the GloVe team’s C implementation is probably the best
choice.

• We’ll make use of the GloVe team’s pretrained
representations throughout this course.
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The GloVe objective

w>
i
ewk + bi + ebk = log(Xik)

Equation (6):

w>
i
ewk = log(Pik) = log(Xik)− log(Xi)

Allowing different rows and columns:

w>
i
ewk = log(Pik) = log(Xik)− log(Xi · X∗k)

That’s PMI!

pmi(X, i, j) = log
�

Xij

expected(X, i, j)

�

= log(
�

P(Xij)

P(Xi∗) · P(X∗j)

�

By the equivalence log(x
y ) = log(x)− log(y)
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The weighted GloVe objective

Original

w>
i
ewk + bi + ebk = log(Xik)

Weighted

|V|
∑

i,j=1

f
�

Xij
�

�

w>
i
ewj + bi + ebj − logXij

�2

where V is the vocabulary and f is

f (x)

¨

(x/xmax)
α if x < xmax

1 otherwise

Typically, α is set to 0.75 and xmax to 100.
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GloVe hyperparameters

• Learned representation dimensionality.
• xmax, which flattens out all high counts.
• α, which scales the values as (x/xmax)

α.

f (x)

¨

(x/xmax)
α if x < xmax

1 otherwise

f
��

100 99 75 10 1
��

=
�

1.00 0.99 0.81 0.18 0.03
�
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GloVe learning
The loss calculations

f (Xij)
�

w>
i
ewj − logXij

�

show how gnarly and wicked are
pulled toward awesome. Bias
terms left out for simplicity.
gnarly and wicked deliberately
far apart in w0 and ew0.
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gnarly
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awesome

terrible
After iteration 1

Counts gnarly wicked awesome terrible

gnarly 10 0 9 1
wicked 0 10 9 1
awesome 9 9 19 1
terrible 1 1 1 3

Weights(xmax = 10, α = 0.75)
gnarly wicked awesome terrible

gnarly 1.00 0.00 0.92 0.18
wicked 0.00 1.00 0.92 0.18
awesome 0.92 0.92 1.00 0.18
terrible 0.18 0.18 0.18 0.41

w0

gnarly 0.27 −0.27
wicked −0.27 0.27
awesome 0.36 −0.50
terrible 0.08 0.16

ew0

gnarly 0.18 −0.18
wicked −0.18 0.18
awesome 0.03 0.20
terrible 0.17 0.32

0.92
�

�

0.27 −0.27
�> � 0.03 0.20

�

− log( 9 )
�

= −2.06

0.92
�

�

−0.27 0.27
�> � 0.03 0.20

�

− log( 9 )
�

= −1.98

w1

gnarly 0.99 −0.85
wicked 0.74 −0.54
awesome 0.37 −0.26
terrible 0.12 0.21

ew1

gnarly 0.97 −0.82
wicked 0.73 −0.54
awesome 0.34 −0.25
terrible 0.20 0.34

0.92
�

�

0.99 −0.85
�> � 0.34 −0.25

�

− log( 9 )
�

= −1.51

0.92
�

�

0.74 −0.54
�> � 0.34 −0.25

�

− log( 9 )
�

= −1.66
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GloVe cell-value comparisons (n = 50)
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GloVe code snippets

vsm_01_code8

April 2, 2019

In [1]: from mittens import GloVe
import numpy as np
import os
import pandas as pd
import vsm

In [2]: DATA_HOME = os.path.join('data', 'vsmdata')

imdb5 = pd.read_csv(
os.path.join(DATA_HOME, 'imdb_window5-scaled.csv.gz'), index_col=0)

imdb20 = pd.read_csv(
os.path.join(DATA_HOME, 'imdb_window20-flat.csv.gz'), index_col=0)

In [3]: # What percentage of the non-zero values are being mapped to 1 by f?
def percentage_nonzero_vals_above(df, n=100):

v = df.values.reshape(1, -1).squeeze()
v = v[v > 0]
above = v[v > n]
return len(above) / len(v)

In [4]: percentage_nonzero_vals_above(imdb5)

Out[4]: 0.017534398942316464

In [5]: percentage_nonzero_vals_above(imdb20)

Out[5]: 0.1519065095882084

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

1
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GloVe code snippetsIn [ ]:

In [6]: glv = GloVe(max_iter=100, n=50)

In [7]: imdb5_glv = glv.fit(imdb5)

Iteration 100: loss: 536157.755

In [8]: glv.sess.close()

In [9]: imdb20_glv = glv.fit(imdb20)

Iteration 100: loss: 1043351.625

In [10]: # Restore the original `pd.DataFrame` structure:
imdb20_glv = pd.DataFrame(imdb20_glv, index=imdb20.index)

In [11]: # To what a degree is the GloVe objective achieved?
def correlation_test(true, pred):

mask = true > 0
M = pred.dot(pred.T)
with np.errstate(divide='ignore'):

log_cooccur = np.log(true)
log_cooccur[np.isinf(log_cooccur)] = 0.0
row_prob = np.log(true.sum(axis=1))
row_log_prob = np.outer(row_prob, np.ones(true.shape[1]))
prob = log_cooccur - row_log_prob

return np.corrcoef(prob[mask], M[mask])[0, 1]

In [12]: correlation_test(imdb5.values, imdb5_glv)

Out[12]: 0.38032242586515264

In [13]: correlation_test(imdb20.values, imdb20_glv.values)

Out[13]: 0.484126476892789

In [ ]:

In [ ]:

In [ ]:

In [14]: %matplotlib inline
import matplotlib.pyplot as plt

In [15]: def hist(df, output_filename, color, title):
figdir = "/Users/cgpotts/Documents/teaching/2018-2019/spring/cs224u/vsm/fig/"
output_filename = os.path.join(figdir, output_filename)
vals = df.values.reshape(1, -1).squeeze()
plt.hist(vals, log=True, facecolor=color)
plt.xlabel("Cell value")
plt.title(title)
plt.savefig(output_filename)
plt.close()

2

70 / 85



Overview Designs Vector comparison Basic reweighting Subwords Viz Dimensionality reduction Retrofitting

wordvec

• Introduced by Mikolov et al. (2013).

• Goldberg & Levy (2014) identify the relationship between
word2vec and PMI.

• The TensorFlow tutorial Vector representations of words
is very clear and links to code.

• Gensim package has a highly scalable implementation.
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word2vec: From corpus to labeled data

it was the best of times, it was the worst of times, . . .

With window size 2:
x y

it was
it the
was it
was the
was best
the was
the it
the best
the of

. . .
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word2vec: Basic skip-gram
The basic skip-gram model estimates the probability of an
input–output pair (a,b) as

P(b | a) =
exp(xawb)

∑

b′∈V exp(xawb′)

where xa is the row-vector representation of word a and wb is
the column vector representation of word b. Minimize:

−
m
∑

i=1

|V|
∑

k=1

1{ci = k} log
exp(xiwk)

∑|V|
j=1 exp(xiwj)

where V is the vocabulary and c is a one-hot encoded vector
of the same length as V. This gives rise to a classifier:

C = softmax(XW + b)

We’re back to our core insight for this unit: word and context
matrix, pushing their dot products in a specific direction.
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word2vec: Noise contrastive estimation

Training the basic skip-gram model directly is expensive for
large vocabularies, because W, b, and C get so large. Noise
contrastive estimation addresses that:

∑

a,b∈D
− logσ(xawb) +

∑

a,b∈D′
logσ(xawb)

with σ the sigmoid activation function 1
1+exp(−x) . D′ is a

sample of pairs that don’t appear in the training data.
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Retrofitting

1. High-level goals and guiding hypotheses
2. Matrix designs
3. Vector comparison
4. Basic reweighting
5. Subword information
6. Visualization
7. Dimensionality reduction
8. Retrofitting
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Central goals

• Distributional representations are powerful and easy to
obtain, but they tend to reflect only similarity
(synonymy, connotation).

• Structured resources are sparse and hard to obtain, but
they support learning rich, diverse semantic distinctions.

• Can we have the best aspects of both? Retrofitting is one
way of saying, “Yes”.

• Retrofitting is due to Faruqui et al. (2015).
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Purely distributional representations

• High-dimensional

• Meaning from dense linguistic inter-relationships

• Meaning solely from (nth-order) co-occurrence

• No grounding in physical or social contexts

• Not symbolic
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Grounding via supervision
Word vectors to maximize unsupervised log-likelihood of
words given documents and supervised prediction accuracy:

(Maas et al. 2011)
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Hidden representations from a deep classifier
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The retrofitting model

∑

i∈V
αi



qi − q̂i





2
+

∑

(i,j,r)∈E
βij



qi − qj





2

• Balances fidelity to the
original vector q̂i

• against looking more like
one’s graph neighbors.

• Forces are balanced with
α = 1 and β = 1

Degree(i)
Figure 1: Word graph with edges between related words
showing the observed (grey) and the inferred (white)
word vector representations.

Experimentally, we show that our method works
well with different state-of-the-art word vector mod-
els, using different kinds of semantic lexicons and
gives substantial improvements on a variety of
benchmarks, while beating the current state-of-the-
art approaches for incorporating semantic informa-
tion in vector training and trivially extends to mul-
tiple languages. We show that retrofitting gives
consistent improvement in performance on evalua-
tion benchmarks with different word vector lengths
and show a qualitative visualization of the effect of
retrofitting on word vector quality. The retrofitting
tool is available at: https://github.com/
mfaruqui/retrofitting.

2 Retrofitting with Semantic Lexicons

Let V = {w1, . . . , wn} be a vocabulary, i.e, the set
of word types, and⌦ be an ontology that encodes se-
mantic relations between words in V . We represent
⌦ as an undirected graph (V,E) with one vertex for
each word type and edges (wi, wj) 2 E ✓ V ⇥ V
indicating a semantic relationship of interest. These
relations differ for different semantic lexicons and
are described later (§4).

The matrix Q̂ will be the collection of vector rep-
resentations q̂i 2 Rd, for each wi 2 V , learned
using a standard data-driven technique, where d is
the length of the word vectors. Our objective is
to learn the matrix Q = (q1, . . . , qn) such that the
columns are both close (under a distance metric) to
their counterparts in Q̂ and to adjacent vertices in ⌦.
Figure 1 shows a small word graph with such edge
connections; white nodes are labeled with the Q vec-

tors to be retrofitted (and correspond to V⌦); shaded
nodes are labeled with the corresponding vectors in
Q̂, which are observed. The graph can be interpreted
as a Markov random field (Kindermann and Snell,
1980).

The distance between a pair of vectors is defined
to be the Euclidean distance. Since we want the
inferred word vector to be close to the observed
value q̂i and close to its neighbors qj ,8j such that
(i, j) 2 E, the objective to be minimized becomes:

 (Q) =

nX

i=1

2
4↵ikqi � q̂ik2 +

X

(i,j)2E

�ijkqi � qjk2

3
5

where ↵ and � values control the relative strengths
of associations (more details in §6.1).

In this case, we first train the word vectors inde-
pendent of the information in the semantic lexicons
and then retrofit them.  is convex in Q and its so-
lution can be found by solving a system of linear
equations. To do so, we use an efficient iterative
updating method (Bengio et al., 2006; Subramanya
et al., 2010; Das and Petrov, 2011; Das and Smith,
2011). The vectors in Q are initialized to be equal
to the vectors in Q̂. We take the first derivative of  
with respect to one qi vector, and by equating it to
zero arrive at the following online update:

qi =

P
j:(i,j)2E �ijqj + ↵iq̂iP

j:(i,j)2E �ij + ↵i
(1)

In practice, running this procedure for 10 iterations
converges to changes in Euclidean distance of ad-
jacent vertices of less than 10�2. The retrofitting
approach described above is modular; it can be ap-
plied to word vector representations obtained from
any model as the updates in Eq. 1 are agnostic to the
original vector training model objective.

Semantic Lexicons during Learning. Our pro-
posed approach is reminiscent of recent work on
improving word vectors using lexical resources (Yu
and Dredze, 2014; Bian et al., 2014; Xu et al., 2014)
which alters the learning objective of the original
vector training model with a prior (or a regularizer)
that encourages semantically related vectors (in ⌦)
to be close together, except that our technique is ap-
plied as a second stage of learning. We describe the

1607
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Simple retrofitting examples

∑

i∈V
αi



qi − q̂i





2
+

∑

(i,j,r)∈E
βij



qi − qj





2

α = 0
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Simple retrofitting examples
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Extensions

Drop the assumption that every edge means ‘similar’:

• Mrkšić et al. (2016) AntonymRepel, SynonymAttract, and
VectorSpacePreservation for different edge types.

• Lengerich et al. (2018): functional retrofitting to learn
the semantics of any edge types.

• This work is closely related to graph embedding
(learning distributed representations for nodes), for
which see Hamilton et al. 2017.
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Retrofitting code snippets

vsm_01_code9

April 2, 2019

In [1]: import pandas as pd
from retrofitting import Retrofitter

In [2]: Q_hat = pd.DataFrame(
[[0.0, 0.0],
[0.0, 0.5],
[0.5, 0.0]],

columns=['x', 'y'])

edges = {0: {1, 2}, 1: set(), 2: set()}

In [3]: Q_hat

Out[3]: x y
0 0.0 0.0
1 0.0 0.5
2 0.5 0.0

In [4]: retro = Retrofitter(verbose=True)

In [5]: X_retro = retro.fit(Q_hat, edges)

Converged at iteration 2; change was 0.0000

In [6]: X_retro

Out[6]: x y
0 0.125 0.125
1 0.000 0.500
2 0.500 0.000

In [7]: # For an application to WordNet, see `vsm_03_retrofitting`.

1
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