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The task
Problem: Word-level natural language inference.

Training examples are pairs of words (wL,wR), y with y a relation in

● synonym: very roughly identical meanings; symmetric
● hyponym: e.g., puppy is a hyponym of dog
● hypernym: e.g., dog is a hypernym of puppy
● antonym: semantically opposed within a domain; symmetric

The goal: achieve the highest average F1 score on word_disjoint.



Weighted F1 was the wrong metric!

            precision    recall  f1-score   support
    antonym       0.00      0.00      0.00       150
   hypernym       0.54      0.43      0.48      1594
    hyponym       0.22      0.01      0.03       275
    synonym       0.59      0.77      0.67      2229
   avg / total       0.52      0.57      0.53      4248

Chris's regret: allowing the bake-off to default to weighted F1 as the core metric.
Why? Clever modeling choices can lead to huge gains on the smallest classes, but these are hardly 
reflected in the final score if we micro-average. 
Consider this hypothetical report where antonym goes from 0 to 0.50:

            precision    recall  f1-score   support
    antonym       0.45      0.55      0.50       150
   hypernym       0.54      0.43      0.48      1594
    hyponym       0.22      0.01      0.03       275
    synonym       0.59      0.77      0.67      2229
   avg / total       0.52      0.57      0.55      4248

Hardly any change to the final score! Unfair!



Weighted F1 was the wrong metric!

Suppose we had instead used macro-averaging. Then:

Baseline: 0.3

Hypothetical result with antonym at 0.50: 0.42



1st Place
kvchen, el168 

F1: 0.62 

“Used 200d GloVE vectors, inverted relationships between 
synonyms/antonyms. Tried multiple approaches to augmenting dataset 
(inverting hypernyms/hyponyms, using all combinations of synonyms within a 
synonym "set", creating DAG for hyper/hyponyms for longer chained relationships) 
but these all lowered the F1 score.”



2nd Place
Jayadev,keshav2
F1: 0.6
"To represent words, we used word vectors described in Mrksic et al. 2016 (Counter-fitting Word Vectors 
to Linguistic Constraints), where they apply antonymy and synonymy constraints on top of pretrained 
word vectors (Source: https://github.com/nmrksic/counter-fitting). 
To combine inputs, we concatenated the sum and difference of their vector representations. Given 
that the word vectors we used were expected to have synonyms clustered together, we thought that this 
would help distinguish synonyms/antonyms in different dimensions.
The model we used was a simple neural network with one hidden layer of size 1000 (using sklearn's 
MLPClassifier).
One interesting feature of these word embeddings was the large increase in F1 score for antonyms, 
from ~0% (baseline) or ~10-15% (300d GloVe embeddings) to ~40%. " 



3rd Place
Cholden

F1: 0.58

“I kept the majority of the baseline method, changing the hidden dimensionality 
variable to 350, and max iterations to 650. Additionally, I implemented 
combinations to include commutative and transitive properties as discussed in 
the Notes section. Otherwise, word representation remained the same.” 



Vector combinations
● Concatenating
● Adding
● Subtracting
● Elementwise-multiplying
● Averaging



Data Augmentation
● “adding hyponyms of the form [[A,C], 'hyponym'] when we found the training 

corpus to have [[A,B], 'hyponym'] and [[B,C], 'hyponym']”
● “using commutativity of the synonym and antonym relations and by adding (x, 

y), 'hypernym' if (y, x), 'hyponym' is in the data (and vice versa)”
● “If A is a hyponym to B, and B is a hyponym to C, then A is a hyponym to C”
● “creating DAG for hyper/hyponyms for longer chained relationships”


