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Some Observations
● TTest reweighting (and possibly PPMI) performed consistently well, > 0.6 avg score

● SVD/LSA was particularly poor across the board, Autoencoders were only slightly 
better

● Glove dimensions needed to be > 100 for good performance

● Gigaword tended to crush IMDB

● Ensembling the datasets by adding the matrices or averaging word vectors worked 
well, > 0.6 avg score consistently

● PPMI was much better than PMI



Training Glove

● It’s interesting that Glove was 
able to adjust to arbitrary 
re-weightings/scalings of the 
co-occurence matrix

● Guilherme Reis tried plotted 
the loss curves for different 
dimensionalities of vectors

● The loss seems to plateau 
around 10k iterations



Top 3 Systems
1. Avg Score = 0.778

“I had not had any experience with NLU before this class and decided to use this 
as an opportunity to explore some of the functions we wrote in HW1. For this 
bakeoff I used imdb20. First, I reweighted my VSM using ttest-reweighting. I then 
put this reweighted VSM through an n-gram character-level VSM. The major hyper 
parameter in this problem was n, so I explored possible values for n from 3-9 and 
found that 6 produced the best results.”



Top 3 Systems
2. Avg Score = 0.721

"1. We normalized and combined the four co-occurrence matrices by adding them 
all together (keep common words only)

2. We applied PPMI followed by the t-test (that already gives us average 
pearson's r = 0.666)

3. We then applied retrofitting using PBDB (PPDB: The Paraphrase Database), 
which eventually gives us average pearson's r = 0.780"



Top 3 Systems
3.1. Avg Score = 0.699

"I changed to the "gigaword_window20-flat.csv.gz" data set since it is much richer 
given that it is not restricted to movies but to much broader newspaper articles and 
information / words. This led to an increase. Furthermore, I also deduced 6-level 
ngrams from the giga20 dataset before I extracted the PMI. After some 
hyperparameter-search, 6 ended up being the best average value for the 4 
datasets.



Top 3 Systems
3.2. Avg Score = 0.698

"Take the PPMI of the imdb5, imdb20, giga5, and giga20 datasets. Reindex the 
matrices so they each all 6021 words, filling in with 0s. Sum the matrices element 
wise. Run GloVe with n=250 and max_iter=30. [Last submission, use this one, 
thanks] r = 0.780"



Top 3 Systems
3.3. Avg Score = 0.691

"1. Merge together all four starting datasets with equal weighting on each. 2. Apply 
PPMI 3. Reduce dimensions to 400 with GloVE. To arrive at this, we did a 
hyper-parameter grid search over three different layers: 1. weighting of corpora 
(merging {1-4} corpora with different weights) 2. reweighting (PMI, PPMI, TFIDF) 
3. dimension reduction (LSA{50,100,200,400}; GloVe{100, 200, 400}) We did a 
sort of beam search, keeping the 5 best candidates from each layer.”



Other Interesting Approaches
● “Then we used downloaded human-scored dimensions of identities, actions, and situations on how good/bad 

(evaluation, E), powerful/weak (power, P), and loud/quiet (active, A) each concept is (EPA ratings)...we created a 
weighted knowledge graph where the weight of the edge was negative, mean-centered euclidean distance between 
the two concepts in EPA-space. We retrofitted our count matrix on this weighted knowledge graph (i.e. we set the 
beta of the retrofit function to the weight of each tie in the knowledge graph) with 10 iterations. Our spearman-r 
decreased after retrofitting on the EPA information.”

● “This alone gave some values moderately higher than the baseline, but wasn't particularly interesting. From there, I 
tried some matrix multiplication. In doing so, I found that, as potentially expected, multiplying the glove_test output 
vector by itself would nuke the Spearman values, but weirdly enough, multiplying that again would give a reasonable 
value. This pattern continued over all n multiplied that I tested (out to 20) - for any odd n of glove_out multiples, I'd 
get reasonable outputs (though never quite as good as n=1), while for even multiples, I'd get awful values. This is 
n=3, that is, out*out*out, which I selected both as a representative sample of the larger pattern as well as of one of 
the better examples. While not as good as the original, I thought it was pretty cool nonetheless.”

● I changed the distance function from using a cosine distance function to using a euclidean distance function. As we 
can see from the scores this actually led to a less accurate result, as euclidean distance is often not as good a 
measure of similarity due to the frequency of words. Cosine uses the angles between words which is probably why it 
was much more accurate.



Thank you!


