
SEMPRE: Semantic Parsing with Execution

Percy Liang

Stanford University

CS224U

May 18, 2015

Goals

• Show how you can use SEMPRE for question answering on Free-
base.

• Highlight the many applications of SEMPRE.

1

Outline

Review of semantic parsing

Using SEMPRE for Freebase QA

BarackObama

Person

Type

Politician

Profession

1961.08.04

DateOfBirth

HonoluluPlaceOfBirth

Hawaii

ContainedBy

City

Type

UnitedStates

ContainedBy

USState

Type

Event8

Marriage

MichelleObama

Spouse

Type

Female
Gender

1992.10.03

StartDate

Event3

PlacesLived

Chicago

Location

Event21

PlacesLived

Location

ContainedBy

Other applications

2

Question answering via semantic parsing

Which states’ capitals are also their largest cities?

3

Question answering via semantic parsing

Which states’ capitals are also their largest cities?

semantic parsing

µx.Type.USState u Capital.argmax(Type.City u ContainedBy.x,Area)

3

Question answering via semantic parsing

Which states’ capitals are also their largest cities?

semantic parsing

µx.Type.USState u Capital.argmax(Type.City u ContainedBy.x,Area)

execute

Arizona,Hawaii,Idaho,Indiana,Iowa,Oklahoma,Utah

3

Question answering via semantic parsing

Which states’ capitals are also their largest cities?

semantic parsing

execute

Arizona,Hawaii,Idaho,Indiana,Iowa,Oklahoma,Utah

3

General framework

[utterance: user input]

semantic parsing

[program]

execute

[behavior: user output]

4

Semantics?

Percy teaches at Stanford.

teachesAt(Percy,Stanford)

5

Semantics?

Semantic parsing is fundamentally a translation task...

6

Semantics?

Semantic parsing is fundamentally a translation task...

How many people live in Seattle?

count(Type.Person u LiveIn.Seattle)

6

Semantics?

Semantic parsing is fundamentally a translation task...

How many people live in Seattle?

R[Population].Seattle

6

Semantics?

Semantic parsing is fundamentally a translation task...

How many people live in Seattle?

R[Number].(R[Population].Seattle u Year.2015)

6

Semantics?

Semantic parsing is fundamentally a translation task...

How many people live in Seattle?

R[Number]. argmax(R[Population].Seattle u Year. ≤ .2015,Year)

...into a low-level language.

6

Probabilistic framework

x

θ z

w y

people who have lived in Chicago

parameters

Type.Person u PlacesLived.Location.Chicago

context

{BarackObama,MichelleObama,...}

7

Freebase

100M entities (nodes) 1B assertions (edges)

BarackObama

Person

Type

Politician

Profession

1961.08.04

DateOfBirth

HonoluluPlaceOfBirth

Hawaii

ContainedBy

City

Type

UnitedStates

ContainedBy

USState

Type

Event8

Marriage

MichelleObama

Spouse

Type

Female
Gender

1992.10.03

StartDate

Event3

PlacesLived

Chicago

Location

Event21

PlacesLived

Location

ContainedBy

[Bollacker, 2008; Google, 2013]

8

Logical forms: lambda DCS

Type.Person u PlacesLived.Location.Chicago

[Liang, 2013]

9

Logical forms: lambda DCS

Type.Person u PlacesLived.Location.Chicago

o

Person

Type

?

PlacesLived

Chicago

Location

[Liang, 2013]

9

Logical forms: lambda DCS

Type.Person u PlacesLived.Location.Chicago

o

Person

Type

?

PlacesLived

Chicago

Location
BarackObama

Person

Type

Politician

Profession

1961.08.04

DateOfBirth

HonoluluPlaceOfBirth

Hawaii

ContainedBy

City

Type

UnitedStates

ContainedBy

USState

Type

Event8

Marriage

MichelleObama

Spouse

Type

Female
Gender

1992.10.03

StartDate

Event3

PlacesLived

Chicago

Location

Event21

PlacesLived

Location

ContainedBy

[Liang, 2013]

9

Logical forms: lambda DCS

Type.Person u PlacesLived.Location.Chicago

o

Person

Type

?

PlacesLived

Chicago

Location
BarackObama

Person

Type

Politician

Profession

1961.08.04

DateOfBirth

HonoluluPlaceOfBirth

Hawaii

ContainedBy

City

Type

UnitedStates

ContainedBy

USState

Type

Event8

Marriage

MichelleObama

Spouse

Type

Female
Gender

1992.10.03

StartDate

Event3

PlacesLived

Chicago

Location

Event21

PlacesLived

Location

ContainedBy

[Liang, 2013]

9

Lambda DCS

Entity

Chicago

10

Lambda DCS

Entity

Chicago

Join

PlaceOfBirth.Chicago

10

Lambda DCS

Entity

Chicago

Join

PlaceOfBirth.Chicago

Intersect

Type.PersonuPlaceOfBirth.Chicago

10

Lambda DCS

Entity

Chicago

Join

PlaceOfBirth.Chicago

Intersect

Type.PersonuPlaceOfBirth.Chicago

Aggregation

count(Type.Person u PlaceOfBirth.Chicago)

10

Lambda DCS

Entity

Chicago

Join

PlaceOfBirth.Chicago

Intersect

Type.PersonuPlaceOfBirth.Chicago

Aggregation

count(Type.Person u PlaceOfBirth.Chicago)

Superlative

argmin(Type.Person u PlaceOfBirth.Chicago,DateOfBirth)

10

Lambda DCS

Entity

Chicago

Join

PlaceOfBirth.Chicago

Intersect

Type.PersonuPlaceOfBirth.Chicago

Aggregation

count(Type.Person u PlaceOfBirth.Chicago)

Superlative

argmin(Type.Person u PlaceOfBirth.Chicago,DateOfBirth)

Anaphora

µx.Type.Person u Children.Influence.x

10

Lambda DCS

Entity

Chicago

Join

PlaceOfBirth.Chicago

Intersect

Type.PersonuPlaceOfBirth.Chicago

Aggregation

count(Type.Person u PlaceOfBirth.Chicago)

Superlative

argmin(Type.Person u PlaceOfBirth.Chicago,DateOfBirth)

Anaphora

µx.Type.Person u Children.Influence.x

Variable

argmax(Type.Person,R[λx.count(Parent.Parent.x)])
10

Comparison to lambda calculus

Lambda calculus

λx.Type(x,Person) ∧ ∃e.PlacesLived(x, e) ∧ Location(e,Chicago)

11

Comparison to lambda calculus

Lambda calculus

λx.Type(x,Person) ∧ ∃e.PlacesLived(x, e) ∧ Location(e,Chicago)

Lambda dependency-based compositional semantics (DCS)

Type.Person u PlacesLived.Location.Chicago

11

Probabilistic framework

x

θ z

w y

people who have lived in Chicago

parameters

Type.Person u PlacesLived.Location.Chicago

context

{BarackObama,MichelleObama,...}

12

(Over)-generating derivations

utterance Grammar

derivation 1

derivation 2

...

13

(Over)-generating derivations

utterance Grammar

derivation 1

derivation 2

...

A Real Dumb Grammar

(lexicon) Chicago ⇒ E : Chicago

(lexicon) people ⇒ E : Type.Person

(lexicon) live ⇒ E× E : PlacesLived

...

(join) E× E : b E : u ⇒ E : b.u

(intersect) E : u E : v ⇒ E : u u v

13

Derivations

Derivation: construction of logical form given utterance

Type.PersonuPlaceLived.Location.Chicago

Type.Person

people

who PlaceLived.Location.Chicago

have PlaceLived.Location

lived

in Chicago

Chicago

14

Derivations

Derivation: construction of logical form given utterance

Type.PersonuPlaceLived.Location.Chicago

Type.Person

people

who PlaceLived.Location.Chicago

have PlaceLived.Location

lived

in Chicago

Chicago

lexicon

lexiconlexicon

14

Derivations

Derivation: construction of logical form given utterance

Type.PersonuPlaceLived.Location.Chicago

Type.Person

people

who PlaceLived.Location.Chicago

have PlaceLived.Location

lived

in Chicago

Chicago

lexicon

lexiconlexicon

join

14

Derivations

Derivation: construction of logical form given utterance

Type.PersonuPlaceLived.Location.Chicago

Type.Person

people

who PlaceLived.Location.Chicago

have PlaceLived.Location

lived

in Chicago

Chicago

lexicon

lexiconlexicon

join

intersect

14

Floating parsers

Type.PersonuPlaceLived.Location.Chicago

Type.Person

people

who PlaceLived.Location.Chicago

have PlaceLived.Location

lived

in Chicago

Chicago

lexicon

lexiconlexicon

join

intersect

15

Floating parsers

Type.PersonuPlaceLived.Location.Chicago

Type.Person PlaceLived.Location.Chicago

PlaceLived.Location Chicago

Chicago

lexicon

join

intersect

people who have lived in

Key idea: detach logical form from sentence

15

Floating parsers

Type.PersonuPlaceLived.Location.Chicago

Type.Person PlaceLived.Location.Chicago

PlaceLived.Location Chicago

Chicago

lexicon

join

intersect

people who have lived in

Key idea: detach logical form from sentence

Pruning: use world knowledge / pragmatics — avoid empty sets, type
errors, redundant operations

15

Many possible derivations!

x = people who have lived in Chicago

16

Many possible derivations!

x = people who have lived in Chicago

?

set of candidate derivations D(x)

16

Many possible derivations!

x = people who have lived in Chicago

?

set of candidate derivations D(x)

Type.PersonuPlaceLived.Location.Chicago

Type.Person

people

who PlaceLived.Location.Chicago

have PlaceLived.Location

lived

in Chicago

Chicago

lexicon

lexiconlexicon

join

intersect

16

Many possible derivations!

x = people who have lived in Chicago

?

set of candidate derivations D(x)

Type.OrguPresentIn.ChicagoMusical

Type.Org

people

who PresentIn.ChicagoMusical

have PresentIn

lived

in ChicagoMusical

Chicago

lexicon

lexiconlexicon

join

intersect

16

x: utterance

d: derivation

Type.PersonuPlaceLived.Location.Chicago

Type.Person

people

who PlaceLived.Location.Chicago

have PlaceLived.Location

lived

in Chicago

Chicago

lexicon

lexiconlexicon

join

intersect

Feature vector φ(x, d) ∈ RF :

17

x: utterance

d: derivation

Type.PersonuPlaceLived.Location.Chicago

Type.Person

people

who PlaceLived.Location.Chicago

have PlaceLived.Location

lived

in Chicago

Chicago

lexicon

lexiconlexicon

join

intersect

Feature vector φ(x, d) ∈ RF :

apply join 1

apply intersect 1

apply lexicon 3

skipped IN 1

skipped NN 0

lived maps to PlacesLived.Location 1

lived maps to PlaceOfBirth 0

alignmentScore 1.52

denotation-size=1 1

... ...

17

Scoring derivations

Feature vector: φ(x, d) = [1.3, 2, 0, 1, 0, 0, . . .] ∈ RF

18

Scoring derivations

Feature vector: φ(x, d) = [1.3, 2, 0, 1, 0, 0, . . .] ∈ RF

Parameter vector: θ = [1.2,−2.7, 3.4, . . .] ∈ RF

18

Scoring derivations

Feature vector: φ(x, d) = [1.3, 2, 0, 1, 0, 0, . . .] ∈ RF

Parameter vector: θ = [1.2,−2.7, 3.4, . . .] ∈ RF

Scoring function:

Scoreθ(x, d) = φ(x, d) · θ =
F∑
j=1

θjφj(x, d)

18

Log-linear model

Candidate derivations (defined by grammar): D(x)

19

Log-linear model

Candidate derivations (defined by grammar): D(x)

Model: distribution over derivations d given utterance x

p(d | x, θ) = exp(Scoreθ(x,d))∑
d′∈D(x) exp(Scoreθ(x,d

′))

19

Probabilistic framework

x

θ z

w y

people who have lived in Chicago

parameters

Type.Person u PlacesLived.Location.Chicago

context

{BarackObama,MichelleObama,...}

20

Learning

Training data:

What’s Bulgaria’s capital?

Sofia

What movies has Tom Cruise been in?

TopGun,VanillaSky,...

...

+grammar, +features

21

Learning

Training data:

What’s Bulgaria’s capital?

Sofia

What movies has Tom Cruise been in?

TopGun,VanillaSky,...

...

+grammar, +features

Objective: Maximum likelihood

argmaxθ
∑n
i=1 log pθ(y

(i) | x(i))

21

Learning

Training data:

What’s Bulgaria’s capital?

Sofia

What movies has Tom Cruise been in?

TopGun,VanillaSky,...

...

+grammar, +features

Objective: Maximum likelihood

argmaxθ
∑n
i=1 log pθ(y

(i) | x(i))

Algorithm:

AdaGrad (stochastic gradient with per-feature step size)

21

Training intuition

Where did Mozart tupress?

Vienna

22

Training intuition

Where did Mozart tupress?

PlaceOfBirth.WolfgangMozart

PlaceOfDeath.WolfgangMozart

PlaceOfMarriage.WolfgangMozart

Vienna

22

Training intuition

Where did Mozart tupress?

PlaceOfBirth.WolfgangMozart ⇒ Salzburg

PlaceOfDeath.WolfgangMozart ⇒ Vienna

PlaceOfMarriage.WolfgangMozart ⇒ Vienna

Vienna

22

Training intuition

Where did Mozart tupress?

PlaceOfBirth.WolfgangMozart ⇒ Salzburg

PlaceOfDeath.WolfgangMozart ⇒ Vienna

PlaceOfMarriage.WolfgangMozart ⇒ Vienna

Vienna

22

Training intuition

Where did Mozart tupress?

PlaceOfBirth.WolfgangMozart ⇒ Salzburg

PlaceOfDeath.WolfgangMozart ⇒ Vienna

PlaceOfMarriage.WolfgangMozart ⇒ Vienna

Vienna

Where did Hogarth tupress?

22

Training intuition

Where did Mozart tupress?

PlaceOfBirth.WolfgangMozart ⇒ Salzburg

PlaceOfDeath.WolfgangMozart ⇒ Vienna

PlaceOfMarriage.WolfgangMozart ⇒ Vienna

Vienna

Where did Hogarth tupress?

PlaceOfBirth.WilliamHogarth

PlaceOfDeath.WilliamHogarth

PlaceOfMarriage.WilliamHogarth

London

22

Training intuition

Where did Mozart tupress?

PlaceOfBirth.WolfgangMozart ⇒ Salzburg

PlaceOfDeath.WolfgangMozart ⇒ Vienna

PlaceOfMarriage.WolfgangMozart ⇒ Vienna

Vienna

Where did Hogarth tupress?

PlaceOfBirth.WilliamHogarth ⇒ London

PlaceOfDeath.WilliamHogarth ⇒ London

PlaceOfMarriage.WilliamHogarth ⇒ Paddington

London

22

Training intuition

Where did Mozart tupress?

PlaceOfBirth.WolfgangMozart ⇒ Salzburg

PlaceOfDeath.WolfgangMozart ⇒ Vienna

PlaceOfMarriage.WolfgangMozart ⇒ Vienna

Vienna

Where did Hogarth tupress?

PlaceOfBirth.WilliamHogarth ⇒ London

PlaceOfDeath.WilliamHogarth ⇒ London

PlaceOfMarriage.WilliamHogarth ⇒ Paddington

London

22

Training intuition

Where did Mozart tupress?

PlaceOfBirth.WolfgangMozart ⇒ Salzburg

PlaceOfDeath.WolfgangMozart ⇒ Vienna

PlaceOfMarriage.WolfgangMozart ⇒ Vienna

Vienna

Where did Hogarth tupress?

PlaceOfBirth.WilliamHogarth ⇒ London

PlaceOfDeath.WilliamHogarth ⇒ London

PlaceOfMarriage.WilliamHogarth ⇒ Paddington

London

22

Two types of errors

Correct

Ranking

Errors

(features)

Coverage

Errors

(grammar)

23

Outline

Review of semantic parsing

Using SEMPRE for Freebase QA

BarackObama

Person

Type

Politician

Profession

1961.08.04

DateOfBirth

HonoluluPlaceOfBirth

Hawaii

ContainedBy

City

Type

UnitedStates

ContainedBy

USState

Type

Event8

Marriage

MichelleObama

Spouse

Type

Female
Gender

1992.10.03

StartDate

Event3

PlacesLived

Chicago

Location

Event21

PlacesLived

Location

ContainedBy

Other applications

24

Setting up SEMPRE

git clone https://github.com/percyliang/sempre

cd sempre

./pull-dependencies core corenlp freebase

make module-classes freebase

25

Freebase players

Entities:

fb:en.barack obama

Types:

fb:people.person

Properties:

fb:people.person.place of birth

26

Freebase players

Entities:

fb:en.barack obama

: (union fb:people.person fb:biology.animal owner ...)

Types:

fb:people.person

: fb:type.type

Properties:

fb:people.person.place of birth

: (-¿ fb:location.location fb:people.person)

26

Running SEMPRE

Browse Freebase:

freebase/scripts/fbshell.rb

Interactive prompt:

./run @mode=simple-freebase -Grammar.inPaths cs224u.grammar

27

Grammar rules

three plus four hundred

(rule $Number ($PHRASE) (NumberFn))

(rule $Number ($Number plus $Number)

(lambda x (lambda y (call + (var x) (var y)))))

How a rule works:

• Match RHS to produce input derivations

• Call semantic function (SemanticFn) on input derivations to pro-
duce zero or more output derivations

28

SEMPRE components

• Formula: logical form (Java program or lambda DCS)

• Value: denotation (Java object)

29

SEMPRE components

• Formula: logical form (Java program or lambda DCS)

• Value: denotation (Java object)

• Executor: maps logical forms to denotations (JavaExecutor or
SparqlExecutor)

• Parser: maps utterances to logical forms (BeamParser or
FloatingParser)

• Learner: maps examples to parameters

29

Creating a simple grammar

[demo]

30

SEMPRE highlights

• Integrates rule-based and statistical methods

• Agnostic to grammar (CFG, CCG, loose or tight)

• Agnostic to logical form (lambda DCS, lambda calculus, Java,
AMR)

• Agnostic to answer (any Java object)

• Grammar: SemanticFn, built on CoreNLP

• Learning: online feature-rich discriminative training with embed-
ded execution

31

Pointers

Issues/questions:

https://github.com/percyliang/sempre/issues

32

Pointers

Issues/questions:

https://github.com/percyliang/sempre/issues

Internal repository on NLP machines (ask Percy for permissions):

git clone jamie:/user/psl/git/semparse.git

Internal mailing list:

stanford-sempre@googlegroups.com

32

Outline

Review of semantic parsing

Using SEMPRE for Freebase QA

BarackObama

Person

Type

Politician

Profession

1961.08.04

DateOfBirth

HonoluluPlaceOfBirth

Hawaii

ContainedBy

City

Type

UnitedStates

ContainedBy

USState

Type

Event8

Marriage

MichelleObama

Spouse

Type

Female
Gender

1992.10.03

StartDate

Event3

PlacesLived

Chicago

Location

Event21

PlacesLived

Location

ContainedBy

Other applications

33

Text-to-scene generation

There is a room with a chair and a computer.

[Angel Chang, Will Monroe, Chris Potts, Chris Manning]

34

Solving LSAT logic puzzles

Exactly six of seven jugglers–G, H, K, L, N, P, and Q–are each assigned
to exactly one of three positions–front, middle, and rear–on one of two
teams–team 1 and team 2.

For each team, exactly one juggler must be assigned to each position
according to the following conditions:

• If either G or H or both are assigned to teams, they are assigned
to front positions.

• ...

[with Robin Jia (Lev/MacCartney/Manning/Levy’s dataset)]

35

Solving LSAT logic puzzles

Exactly six of seven jugglers–G, H, K, L, N, P, and Q–are each assigned
to exactly one of three positions–front, middle, and rear–on one of two
teams–team 1 and team 2.

For each team, exactly one juggler must be assigned to each position
according to the following conditions:

• If either G or H or both are assigned to teams, they are assigned
to front positions.

• ...

Which one of the following is an acceptable list of assignments of jugglers
to team 2?

• front: Q; middle: K; rear: N

• ...

[with Robin Jia (Lev/MacCartney/Manning/Levy’s dataset)]

35

Compositionality on web tables

In what city did Piotr’s last 1st place finish occur?

[with Ice Pasupat; ACL 2015]

36

Compositionality on web tables

How many times has this competitor placed 5th or better in competition?

[with Ice Pasupat; ACL 2015]

36

Context-dependent semantic parsing

abc ijk xyz

add an ”s” to the end of the first group

abcs ijk xyz

add another to the end of the second

abcs ijks xyz

and the third

abcs ijks xyzs

[with Reggy Long and Ice Pasupat]

37

Interpreting high-level instructions
[with Dipendra Misra, Kejia Tao, Ashutosh Saxena, ACL 2015]

38

Agenda-based semantic parsing

what city was abraham lincoln born in
20

AbeLincoln

LincolnTown

. . .

362

Type.City

Type.Loc

. . .

20

AbrahamProphet

AbeLincoln

. . .

391 508

PlaceOfBirthOf

PlacesLived

. . .

ContainedBy

StarredIn

. . .

>1M
Type.City u PlaceOfBirthOf.AbeLincoln

Type.Loc u ContainedBy.LincolnTown

. . .

s1

[with Jonathan Berant, in submission]

39

Agenda-based semantic parsing

what city was abraham lincoln born in
20

AbeLincoln

LincolnTown

. . .

362

Type.City

Type.Loc

. . .

20

AbrahamProphet

AbeLincoln

. . .

391 508

PlaceOfBirthOf

PlacesLived

. . .

ContainedBy

StarredIn

. . .

>1M
Type.City u PlaceOfBirthOf.AbeLincoln

Type.Loc u ContainedBy.LincolnTown

. . .

s1 s2

a1

[with Jonathan Berant, in submission]

39

Agenda-based semantic parsing

what city was abraham lincoln born in
20

AbeLincoln

LincolnTown

. . .

362

Type.City

Type.Loc

. . .

20

AbrahamProphet

AbeLincoln

. . .

391 508

PlaceOfBirthOf

PlacesLived

. . .

ContainedBy

StarredIn

. . .

>1M
Type.City u PlaceOfBirthOf.AbeLincoln

Type.Loc u ContainedBy.LincolnTown

. . .

s1 s2

a1

s3

a2 . . .
a3

sT+1

aT

[with Jonathan Berant, in submission]

39

Agenda-based semantic parsing

what city was abraham lincoln born in
20

AbeLincoln

LincolnTown

. . .

362

Type.City

Type.Loc

. . .

20

AbrahamProphet

AbeLincoln

. . .

391 508

PlaceOfBirthOf

PlacesLived

. . .

ContainedBy

StarredIn

. . .

>1M
Type.City u PlaceOfBirthOf.AbeLincoln

Type.Loc u ContainedBy.LincolnTown

. . .

s1 s2

a1

s3

a2 . . .
a3

sT+1

aT

[with Jonathan Berant, in submission]

39

Agenda-based semantic parsing

what city was abraham lincoln born in
20

AbeLincoln

LincolnTown

. . .

362

Type.City

Type.Loc

. . .

20

AbrahamProphet

AbeLincoln

. . .

391 508

PlaceOfBirthOf

PlacesLived

. . .

ContainedBy

StarredIn

. . .

>1M
Type.City u PlaceOfBirthOf.AbeLincoln

Type.Loc u ContainedBy.LincolnTown

. . .

s1 s2

a1

s3

a2 . . .
a3

sT+1

aT

Learn which derivations to try first ⇒ 8x speedup

[with Jonathan Berant, in submission]

39

Overnight semantic parsing

Domain

[with Yushi Wang, Jonathan Berant, ACL 2015]

40

Overnight semantic parsing

Domain

Seed lexicon

article → TypeNP[article]

publication date→ RelNP[publicationDate]

cites → VP/NP[cites]

...

(1) by builder (∼30 minutes)

[with Yushi Wang, Jonathan Berant, ACL 2015]

40

Overnight semantic parsing

Domain

Seed lexicon

article → TypeNP[article]

publication date→ RelNP[publicationDate]

cites → VP/NP[cites]

...

Logical forms and canonical utterances

article with the largest publication date

argmax(type.article, publicationDate)

person that is author of the most number of article

argmax(type.person,R[λx.Count(type.article u author.x)])

...

(1) by builder (∼30 minutes)

(2) via domain-general grammar

[with Yushi Wang, Jonathan Berant, ACL 2015]

40

Overnight semantic parsing

Domain

Seed lexicon

article → TypeNP[article]

publication date→ RelNP[publicationDate]

cites → VP/NP[cites]

...

Logical forms and canonical utterances

article with the largest publication date

argmax(type.article, publicationDate)

person that is author of the most number of article

argmax(type.person,R[λx.Count(type.article u author.x)])

...

Paraphrases

what is the newest published article?

who has published the most articles?

...

(1) by builder (∼30 minutes)

(2) via domain-general grammar

(3) via crowdsourcing (∼5 hours)

[with Yushi Wang, Jonathan Berant, ACL 2015]

40

Overnight semantic parsing

Domain

Seed lexicon

article → TypeNP[article]

publication date→ RelNP[publicationDate]

cites → VP/NP[cites]

...

Logical forms and canonical utterances

article with the largest publication date

argmax(type.article, publicationDate)

person that is author of the most number of article

argmax(type.person,R[λx.Count(type.article u author.x)])

...

Paraphrases

what is the newest published article?

who has published the most articles?

...

Semantic parser

(1) by builder (∼30 minutes)

(2) via domain-general grammar

(3) via crowdsourcing (∼5 hours)

(4) via domain-general paraphrasing model

[with Yushi Wang, Jonathan Berant, ACL 2015]

40

Answering macro questions

Which country has the highest CO2 emissions?

Which had the highest increase since last year?

What fraction is from the five countries with highest GDP?

41

Natural language interfaces

Which restaurants have my friends been to in the last week?

Which restaurants will still be open Sunday at 10pm?

On Friday night, leave the front light on.

42

Code and data

http://www-nlp.stanford.edu/software/sempre/

http://www.codalab.org

Collaborators

Jonathan Berant

Andrew Chou

Roy Frostig

Ice Pasupat

Yushi Wang

Robin Jia

Reggy Long

Funding

Google

Microsoft

DARPA

Thank you! 43

