Pragmatic description generation with cooperative networks

Will Monroe CS224U / LINGUIST 188/288 18 May 2016

Implicatures

Work is work.

Implicatures

Will produced a series of sounds that corresponded closely to the tune of "Hey Jude."

Implicatures: Grice's maxims

- "Make your contribution as informative as required [...]
- Do not make your contribution more informative than is required. [...]
- Do not say what you believe to be false. [...]
- Avoid obscurity of expression.
- Avoid ambiguity.
- Be brief (avoid unnecessary prolixity)."

(Grice, 1970)

Implicatures: Grice's maxims

Work is work.

"Make your contribution as informative as required"

Implicatures: Grice's maxims

Will produced a series of sounds that corresponded closely to the tune of "Hey Jude."
"Be brief (avoid unnecessary prolixity)."

Implicatures: Grice's maxims

How do you like my new haircut?

"Be relevant."

Implicatures

Implicatures

"glasses"

Implicatures

"person"

RSA: Bayesian pragmatic reasoning

"hat"

\checkmark

X
X

"glasses"

\checkmark
X
\checkmark

\checkmark

\checkmark

RSA: Bayesian pragmatic reasoning
"hat"

literal (naive)
listener
"glasses"
0.5

0
0.5
"person"

0.33

0.33
0.33

RSA: Bayesian pragmatic reasoning

	00	$\underbrace{\circ}$	6
"hat"	0.33	0	0
"glasses"	0.33	0	0.5
"person"	0.33	1	0.5

RSA: Bayesian pragmatic reasoning

Recent RSA conquests

- marked verbosity
"Will produced a series of sounds..."
"Clark got the car to stop."
- ignorance implicature

A: "Does Barb live in Moscow?"
B: "She lives in Russia..."

lexical uncertainty (Smith et al. 2013;
 Bergen et al. 2014)

- metaphor
"She's such a princess."
- hyperbole
"a seven-million-dollar cup of coffee"

question under discussion
 (Kao et al. 2014a/b)

Two obstacles

1. Hand-written semantics

$$
\begin{aligned}
& S \rightarrow C, \quad S \rightarrow \neg C \\
& C \rightarrow m L s, C \rightarrow m, \quad C \rightarrow s \\
& L \rightarrow \vee, \quad L \rightarrow \wedge \\
& \llbracket m \rrbracket=\{\{\text { Mary }\},\{\text { Mary }, \text { Sue }\}\} \\
& \llbracket s \rrbracket=\{\{\text { Sue }\},\{\text { Mary }, \text { Sue }\}\}
\end{aligned}
$$

$\left(\left.\begin{array}{ll}\llbracket \text { one } \rrbracket & =\{1,2,3\} \\ \llbracket \text { two } \rrbracket & =\{2,3\} \\ \llbracket \text { whree } \rrbracket & =\{3\} \\ \llbracket \text { one or two } \rrbracket & =\{1,2,3\} \\ \llbracket \text { two or three } \rrbracket & =\{2,3\} \\ \llbracket \text { one or three } \rrbracket & =\{1,2,3\} \\ \llbracket \text { one or two or three } \rrbracket & =\{1,2,3\}\end{array} \right\rvert\,\right.$

Can we learn from examples?

Attribute Selection for REG

\checkmark person
\checkmark beard
glasses
\rightarrow tie

Attribute Selection for REG

person
beard
glasses
\neg tie
person, beard
person, glasses
person, atie
glasses, beard

The TUNA Corpus

Human utterance: "blue fan small"

Attributes: blue, fan, small

Learning through RSA

"guy with the beard" "guy with glasses"

$S_{0}(m \mid t, \theta) \propto \exp \left[\theta^{T} \varphi(t, m)\right]$

Learning through RSA

Learning through RSA

"guy with the beard" "guy with glasses"

$S_{0}(m \mid t, \theta) \propto \exp \left[\theta^{T} \varphi(t, m)\right]$

Learning through RSA

Learning through RSA

Learning through RSA

Goals

Features

Avoid hand-built lexicon

Learn human quirks

Goals

Features

Avoid hand-built >cross-product lexicon

Learn human quirks >generation features

Goals

Features

Avoid hand-built lexicon

Learn human quirks > generation features

Goals
 Features

Avoid hand-built >cross-product lexicon

$$
\text { BLUE } \rightarrow \text { blue, BLUE } \rightarrow \text { fan, ... }
$$

Learn human quirks >generation features

- people overproduce attribute type colors
\{color\}

Goals
 Features

Avoid hand-built >cross-product lexicon

$$
\text { BLUE } \rightarrow \text { blue, BLUE } \rightarrow \text { fan, ... }
$$

Learn human quirks >generation features

- people overproduce attribute type colors
- attributes fit into a hierarchy
attribute pairs (pos/neg)
\{type\}+\{color\}, \{color\}+־\{size\}

Goals
 Features

Avoid hand-built >cross-product lexicon

$$
\text { BLUE } \rightarrow \text { blue, BLUE } \rightarrow \text { fan, ... }
$$

Learn human quirks > generation features

- people overproduce attribute type \{color\}
- attributes fit into a hierarchy
- certain utterance lengths are preferred
attribute pairs (pos/neg)
\{type\}+\{color\}, \{color\}+ \neg size $\}$
message size
\{2 attrs\}, \{3 attrs\}, ...

Example: dataset

train
 beard
test

Example: distributions

\varnothing
person
glasses
beard
person, glasses
person, beard
glasses, beard
all

Example: distributions

$\varnothing .08 .25$
person . 08 . 25
glasses . 17
beard . 08.25
person, glasses . 17
person, beard . 08.25
glasses, beard . 17
all . 17
RSA

S_{1}

Example: distributions

Example: distributions

Example: distributions

Experimental results

Analysis

TUNA people dataset

Analysis

TUNA people dataset

Analysis

TUNA people dataset

Two obstacles

1. Hand-written semantics

$$
\begin{aligned}
& S \rightarrow C, \quad S \rightarrow \neg C \\
& C \rightarrow m L s, C \rightarrow m, \quad C \rightarrow s \\
& L \rightarrow \vee, \quad L \rightarrow \wedge \\
& \llbracket m \rrbracket=\{\{\text { Mary }\},\{\text { Mary }, \text { Sue }\}\} \\
& \llbracket s \rrbracket=\{\{\text { Sue }\},\{\text { Mary }, \text { Sue }\}\}
\end{aligned}
$$

$\left(\left.\begin{array}{ll}\llbracket \text { one } \rrbracket & =\{1,2,3\} \\ \llbracket \text { two } \rrbracket & =\{2,3\} \\ \llbracket \text { whree } \rrbracket & =\{3\} \\ \llbracket \text { one or two } \rrbracket & =\{1,2,3\} \\ \llbracket \text { two or three } \rrbracket & =\{2,3\} \\ \llbracket \text { one or three } \rrbracket & =\{1,2,3\} \\ \llbracket \text { one or two or three } \rrbracket & =\{1,2,3\}\end{array} \right\rvert\,\right.$

Can we learn from examples?

Two obstacles

1．Hand－written semantics

	【one】	$=\{1,2,3\}$
S $\rightarrow C, S \rightarrow \neg C$	【two】	$=\{2,3\}$
$C \rightarrow m L s, \quad C \rightarrow m, \quad C \rightarrow s$	【three】	$=\{3\}$
$L \rightarrow \vee, L \rightarrow \wedge$	«one or two】	$=\{1,2,3\}$
$\llbracket m \rrbracket=\{\{$ Mary $\},\{$ Mary ，Sue $\}\}$	【two or three】	$=\{2,3\}$
$\llbracket s \rrbracket=\{\{$ Sue $\},\{$ Mary ，Sue $\}\}$	【one or three】	$=\{1,2,3\}$

Two obstacles

2. Exhaustive enumeration of utterances and worlds

Can we generalize efficiently?
(Hawkins et al., 2015; Kao and Goodman, 2015)

Task: modeling color descriptions

the best color in the freakin' world!!!!!!!!
are you actually going through these answers? must be dull as all hell.
i considered rickrolling you, because i have a strong feeling no ones ever rickrolled someone with their own scientific data.
gosh, thats blue
tough one... what the hell do you call this? it's pink, but not totally pink, but it's purple, but not totally purple. well, mr . xkcd, if that is your real name, thank you for what will surely stave off any hopes i have at a decent night's sleep.
day 3: sanity lost, colors keep changing but they keep staying the same...keep seeing this green, this slightly different green, mocking me...studying me...this ms green...what do you want mr green really? this color again? i have nothing against colors personally, but this one just stands out from the rest as unusually unnattractive. i
almost feel sad for it, but it made the decision to be that color so it has to find a way to deal with it

Task: modeling color descriptions

Speaker

Listener

"neon green"

Sequence modeling with RNNs

Sequence modeling with RNNs

Sequence modeling with RNNs

Speaker and listener RNNs

Speaker

Listener

Results: modeling color descriptions

model	features	perplexity	AIC $\left(\times 10^{6}\right)$	rec@1
LSTM	Fourier	12.86	4.07	39.76%
M\&S Lux	Gaussian	13.49	4.12	39.69
LSTM	buckets-4	17.83	4.58	34.96

Recap: learning through RSA

Cooperative training with RNNs

Comparing outputs

Human	Direct	Pragmatic
"marine blue"	"blue"	"bright sky blue"
"navy blue"	"navy blue"	"almost black"
"purple"	"purple"	"faded purple"
"purple"	"purple"	"hot purple"
"deep green"	"green"	"true green"
"green"	"green"	"sap green"
"olive"	"light green"	"celery"
"olive green"	"brown"	"mustard brown"
"mauve"	"peach"	"peachy pink"
"dark blue"	"blue"	"marine blue"

Summary

- Combining Bayesian pragmatics and learning:
* context-dependent disambiguation
> capturing oddities of human language use
- avoiding the need for a hand-coded lexicon
- Making pragmatics scalable:
- RNN-based sequence modeling
- approximate optimization of RSA-based objective
> bootstrapping a hyper-specific generation model

