
Models for natural language
inference

Christopher Potts and Bill MacCartney
CS224u, Stanford, Spring 2016

Plan and goals for today
1. More details on NLI as a task

2. Strategies for defining NLI features

3. Break to define some features ourselves

4. Neural architectures for NLI

5. A few notes on assignment 4 and NLI projects

Simple examples
Premise Relation Hypothesis

1. turtle contradicts linguist

2. A turtle danced. entails A turtle moved.

3. Every reptile danced. entails Every turtle moved.

4. Some turtles walk. contradicts No turtles move.

5. James Byron Dean refused to move
without blue jeans. entails James Dean didn’t dance without

pants.

6. Mitsubishi Motors Corp’s new vehicle
sales in the US fell 46 percent in June. contradicts Mitsubishi’s sales rose 46 percent.

7. Acme Corporation reported that its
CEO resigned. entails Acme’s CEO resigned.

NLI task formulation
Does the premise justify an inference to the hypothesis?
● Commonsense reasoning, rather than strict logic.
● Focus on local inference steps, rather than long deductive chains.
● Emphasis on variability of linguistic expression.

Perspectives:
● Zaenen, Karttunen, Crouch (2005): Local textual inference: can it be defined

or circumscribed?
● Manning (2006): Local textual inference: it’s hard to circumscribe, but you

know it when you see it – and NLP needs it.
● Crouch, Karttunen, Zaenen (2006): Circumscribing is not excluding: a reply to

Manning.

Connections to other tasks
Dagan et al. (2006), ‘The PASCAL Recognizing Textual Entailment Task’

“The Recognizing Textual Entailment (RTE) Challenge is an attempt to
promote an abstract generic task that captures major semantic inference
needs across applications.

[...]

It seems that major inferences, as needed by multiple applications, can
indeed be cast in terms of textual entailment.”

Connections to other tasks (Dagan et al. 2006)
Question Answering: Given a question (premise), identify a text that entails an
answer (hypothesis).

Information Retrieval: Given a query (hypothesis), identify texts that entail that
query (premises).

Summarization: Given a text (premise) T, create or identify a text that T entails.

Summarization: Omit sentences that are entailed by others.

Machine translation: Mutual entailment between texts in different languages.

Models for NLI

robust, shallow

deep, brittle

logic and
theorem
proving Natural

Logic
semantic

graph
matching

n-gram
overlap

neural
models (???)

effectiveness

de
pt

h
of

 re
pr

es
en

ta
tio

ns

clever
hand-built
features

Bos & Markert (2005), ‘Recognizing textual entailment with logical inference’.

MacCartney (2009), Natural Language Inference.

Hickl et al. (2006), ‘Recognizing textual entailment with LCC’s GROUNDHOG system’.
MacCartney et al. (2006), ‘Learning to recognize features of valid textual entailments’

For discussion, see Bowman et al. (2015), ‘A
large annotated corpus for learning natural
language inference’.

A standard baseline, often very robust!

See the Excitement Open Platform

Labels
couch
sofa

crow
bird

bird
crow

hippo
hungry

turtle
linguist

2-way
RTE 1,2,3

Yes

entailment

No

non-entailment

3-way
RTE4,

FraCaS, SNLI

Yes

entailment

Unknown

non-entailment

No

contradiction

4-way
Sánchez-
Valencia

P ≡ Q

equivalence

P ⊏ Q

forward

P ⊐ Q

reverse

P # Q

non-entailment

NatLog inference relations (MacCartney)
The seven elementary, mutually exclusive, non-vacuous set relations:

VenX ≡ Y equivalence couch ≡ sofa

X ⊏ Y forward entailment crow ⊏ bird

X ⊐ Y reverse entailment European ⊐ French

X ^ Y negation human ^ non-human

X | Y alternation cat | dog

X ⌣ Y cover animal ⌣ non-human

X # Y independence hungry # hippo

Monotonicity
Upward monotone: preserve entailments from subsets to supersets:

Downward monotone: preserve entailments from supersets to subsets:

Non-monotone: do not preserve entailment in either direction.

A reptile moved

A turtle moved A reptile danced

turtle

reptileNo reptile moved

No turtle moved No reptile danced

turtle

reptile

Downward monotonicity in language
● Negations (e.g., not, n’t, never, no, nothing, nowhere, none, neither)

● The first argument of every (turtle in every turtle danced)

● Determiners like at most, few, fewer/less than

● Conditional antecedents (if-clauses)

● Negative implicatives (e.g., forget to, refuse to, hesitate to)

● Negative attitude verbs like doubt and deny (at least approximately)

● Adverbs like rarely and hardly

Upward monotonicity in language
● Upward monotonicity is sort of the default for lexical items

● Most determiners (e.g., a, some, at least, more than)

● The second argument of every (danced in every turtle danced)

● Positive implicatives (e.g., manage to, succeed to, force to)

Monotonicity features
● Edits that broaden/weaken preserve forward entailment:

○ Deleting modifiers
○ Changing specific terms to more general ones.
○ Dropping conjuncts, adding disjuncts.

● Edits that narrow/strengthen do not preserve forward entailment:
○ Adding modifiers
○ Changing general terms to specific ones.
○ Adding conjuncts, dropping disjuncts.

● In downward monotone environments, the above are reversed.

Projectivity signature for negation (HW4, problem 3)

X | Y not-X # not-Y X ⊏ not-Y not-X ⊐ Y

X = Y not-X = not-Y X | not-Y not-X | Y

X # Y not-X # not-Y X # not-Y not-X # Y

X ⊏ Y not-X ⊐ not-Y X | not-Y not-X # Y

X ⊐ Y not-X ⊏ not-Y X # not-Y not-X | Y

For more projectivity signatures (which suggest features): MacCartney
and Manning (2010), ‘An extended model of natural logic’.

NLI datasets (slide from Sam Bowman)
Corpus Complete

Sentences
Human Labeled Size

(num. pairs)

FraCaS ✓ ✓ .3k

RTE 1-5 ✓ ✓ 7k

SICK ✓ ✓ 10k

SNLI ✓ ✓ 570k

DenotationGraph ✗ ✗ 728k

Levy Graphs ✗ ✗ 1,500k

PPDB 2.0 ✗ ✗ 100,000k

Hand-built, logic-driven systems

Bos and Markert (2005),
‘Recognising Textual Entailment with
Logical Inference’

Linear classifiers for NLI
● Formulation as a standard supervised learning task

● Generally large, sparse features spaces

● Standard baselines: n-gram overlap, n-gram cross-product

● Systems tend to draw on rich external lexical resources

● Features approximate important aspects of semantic composition, including
the monotonicity and projectivity facts discussed above

● Popular, powerful open-source system: Excitement Open Platform

http://hltfbk.github.io/Excitement-Open-Platform/

Linear classifiers: hands-on exploration

def word_cross_product_phi(t1, t2):
words1 = t1.leaves()
words2 = t2.leaves()
feat_dict = Counter([(w1, w2)

for w1, w2 in product(words1, words2)])
return feat_dict

linear_classifier_experiment(phi=word_cross_product_phi)

● Notebook is nli.ipynb
● Make sure you have the nli-data distribution.
● Load in everything up to linear_classifier_experiment

https://web.stanford.edu/class/cs224u/data/nli-data.zip

Deep classifiers for NLI
● Only recently became competitive on this task, due to a lack of data

● SNLI enabled proper training of neural models

● For NLI, neural models are arguably currently superior to standard linear
classifiers with cool features, but I expect more jockeying for the lead between
these two communities

● Tasks like NLI offer some interesting design options to explore:

○ How to represent each sentence?

○ How to represent the relationship between the sentences?

Why

Wxh

Feed-forward architecture

every dog danced every poodle moved

x3 x2 x1 x3 x5 x4combo()

hidden layer

y
h = f(xWxh + bh)

y = g(hWhy + by)

combo must combine
sequences of any length
into a fixed dimensional
vector (lots of info loss)

Like all the architectures
discussed here, more hidden
layers can be added.

Embedding
look-up

Arrows indicate forward
propagation; backprop
reverses the arrows.

Whh WhhWhh Whh
Whh Whh

Why

Wxh Wxh Wxh WxhWxh Wxh

every dog danced every poodle moved

x3 x2 x1 x3 x5 x4

h1 h2 h3 h4 h5 h6

y

h0

Recurrent architectures: simple classifiers
ht = f(xtWxh + ht-1Whh)

y = g(hnWhy + b)

Whh WhhWhh Whh
Whh Whh

Why

Wxh Wxh Wxh WxhWxh Wxh

every dog danced every poodle moved

x3 x2 x1 x3 x5 x4

h1 h2 h3 h4 h5 h6

y

h0

Recurrent architectures: chained
Same as the classifier RNN, but separate input and
hidden weights for premise and hypothesis. The
hypothesis RNN is initialized with the final premise state.

Gated cells
● The standard RNN formulation can easily lead to exploding or vanishing

gradients for long sequences. (With our code, you might experience this even
with our short-sentence fragment of SNLI.)

● Long Short-Term Memory (LSTM) and Gated Recurrent Unit (CRU) cells
address this by introducing controlled notions of memory.

● The memory cells preserve gradient information, and the gating functions
control the degree to which the current input affects the memory.

● Tree RNNs also have gradient-size problems, and they too can benefit from
gated cells (Tai et al. (2015), ‘Improved semantic representations from tree-
structured long short-term memory networks’).

WhhWhhWhh WhhWhh Whh

Wxh Wxh Wxh WxhWxh Wxh

every dog danced every poodle moved

x3 x2 x1 x3 x5 x4

h4 h5

f([c;h6]Wc)

h0 h6h1 h2 h3

c

α = [s(h1,h6), s(h2,h6), s(h3,h6)]

y
Attention

Weighted average of
premise vectors, as
determined by α

All hidden states
can participate.
With only a single
output label, this is
meaningful only if
the score function
includes learned
parameters.

score function s may depend on weights
Wa. See Luong et al. (2015), ‘Effective
approaches to attention-based neural
machine translation’.

Whh WhhWhh
WhhWhh Whh

Why

Wxh
Wxh Wxh WxhWxh Wxh

every dog danced every poodle moved

x3 x2 x1
x3 x5 x4

h1 h2
hB hC hD

y

h0

Recurrent architectures:
pooled RNNs

hA

combo(h3, hD)

Likely to be
concatenation

h3

h3 and hD should be good
sentence representations

Tree-structured
architectures

every dog

dancedx3 x2

x1pA = f([x3;x4]W + b)

pB = f([pA;x1]W + b)

y

every poodle

movedx3 x5

x4pC = f([x3;x5]W + b)

pD = f([pC;x4]W + b)

combo(pB,pD)

Y Likely to be
concatenation

Leaf nodes are
looked up in the
embedding.

Other neural architectures for NLI

From http://nlp.stanford.edu/projects/snli/

http://nlp.stanford.edu/projects/snli/

Additional resources
● The Deep Learning course happening in parallel to ours (CS224d) has

excellent code, videos, and slides: http://cs224d.stanford.edu/

● Goldberg (2015), ‘A primer on neural network models for natural language
processing’

● Karpathy (2015), ‘The unreasonable effectiveness of recurrent neural
networks’

● Denny Britz (2015), ‘Recurrent neural networks tutorial’

● More NLI resources listed in our NLI notebook

http://cs224d.stanford.edu/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://nbviewer.jupyter.org/github/cgpotts/cs224u/blob/master/nli.ipynb#Additional-NLI-resources

Sam Bowman’s project ideas
Extending Bowman, Gauthier, et al. (2016), ‘A fast unified model for parsing and
sentence understanding’ (the SPINN paper):

● Can any model do as well as attention-based models on short sentence pair
classification without access to intermediate sentence part representations?

● Can neural attention models be made any more effective by having them
attend over TreeRNN nodes instead of RNN states?

● Can we build a model that learns to parse and to use those parses to guide
semantics interpretation (as in SPINN), where the semantic/text classification
objective guides the choice of parse?

A few notes on assignment 4
Question 1: Using WordNet to improve linear classifiers. The goal is to encourage
you to figure out to connect with WordNet.

Question 2: Pretrained inputs for the classifier RNN. The goal is to get you
thinking about network initialization as an important part of deep learning.

Question 3: Learning negation. The goal is to get you to consider the nature of
generalization and the role simulated data might play in evaluating deep learning
models. (Also, the logic of negation has intrinsic interest!)

[Homework link]

http://nbviewer.jupyter.org/github/cgpotts/cs224u/blob/master/nli.ipynb#Homework-4

