
Bake-off 1 Discussion
cs224u

Zachary Maurer

0 10.4 0.630.55

IMBD &
PPMI

Giga
& PPMI

0.66

Giga,
PPMI,
&
TTest

0.60

IMDB,
PPMI,
&
TTest Giga,

PPMI,
TTest, &
Retrofit

IMDB,
PPMI,
TTest, &
Retrofit

SVD
LSA

0.69 0.778

Giga &
TFIDF Giga +

IMDB,
PPMI,
Glove

Average Performance

Giga
& Glove

IMBD
& Glove

Performance of Common Combinations
IMDB +
Giga
& Retrofit
on PBDB

IMDB,
TTest,
Char
nGrams

Giga &
NGrams

Some Observations
● TTest reweighting (and possibly PPMI) performed consistently well, > 0.6 avg score

● SVD/LSA was particularly poor across the board, Autoencoders were only slightly
better

● Glove dimensions needed to be > 100 for good performance

● Gigaword tended to crush IMDB

● Ensembling the datasets by adding the matrices or averaging word vectors worked
well, > 0.6 avg score consistently

● PPMI was much better than PMI

Training Glove

● It’s interesting that Glove was
able to adjust to arbitrary
re-weightings/scalings of the
co-occurence matrix

● Guilherme Reis tried plotted
the loss curves for different
dimensionalities of vectors

● The loss seems to plateau
around 10k iterations

Top 3 Systems
1. Avg Score = 0.778

“I had not had any experience with NLU before this class and decided to use this
as an opportunity to explore some of the functions we wrote in HW1. For this
bakeoff I used imdb20. First, I reweighted my VSM using ttest-reweighting. I then
put this reweighted VSM through an n-gram character-level VSM. The major hyper
parameter in this problem was n, so I explored possible values for n from 3-9 and
found that 6 produced the best results.”

Top 3 Systems
2. Avg Score = 0.721

"1. We normalized and combined the four co-occurrence matrices by adding them
all together (keep common words only)

2. We applied PPMI followed by the t-test (that already gives us average
pearson's r = 0.666)

3. We then applied retrofitting using PBDB (PPDB: The Paraphrase Database),
which eventually gives us average pearson's r = 0.780"

Top 3 Systems
3.1. Avg Score = 0.699

"I changed to the "gigaword_window20-flat.csv.gz" data set since it is much richer
given that it is not restricted to movies but to much broader newspaper articles and
information / words. This led to an increase. Furthermore, I also deduced 6-level
ngrams from the giga20 dataset before I extracted the PMI. After some
hyperparameter-search, 6 ended up being the best average value for the 4
datasets.

Top 3 Systems
3.2. Avg Score = 0.698

"Take the PPMI of the imdb5, imdb20, giga5, and giga20 datasets. Reindex the
matrices so they each all 6021 words, filling in with 0s. Sum the matrices element
wise. Run GloVe with n=250 and max_iter=30. [Last submission, use this one,
thanks] r = 0.780"

Top 3 Systems
3.3. Avg Score = 0.691

"1. Merge together all four starting datasets with equal weighting on each. 2. Apply
PPMI 3. Reduce dimensions to 400 with GloVE. To arrive at this, we did a
hyper-parameter grid search over three different layers: 1. weighting of corpora
(merging {1-4} corpora with different weights) 2. reweighting (PMI, PPMI, TFIDF)
3. dimension reduction (LSA{50,100,200,400}; GloVe{100, 200, 400}) We did a
sort of beam search, keeping the 5 best candidates from each layer.”

Other Interesting Approaches
● “Then we used downloaded human-scored dimensions of identities, actions, and situations on how good/bad

(evaluation, E), powerful/weak (power, P), and loud/quiet (active, A) each concept is (EPA ratings)...we created a
weighted knowledge graph where the weight of the edge was negative, mean-centered euclidean distance between
the two concepts in EPA-space. We retrofitted our count matrix on this weighted knowledge graph (i.e. we set the
beta of the retrofit function to the weight of each tie in the knowledge graph) with 10 iterations. Our spearman-r
decreased after retrofitting on the EPA information.”

● “This alone gave some values moderately higher than the baseline, but wasn't particularly interesting. From there, I
tried some matrix multiplication. In doing so, I found that, as potentially expected, multiplying the glove_test output
vector by itself would nuke the Spearman values, but weirdly enough, multiplying that again would give a reasonable
value. This pattern continued over all n multiplied that I tested (out to 20) - for any odd n of glove_out multiples, I'd
get reasonable outputs (though never quite as good as n=1), while for even multiples, I'd get awful values. This is
n=3, that is, out*out*out, which I selected both as a representative sample of the larger pattern as well as of one of
the better examples. While not as good as the original, I thought it was pretty cool nonetheless.”

● I changed the distance function from using a cosine distance function to using a euclidean distance function. As we
can see from the scores this actually led to a less accurate result, as euclidean distance is often not as good a
measure of similarity due to the frequency of words. Cosine uses the angles between words which is probably why it
was much more accurate.

Thank you!

