
Modeling Natural Language Semantics 
with Learned Representations

Samuel R. Bowman

Premise: A man speaking or singing into a microphone while playing the piano.
Hypothesis: A man is performing surgery on a giraffe while singing.
Label: contradiction



Goal: Build computational models that can learn to 
understand and reason with human language.
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Open problems in NLP

Question answering
How old is the oldest leader of an OPEC country?

+       =  ?

Summarization

   =  Drug X interacts badly with drug Y.
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Open problems in linguistics

What prior knowledge must a learner have in order to 
fully learn language? 
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Open problems at the intersection

How do we combine logical approaches to meaning 
with a rich representations of word meaning?

                           ∀x.∃y...
If all dogs bark, do most puppies make sounds?

Is a labrador more of a dog than a chihuahua?
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Neural networks in NLP

● 2010: Marginal
● 2016: Major research area

Standard for parsing, classification, … 

Figure from Christoph Burgmer. 6



Neural machine translation

Sutskever et al. ‘14, Bahdanau et al. ‘15, Luong et al. ‘15 (figure from Chris Manning) 7



Today: Some open questions

Goal: Build neural network models that can learn to 
understand and reason with human language.

● Can continuous models do symbolic reasoning?
● Can they learn to understand real language?
● What can formal semantics teach them?
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Background:
Neural networks and natural language
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Distributed feature vectors for words

good ⇒ < 0.9, -0.2 >
okay  ⇒ < 0.8, -0.5 >
bad  ⇒ < 0.2, -0.7 >
… 
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Composition: From words to sentences

How do we construct sentence representations from 
word representations?

service food

good

bad

bad food, 
good service
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Composition: From words to sentences

Sequence-based (recurrent) neural network encoder

Rumelhart et al., ‘86; Werbos, ‘90; Mikolov, ‘10 12

• • • • • • • • • • • • • •

• • • • • • •
the 

f

• • • • • • •

• • • • • • •
red

f

• • • • • • •

• • • • • • •
curry

f

• • • • • • •

• • • • • • •
was

f

• • • • • • •

• • • • • • •
perfect

f

...



Composition: From words to sentences

Alternative model: 
Tree-structured (recursive) neural network encoder
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Some open questions

Goal: Build neural network models that can learn to 
understand and reason with human language.

● Can continuous models do symbolic reasoning?
● Can they learn to understand real language?
● What can formal semantics teach them?
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Measuring success

Goal: Build neural network models that can learn to 
understand and reason with human language.

What does success look like?

Where does supervision come from?
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Natural language inference (NLI)

or recognizing textual entailment (RTE)

James Byron Dean refused to move without blue jeans
{entails, contradicts, neither}

James Dean didn’t dance without pants

MacCartney, ‘09 16
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Why natural language inference?

● move vs. dance (hypernymy and hyponymy)
● refused to vs. didn’t (factives and implicatives)
● James B. Dean vs. James Dean (coreference)

...

James Byron Dean refused to move without blue jeans
{entails, contradicts, neither}

James Dean didn’t dance without pants
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Why natural language inference?

Natural language inference 
is a major sub-problem of:
● Question answering
● Semantic web search
● Summarization
● Machine translation

and more!
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Research in Natural Logic formally characterizes 
sound inference patterns over natural language.

dance ⊏ move
so...

James Dean danced ⊏ James Dean moved
but...

James Dean didn't dance ⊐ James Dean didn't move

NLI and Natural Logic

Sánchez-Valencia, ‘91; MacCartney, ‘09; Icard & Moss ‘13 20



Reasoning with words
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Building a learning problem

Training data
dance ? move
tango ? dance
sleep ? dance
waltz ?  dance

entails
entails
contradicts
entails

Test data
sleep  ? waltz
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Natural logic: The seven relations

Seven possible relations between phrases/sentences:
Venn name

equivalence couch ≡ sofa

forward entailment
(strict)

crow ⊏ bird

reverse entailment
(strict)

European ⊐ French

negation
(exhaustive exclusion)

human ^ nonhuman

alternation
(non-exhaustive exclusion)

cat | dog

cover
(exhaustive non-exclusion)

animal ⌣ nonhuman

independence hungry # hippo

Slide from Bill MacCartney
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Lexical relation data

TRAIN TEST

a ≡ a a ≡ b

a ^ f a ⌣ d

b ⌣ c a ⊐ e

b ⌣ d b ⊐ e
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The simplest viable neural inference model

P(⊏) = 0.8
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Learning lexical relations

Generalization (test) accuracy 99.6%

Training Test
dance entails move sleep  ? waltz
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Reasoning with novel sentences
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Function words and infinite languages

TRAIN TEST
b ≡ b not a ^ a

not (not a) ≡ a c or d ⊐ d

c ⊐ b and c not not b ≡ b

— not (not a and not d) ≡ a or d
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The model: A TreeRNN for NLI
P(⊏) = 0.8
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Function words and infinite languages
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An example with twelve connectives

((not d) or (not ((not (b or e)) and (b or (not b)))))

⌣

(not ((not ((b and (not b)) or (not (d and b))))
 or (not (((not e) or d) and (d or c)))))
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Function words and infinite languages
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Function words and infinite languages
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Some open questions

Goal: Build neural network models that can learn to 
understand and reason with human language.

● Can continuous models do symbolic reasoning?
● Can they learn to understand real language?
● What can formal semantics teach them?
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What data can we learn from?

Corpus Complete 
Sentences

Human Labeled Size
(num. pairs)

FraCaS ✓ ✓ .3k

RTE 1-5 ✓ ✓ 7k

SICK ✓ ✓ 10k

DenotationGraph ✗ ✗ 728k

Levy Graphs ✗ ✗ 1,500k

PPDB 2.0 ✗ ✗ 100,000k
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Training neural networks on existing data

A little girl is looking at a woman in costume
{entailment, contradiction, neutral}

The little girl is looking at a man in costume

Approach SICK test acc.
Just guessing ‘neutral’ 56.7%
Best NN model  76.9%
Best prior non-NN model 84.5%
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What data can we learn from?

Corpus Complete 
Sentences

Human Labeled Size
(num. pairs)

FraCaS ✓ ✓ .3k

RTE 1-5 ✓ ✓ 7k

SICK ✓ ✓ 10k

DenotationGraph ✗ ✗ 728k

Levy Graphs ✗ ✗ 1,500k

PPDB 2.0 ✗ ✗ 100,000k
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Our large, human-labeled NLI corpus

Bowman et al. ‘15: “A large annotated corpus for learning natural language inference” 39

Corpus Complete 
Sentences

Human Labeled Size
(num. pairs)

FraCaS ✓ ✓ .3k

RTE 1-5 ✓ ✓ 7k

SICK ✓ ✓ 10k

SNLI ✓ ✓ 570k

DenotationGraph ✗ ✗ 728k

Levy Graphs ✗ ✗ 1,500k

PPDB 2.0 ✗ ✗ 100,000k



The Stanford NLI Corpus

Girl in a red coat, blue head wrap and jeans is making 
a snow angel.

{entailment, contradiction, neutral}
A girl outside plays in the snow.

● Typical examples require:
○ Full sentence understanding.
○ Common sense world knowledge.

● Outside the scope of pure natural logic.

40

EMNLP ‘15

Best New Data 

Set Award



How do we collect this data?

Prompt for Mechanical Turk annotators:

We will show you the caption for a photo. We will 
not show you the photo. Using just the caption 
and what you know about the world, write a new 
caption for the same photo that is {definitely 
accurate, definitely inaccurate, possibly accurate}.

41



Initial machine learning results

Model Test acc.
Just guessing ‘entailment’ 33.7%
Big simple classifier 78.2%
Recurrent (sequence) NN model 77.6%
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Extramural results

● Sep. 2015: Corpus release
● Sep. 2015: Google DeepMind/UCL/Oxford
● Nov. 2015: U. of Toronto
● Dec. 2015: Peking U./Baidu
● Dec. 2015: Singapore Management U.
● Jan. 2016: U. of Edinburgh
● Feb. 2016: Unbabel Lda./IT/INESC-ID (Pt.)
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Some open questions

Goal: Build neural network models that can learn to 
understand and reason with human language.

● Can continuous models do symbolic reasoning?
● Can they learn to understand real language?
● What can formal semantics teach them?
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Working assumptions in formal semantics

Loosely, the principle of compositionality:

Sentence meanings are constructed incrementally by 
composing together word meanings.
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Working assumptions in formal semantics

Loosely, the principle of compositionality:

This composition process can be most concisely 
described using a phrase structure that roughly 
follows the phrase structure used in syntax.
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Recursion with propositional logic
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Recursion with propositional logic
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Tree structured models in practice

Robust successes on NLP for tasks with smaller 
datasets: sentiment analysis, paraphrase detection...

Larger datasets? Too slow.
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Batched computation
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Batched computation
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Transition-based parsing

Is it possible to do tree-structured compositionality in 
an efficient model?

Transition-based parsing offers a clue.

52Bowman et al. ‘16: “A Fast Unified Model for Parsing and Sentence Understanding”



Transition-based parsing

SHIFT SHIFT
REDUCE SHIFT
SHIFT REDUCE
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REDUCE
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Transition-based parsing
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Transition-based parsing
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Stack-augmented Parser-Interpreter NN 
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The shift-reduce model on SNLI

Model Test acc.
Sequence model (our prev. impl.): 77.6%
Best comparable model: 82.1%
Sequence model (our new impl.):  80.6%
SPINN (purely tree-structured): 80.9%
SPINN (hybrid): 83.2%
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Ongoing work: Future directions

Neural attention
State-of-the-art attention-based model: 89.0%
Attention-based SPINN:     ?

Learning syntax from semantics
Build models that can learn to use whatever parse 
structure best supports the task at hand
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Some open questions, and some answers

Can continuous models do symbolic reasoning?
● Yes, e.g., lexical relations, recursive functions...

Goal: Build neural network models that can learn to 
understand and reason with human language.
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((not d) or (not ((not (b or e)) and (b or (not b)))))
⌣

(not ((not ((b and (not b)) or (not (d and b))))
 or (not (((not e) or d) and (d or c)))))



Girl in a red coat, blue head wrap and jeans is making 
a snow angel.

{entailment, contradiction, neutral}
A girl outside plays in the snow.

Some open questions, and some answers

Can they learn to understand real language?
● Not perfectly yet, but at the state of the art and 

making rapid progress.

Goal: Build neural network models that can learn to 
understand and reason with human language.
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Some open questions, and some answers

What can formal semantics teach them?
● Compositionality, at least: yields huge gains on 

artificial data, and significant gains on English.

Goal: Build neural network models that can learn to 
understand and reason with human language.

61



Where we are now

Neural networks are the most effective tool we have 
for learning to understand natural language, but our 
models are still far from human-level understanding.

62



Future work

To fill the gap, more work is needed into:
● Discovering what aspects of meaning these 

models learn to use in practice.
● Applying our theoretical understanding of 

language to build helpful learning biases.
● Building models that can learn to refine their 

representations of meaning using raw text or other 
kinds of labeled data.
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