Bringing machine learning \& compositional semantics together: approaches

https://github.com/cgpotts/annualreview-complearning

Chris Potts
Stanford Linguistics

CS 244U: Natural language understanding

Semantic parsing

$\langle u, t, r, d\rangle$

Basic formulation

	Utterance	Logical form
Train	seven minus five	(-75)
	five minus seven	(-57)
	three plus one	$\left(\begin{array}{ll}-7 & 5\end{array}\right)$
	minus three plus one	($+\neg$ 1 1)
	minus three plus one	$\neg(+31)$
	two minus two times two	$(\times(-22) 2)$
	two minus two times two	$(-2(\times 22))$
	two plus three plus four	$(+2(+34))$
Test	three minus one	?
	three times one	?
	minus six times four	?
	one plus three plus five	?
	:	

Table: Data requirements.

Basic formulation

$\left.\begin{array}{ll}\hline \text { Utterance } & \text { Logical form } \\ \hline \text { seven minus five } & \left(\begin{array}{lll}-7 & 5\end{array}\right) \\ \text { five minus seven } & \left(\begin{array}{ll}- & 5\end{array}\right) \\ \text { three plus one } & \left(\begin{array}{lll}-7 & 5\end{array}\right) \\ \text { minus three plus one } & \left(\begin{array}{ll}+ & 7 \\ \hline\end{array}\right. \\ \hline\end{array}\right)$

Table: Data requirements.

Syntax	Logical form
$\mathrm{N} \rightarrow$ one	1
$\mathrm{~N} \rightarrow$ one	2
	\vdots
$\mathrm{~N} \rightarrow$ two	1
$\mathrm{~N} \rightarrow$ two	2
	\vdots
$\mathrm{R} \rightarrow$ plus	+
$\mathrm{R} \rightarrow$ plus	-
$\mathrm{R} \rightarrow$ plus	\times
$\mathrm{R} \rightarrow$ minus	+
$\mathrm{R} \rightarrow$ minus	-
$\mathrm{R} \rightarrow$ minus	\times
$\mathrm{R} \rightarrow$ times	+
$\mathrm{R} \rightarrow$ times	-
$\mathrm{R} \rightarrow$ times	\times
$\mathrm{S} \rightarrow$ minus	\neg
$\mathrm{N} \rightarrow$ S N	$\ulcorner\mathrm{~S}\urcorner\ulcorner\mathrm{N}\urcorner$
$\mathrm{N} \rightarrow \mathrm{N}_{L} \mathrm{R} \mathrm{N}_{R}$	$\left(\ulcorner\mathrm{R}\urcorner\left\ulcorner\mathrm{N}_{L}\right\urcorner\left\ulcorner\mathrm{N}_{R}\right\urcorner\right)$

Table: Crude grammar.

Learning framework

Learning framework

(1) Feature representations: $\phi(x, y) \in \mathbb{R}^{d}$

Learning framework

(1) Feature representations: $\phi(x, y) \in \mathbb{R}^{d}$
(2) Scoring: $\operatorname{Score}_{\mathrm{w}}(x, y)=\sum_{j=1}^{d} w_{j} \phi(x, y)_{j}$

Learning framework

(1) Feature representations: $\phi(x, y) \in \mathbb{R}^{d}$
(2) Scoring: $\operatorname{Score}_{\mathrm{w}}(x, y)=\sum_{j=1}^{d} w_{j} \phi(x, y)_{j}$
(3) Multiclass hinge-loss objective function:

$$
\min _{\mathbf{w} \in \mathbb{R}^{d}} \sum_{(x, y) \in \mathcal{D}^{\prime}} \max _{y^{\prime} \in \operatorname{GEN}(x)}\left[\operatorname{Score}_{\mathbf{w}}\left(x, y^{\prime}\right)+c\left(y, y^{\prime}\right)\right]-\operatorname{Score}_{\mathbf{w}}(x, y)
$$

where \mathcal{D} is a set of (x, y) training examples and $c(a, b)=1$ if $a \neq b$, else 0 .

Learning framework

(1) Feature representations: $\phi(x, y) \in \mathbb{R}^{d}$
(2) Scoring: $\operatorname{Score}_{\mathrm{w}}(x, y)=\sum_{j=1}^{d} w_{j} \phi(x, y)_{j}$
(3) Multiclass hinge-loss objective function:

$$
\min _{\mathbf{w} \in \mathbb{R}^{d}} \sum_{(x, y) \in \mathcal{D}^{y^{\prime} \in \operatorname{GEN}(x)}} \max _{\mathrm{w}}\left[\operatorname{Score}_{\mathbf{w}}\left(x, y^{\prime}\right)+c\left(y, y^{\prime}\right)\right]-\operatorname{Score}_{\mathbf{w}}(x, y)
$$

where \mathcal{D} is a set of (x, y) training examples and $c(a, b)=1$ if $a \neq b$, else 0 .
(4) Optimization:

StochasticGradientDescent(\mathcal{D}, T, η)
1 Initialize w $\leftarrow \mathbf{0}$
2 Repeat T times
for each $(x, y) \in \mathcal{D}$ (in random order)
$\tilde{y} \leftarrow \arg \max _{y^{\prime} \in \operatorname{Gen}(x)} \operatorname{Score}_{\mathrm{w}}\left(x, y^{\prime}\right)+c\left(y, y^{\prime}\right)$
$\mathbf{w} \leftarrow \mathbf{w}+\eta(\phi(x, y)-\phi(x, \tilde{y}))$
6 Return w

Example

(a) Candidates $\operatorname{GEN}(x)$ for utterance $x=$ two times two plus three

Example

(a) Candidates $\operatorname{GEN}(x)$ for utterance $x=$ two times two plus three

$$
\phi\left(x, y_{1}\right)=\begin{array}{r}
\mathrm{R}: \times[\text { times }]: 1 \\
\mathrm{R}:+[\text { plus }]: 1 \\
\operatorname{top}[\mathrm{R}:+]: 1
\end{array}
$$

$$
\phi\left(x, y_{2}\right)=\begin{array}{r}
\mathrm{R}:+[\text { times }]: 1 \\
\mathrm{R}:+[p l u s]: 1 \\
\operatorname{top}[\mathrm{R}:+]: 1
\end{array}
$$

Example

(a) Candidates GEN (x) for utterance $x=$ two times two plus three

$$
\left.\phi\left(x, y_{1}\right)=\begin{array}{r}
\mathrm{R}: \times[\text { times }]: 1 \\
\mathrm{R}:+[p l u s]: 1 \\
\operatorname{top}[\mathrm{R}:+]: 1
\end{array} \right\rvert\,
$$

$$
\phi\left(x, y_{2}\right)=\begin{array}{r}
\mathrm{R}:+[\text { times }]: 1 \\
\mathrm{R}:+[p l u s]: 1 \\
\operatorname{top}[\mathrm{R}:+]: 1
\end{array}
$$

(b) Learning from logical forms (Section 4.1)

Iteration 1

$\mathbf{w}=$| $\begin{array}{r}\mathrm{R}: \times[\text { times }]: 0 \\ \mathrm{R}:+[\text { times }]: 0 \\ \mathrm{R}:+[\text { plus }]: 0 \\ \operatorname{top}[\mathrm{R}:+]: 0 \\ \operatorname{top}[\mathrm{R}: \times]: 0\end{array}$ | $\begin{array}{l}\text { Scores: }[0,0,0] \\ \end{array}$ |
| ---: | :--- |
| $\tilde{y}=y_{1}$ | |

Iteration 2

$\Rightarrow \quad \mathbf{w}=\begin{gathered}\mathrm{R}: \times[\text { times }]: 0 \\ \mathrm{R}:+[\text { times }]: 0 \\ \mathrm{R}:+[\text { plus }]: 0 \\ \text { top }[\mathrm{R}:+]: 1 \\ \text { top }[\mathrm{R}: \times]:-1\end{gathered}$

Iteration 3

\(\begin{array}{lll}Scores:[1,1,-1]

y=y_{1}

\tilde{y}=y_{2}\end{array} \quad \Rightarrow \quad \mathbf{w}=\)| $\begin{array}{c}\mathrm{R}: \times[\text { times }]: 1 \\ \mathrm{R}:+[\text { times }]:-1 \\ \mathrm{R}:+[\text { plus }]: 0 \\ \operatorname{top}[\mathrm{R}:+]: 1 \\ \operatorname{top}[\mathrm{R}: \times]:-1\end{array}$ |
| :---: | \(\begin{aligned} \& Scores:[2,0,0]

\& y=y_{1}

\& \tilde{y}=y_{1}\end{aligned}\)

Derivational ambiguity

Syntax	Logical form
$\mathrm{N} \rightarrow$ one	1
$\mathrm{~N} \rightarrow$ two	2
	\vdots
$\mathrm{R} \rightarrow$ plus	+
$\mathrm{R} \rightarrow$ minus	-
$\mathrm{R} \rightarrow$ times	\times
$\mathrm{S} \rightarrow$ minus	\neg
$\mathrm{N} \rightarrow \mathrm{S} N$	$\ulcorner\mathrm{~S}\urcorner\ulcorner\mathrm{N}\urcorner$
$\mathrm{N} \rightarrow \mathrm{N}_{L} \mathrm{R} \mathrm{N}_{R}$	$\left(\ulcorner\mathrm{R}\urcorner\left\ulcorner\mathrm{N}_{L}\right\urcorner\left\ulcorner\mathrm{N}_{R}\right\urcorner\right)$
$\mathrm{Q} \rightarrow n$	$(\lambda f(f\ulcorner n\urcorner))$
$\mathrm{N} \rightarrow \mathrm{U} \mathrm{Q}$	$(\ulcorner\mathrm{Q}\urcorner\ulcorner\mathrm{U}\urcorner)$

Table: Grammar with type-lifting.

Training instance: (minus three, $\neg 3$)

(Beta-conversion $\stackrel{\beta}{\Rightarrow}$ is the syntactic counterpart of functional application.)

Derivations as latent variables

- The training instances are (u, r) pairs.
- Since r might have multiple derivations, derivations are latent variables.
- Latent support vector machine objective:

$$
\min _{\mathbf{w} \in \mathbb{R}^{d}} \sum_{(x, r) \in \mathcal{D}} \max _{y^{\prime} \in \operatorname{GeN}(x)}\left[\operatorname{Score}_{\mathbf{w}}\left(x, y^{\prime}\right)+c\left(r, \operatorname{Root}\left(y^{\prime}\right)\right)\right]-\max _{y^{\prime \prime} \in \operatorname{GEN}(x, r)} \operatorname{Score}_{\mathbf{w}}\left(x, y^{\prime \prime}\right),
$$

where \mathcal{D} is a set of (utterance, formula) pairs; $c(a, b)=1$ if $a \neq b$, else 0 ; and $\operatorname{Gen}(x, r)=\{y \in \operatorname{Gen}(x): \operatorname{Root}(y)=r\}$

- Optimization:

StochasticGradientDescent (\mathcal{D}, T, η)
1 Initialize w $\leftarrow \mathbf{0}$
2 Repeat T times
3 for each $(x, r) \in \mathcal{D}$ (in random order)
$4 \quad y \leftarrow \arg \max _{y^{\prime \prime} \in \operatorname{Gen}(x, r)} \operatorname{Score}_{\mathrm{w}}\left(x, y^{\prime \prime}\right)$
$5 \quad \tilde{y} \leftarrow \arg \max _{\mathrm{y}^{\prime} \in \operatorname{Gen}(x)} \operatorname{Score}_{\mathrm{w}}\left(x, y^{\prime}\right)+c\left(y, y^{\prime}\right)$
$6 \quad \mathbf{w} \leftarrow \mathbf{w}+\eta(\phi(x, y)-\phi(x, \tilde{y}))$
7 Return w

Learning from denotations

$\langle u, t, r, d\rangle$

Motivations

Semantic parsing

-What is the largest city in California?

- $\arg \max (\{c: \operatorname{city}(c) \wedge \operatorname{loc}(c, C A)\}$, population $)$

Interpretive

- What is the largest city in California?
- Los Angeles.

Basic formulation

Utterance	Denotation
seven minus five	2
five minus seven	-2
three plus one	4
minus three plus one	-2
Train minus three plus one	-4
two minus two times two	0
two minus two times two	-2
two plus three plus four	9
three minus one	$?$
three times one	$?$
Test minus six times four	$?$
one plus three plus five	$?$

Table: Data requirements.

Basic formulation

Syntax	Logical form	Denotation
$N \rightarrow$ one	1	1
$\mathrm{N} \rightarrow$ one	2	2
	:	
$\mathrm{N} \rightarrow$ two	1	1
$\mathrm{N} \rightarrow$ two	2	2
	.	
	1	
$R \rightarrow$ plus	$+$	addition
$R \rightarrow$ plus	-	subtraction
$R \rightarrow$ plus	\times	multiplication
$R \rightarrow$ minus	+	addition
$R \rightarrow$ minus	-	subtraction
$R \rightarrow$ minus	\times	multiplication
$R \rightarrow$ times	$+$	addition
$R \rightarrow$ times	-	subtraction
$R \rightarrow$ times	\times	multiplication
$S \rightarrow \text { minus }$	\neg	negative
$N \rightarrow S N$	$\ulcorner\mathrm{S}\urcorner \mathrm{\Gamma} \mathrm{~N}$	[$[\mathrm{S} \backslash \rrbracket(\llbracket\ulcorner\mathrm{N} \backslash \rrbracket)$
$\mathrm{N} \rightarrow \mathrm{N}_{L} \mathrm{R}$	$\left(\ulcorner R\urcorner\left\ulcorner N_{L}\right\urcorner\ulcorner\right.$	$\left.\llbracket\ulcorner\mathrm{R}\urcorner \rrbracket\left(\llbracket\left\ulcorner\mathrm{N}_{L}\right\urcorner \rrbracket, \llbracket\left\ulcorner\mathrm{N}_{R}\right\urcorner \rrbracket\right]\right)$

Table: Data requirements.

Learning framework

Feature representations and scoring are as before.
(1) Latent support vector machine objective:

$$
\min _{\mathbf{w} \in \mathbb{R}^{d}} \sum_{(x, d) \in \mathcal{D}} \max _{y^{\prime} \in \operatorname{GeN}(x)}\left[\operatorname{Score}_{\mathbf{w}}\left(x, y^{\prime}\right)+c\left(d, \llbracket y^{\prime} \rrbracket\right)\right]-\max _{y \in \operatorname{GEN}(x, d)} \operatorname{Score}_{\mathbf{w}}(x, y),
$$

where $\operatorname{Gen}(x, d)=\{y \in \operatorname{Gen}(x): \llbracket y \rrbracket=d\}$ is the set of logical forms that evaluate to denotation d.
(2) Optimization:

StochasticGradientDescent(\mathcal{D}, T, η)
1 Initialize w $\leftarrow \mathbf{0}$
2 Repeat T times
3 for each $(x, d) \in \mathcal{D}$ (in random order)
$4 \quad y \leftarrow \arg \max _{y^{\prime \prime} \in \operatorname{GEN}(x, d)} \operatorname{Score}_{\mathrm{w}}\left(x, y^{\prime \prime}\right)$
$5 \quad \tilde{y} \leftarrow \arg \max _{y^{\prime} \in \operatorname{GEN}(x)} \operatorname{Score}_{\mathrm{w}}\left(x, y^{\prime}\right)+c\left(y, y^{\prime}\right)$
$6 \quad \mathbf{w} \leftarrow \mathbf{w}+\eta(\phi(x, y)-\phi(x, \tilde{y}))$
7 Return w

Example

(a) Candidates GEN (x) for utterance $x=$ two times two plus three

Example

(a) Candidates GEN (x) for utterance $x=$ two times two plus three

$$
\phi\left(x, y_{1}\right)=\begin{array}{r}
\mathrm{R}: \times[\text { times }]: 1 \\
\mathrm{R}:+[p l u s]: 1 \\
\operatorname{top}[\mathrm{R}:+]: 1
\end{array}
$$

y_{2}

$$
\phi\left(x, y_{2}\right)=\begin{array}{r}
\mathrm{R}:+[\text { times }]: 1 \\
\mathrm{R}:+[\text { plus }]: 1 \\
\text { top }[\mathrm{R}:+]: 1
\end{array}
$$

(c) Learning from denotations (Section 4.2)

Iteration 1

$\mathbf{w}=\begin{aligned} \mathrm{R}: \times[\text { times }]: 0 \\ \mathrm{R}:+[\text { times }]: 0 \\ \mathrm{R}:+[\text { plus }]: 0 \\ \text { top }[\mathrm{R}:+]: 0 \\ \text { top }[\mathrm{R}: \times]: 0\end{aligned} ~\left(\begin{array}{ll}\mathrm{Scores}:[0,0,0] & \operatorname{GEN}(x, d)=\left\{y_{1}, y_{2}\right\} \\ y=y_{1}\left(\text { tied with } y_{2}\right) \\ \tilde{y}=y_{3}\end{array} \quad \Rightarrow \quad \mathbf{w}=\begin{array}{r}\text { R: } \times[\text { times }]: 0 \\ \mathrm{R}:+[\text { times }]: 0 \\ \mathrm{R}:+[\text { plus }]: 0 \\ \operatorname{top}[\mathrm{R}:+]: 1 \\ \operatorname{top}[\mathrm{R}: \times]:-1\end{array} \quad \begin{array}{l}\text { Scores: }[1,1,-1] \\ \mathrm{GEN}(x, d)=\left\{y_{1}, y_{2}\right\} \\ \left.y=y_{1} \text { (tied with } y_{2}\right) \\ \left.\tilde{y}=y_{1} \text { (tied with } y_{2}\right)\end{array}\right.$

