
Semparse Bakeoff

Kelsey Josund / CS224U / Spring 2018

A few people got 100%
(denotation accuracy 1.0)

Certain initializations work better. Start making "guesses" about what each symbol was by
eliminating alternatives from lexical rules and keeping the guess if the accuracies remained high.

For example, after adding 'if w == 'glarc' and i != 0: continue' to eliminate adding lexical rules other
than glarc == 1, oracle accuracy only decrease by ~1% and training and dev accuracy consistently
stayed above 20%. After doing this a few times, train accuracy maxed out ~58%, but oracle
accuracy dropped to ~90%.

Added some new unary functions lambda x: x and lambda x: abs(x). These improved the oracle
accuracy back up to 100%, and the training model favored abs(x). With these added, dev
accuracy jumped up to ~90%.

There were issues with cases like 3-4-5 being interpreted as 3-(4-5), so selecting for how
"left-leaning" a tree is to prioritize earlier operations first when all else is equal helps. This was
computed recursively by counting nodes and adding 2x priority to left nodes. I also added a
count of total number of nodes. I also added the operator precedence feature.

Train 96%, dev 98%. Just by locking in the rest of the feature rules (scincs = 4, sherle = 5, fribbs = 2,
volms = 3, kugns = 1 and sniese=+, sklofg=-,thouch=~,scwokt=abs), I could get train 100%, dev 100%
(it could learn precedence on its own given complete lexical information, but not with partial).

Added and modified operator_precedence_features to traverse the tree and add
features (op1, op2), (op1), (op2) whenever op1 appears lower in the tree than op2,

using the default sgd with hinge loss for optimization.

The missing operator was the unary 'abs' (absolute value) and that '*' (multiplication)
did not occur in the dataset.

I started with ArithmeticDomain.operator_precedence_features.

Looking at misclassified samples I noticed that many of the mistakes made by the
model was predicting the wrong "depth" of application for unary operators, where
applying the unary operator at a shallower depth would have resulted in the correct
denotation.

A second feature function looked at the maximum depth of any child of an operator
and counted the number of times an operator appears at a certain depth.

This boosted accuracy from 0.88 to 0.96

Optimization settings: T=20, loss='log', l2_penalty=0.0001, eta=0.005

For a feature function, we used the provided featurizer along with the suggested
operator precedence featurizer.

We used the provided optimization hyperparameters except we used a learning rate
of 0.3 rather than 0.5.

We also recognized that there were only two binary and two unary ops in the training
set, and through ablative analysis we were able to identify addition, subtraction,
negation, and absolute value as the most likely candidates for these four ops.

We removed all other ops, allowing us to increase the maximum cell size while still
allowing us to train our model in a reasonable amount of time.

Final denotation accuracy was 0.8.

Commonalities:
● traversing the tree
● studying errors very

closely

