Recursive neural networks for semantic interpretation

Sam Bowman

Department of Linguistics and NLP Group Stanford University

with help from Chris Manning, Chris Potts, Richard Socher, Jeffrey Pennington, J.T. Chipman

Recent progress on deep learning

Neural network models are starting to seem pretty good at capturing aspects of meaning.

From Stanford NLP alone:

- Sentiment (EMNLP '11, EMNLP '12, EMNLP '13)
- Paraphrase detection (NIPS '11)
- Knowledge base completion (NIPS '13, ICLR '13)
- Word–word translation (EMNLP '13)
- Parse evaluation (NIPS '10, NAACL '12, ACL '13)
- Image labelling (ICLR '13)

Recent progress on deep learning

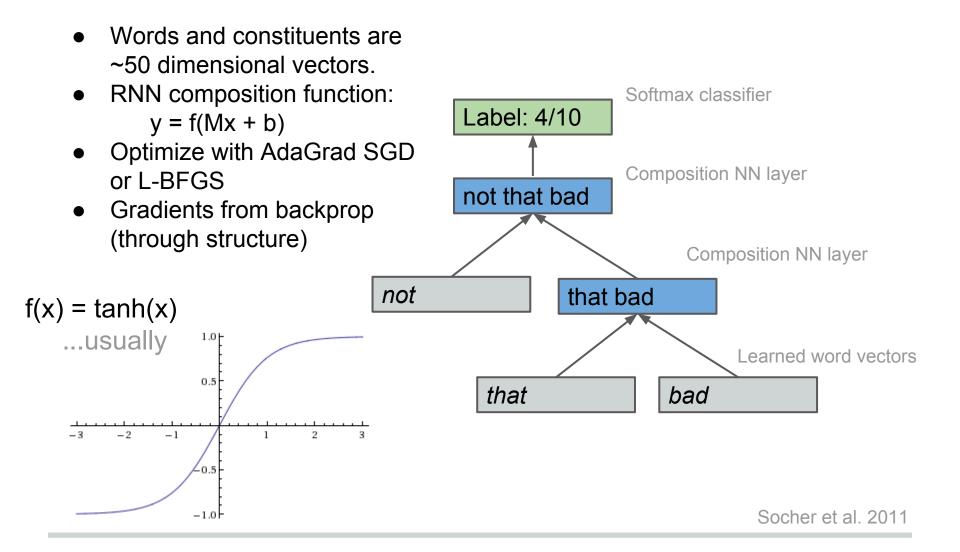
Wired, Jan 2014:

Where will this next generation of researchers take the deep learning movement? The big potential lies in deciphering the words we post to the web — the status updates and the tweets and instant messages and the comments — and there's enough of that to keep companies like Facebook, Google, and Yahoo busy for an awfully long time.

Today

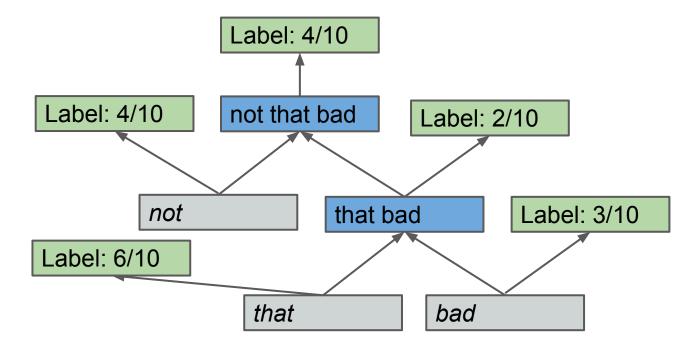
Can these techniques learn models for general purpose NLU?

- Survey: Deep learning models for NLU
- Experiment: Can RNTNs learn to reason with quantifiers (in an ideal world)?
- Experiment: Can RNTNs learn the natural logic *join* operator?
- Experiment: How do these models do on a challenge dataset?

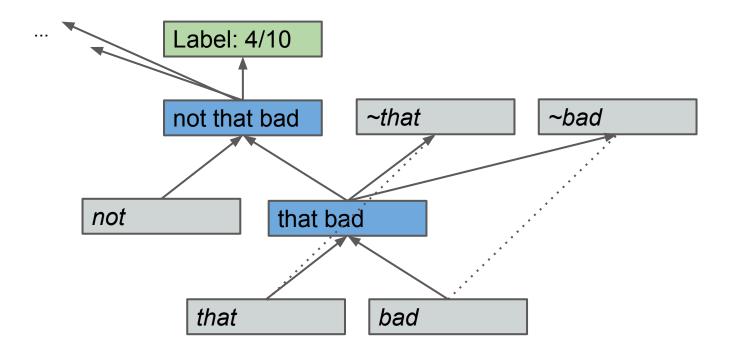


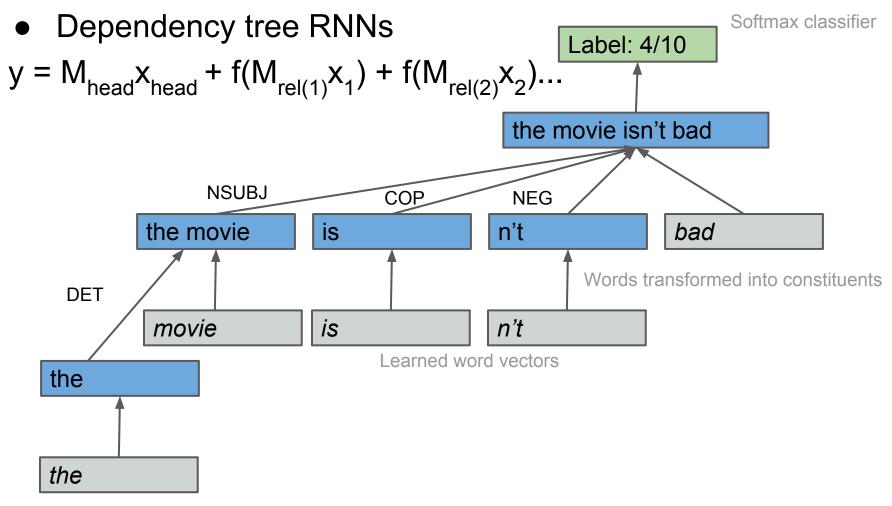
Supervision for everyone!

- ~10k sentences
- ~200k sentiment labels from mechanical Turk

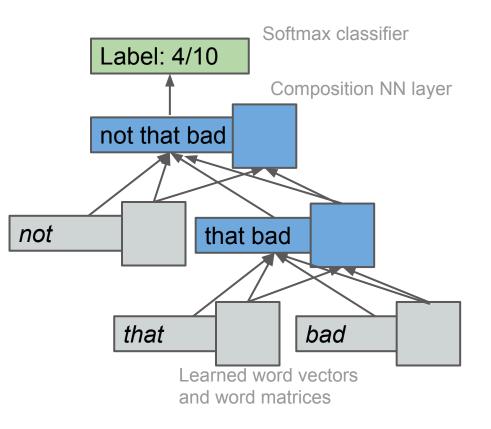


- Recursive autoencoder
- Two objectives: Classification and reconstruction





 Matrix-vector RNN composition functions: y = f(M_v[Ba; Ab]) Y = M_m[A; B]



Recursive neural tensor network composition Softmax classifier function: Label: 4/10 $y = f(x_1 M^{[1...N]} x_2 + Mx + b)$ **Composition NN layer** not that bad Composition NN layer not that bad that bad

Learned word vectors

Chen et al. 2013, Socher et al. 2013

And more:

- Convolutional RNNs (Kalchbrenner, Grefenstette, and Blunsom 2014)
- Bilingual objectives (Hermann and Blunsom 2014)

And this isn't even considering model structures for language modeling or speech recognition...

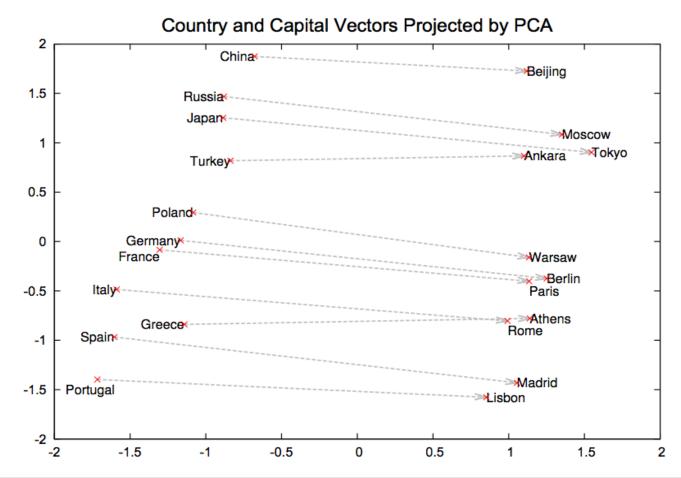
Today

Can these techniques learn models for general purpose NLU?

- Survey: Deep learning models for NLU
- Experiment: Can RNTNs learn to reason with quantifiers (in an ideal world)?
- Experiment: Can RNTNs learn the natural logic *join* operator?
- Experiment: How do these models do on a challenge dataset?

The problem

Mikolov et al. 2013, NIPS



The problem

The Mikolov et al. result:

- Paris France + Spain = Madrid
- Paris France + USA = ?
- \circ most some + all = ?
- not = ?

The problem

- Relatively little work to date on the expressive power of this kind of model.
- The goal of the project:

Can the representation learning systems used in practice capture every aspect of meaning that formal semantics says language users need?

• This talk:

Can RNNs learn to accurately reason with quantification and monotonicity?

Strict unambiguous NLI

- Hard to test on world ↔ sentence. (Why?)
- What about sentence \leftrightarrow sentence?
- Natural language inference (NLI):

Doing logical inference where the logical formulae are represented using natural language.

(as formalized for NLP here by MacCartney, '09)

- Framed as classification task:
 - All dogs bark and Fido is a dog. \Box Fido barks.
 - No dog barks. \equiv All dogs don't bark.
 - No dog barks. **?** Some dog barks.

Strict unambiguous NLI

• MacCartney's seven possible relations between phrases/sentences:

		Slide from Bill MacCartney
<i>x</i> ≡ <i>y</i>	equivalence	$couch \equiv sofa$
<u>x</u> ⊏ <u>y</u>	forward entailment	crow ⊏ bird
x ⊐ <i>y</i>	reverse entailment	European ⊐ French
<u>x ^ y</u>	negation (exhaustive exclusion)	human ^ nonhuman
x y	alternation (non-exhaustive exclusion)	cat dog
х _ у	COVE (exhaustive non-exclusion)	animal _ nonhuman
x # y	independence	hungry # hippo

Monotonicity (a quick reminder)

- A way of using lexical knowledge to reason about sentences.
- Given: black dogs \Box dogs, dogs \Box animals
 - Upward monotone:
 - some <u>dogs</u> bark ⊏ some <u>animals</u> bark
 - Downward monotone:
 - all <u>dogs</u> bark □ all <u>black dogs</u> bark
 - Non-monotone:
 - most <u>dogs</u> bark # most <u>animals</u> bark
 - most <u>dogs</u> bark # most <u>black dogs</u> bark

Strict unambiguous NLI

Strip away everything *else* that makes natural language hard:

- Small, unambiguous vocabulary
- No morphology (no tense, no plurals, no agreement..)
- No pronouns/references to context
- Unlabeled constituency parses are given in data

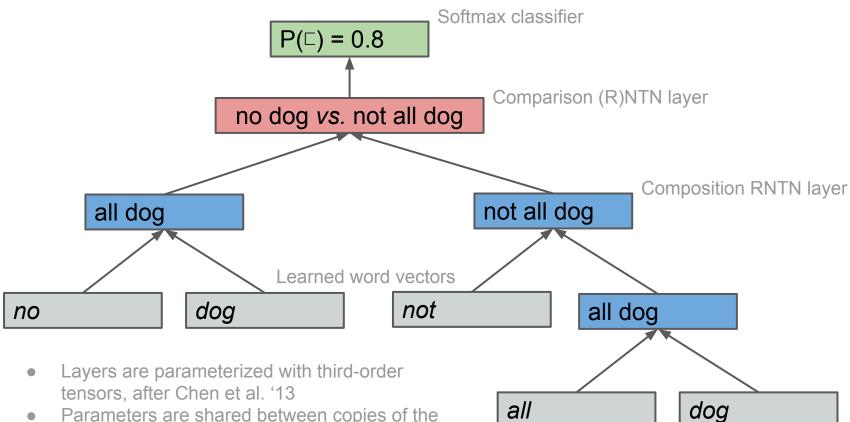
The setup

- Small (~50 word) vocabulary
 - Three basic types:
 - Quantifiers: *some*, *all*, *no*, *most*, *two*, *three*
 - Predicates: dog, cat, animal, live, European, ...
 - Negation: not
- Handmade dataset, 12k sentence pairs, grouped into templates.
- All sentences of the form *QPP*, with optional negation on each predicate:

((some x) bark) # ((some x) (not bark))

((some dog) bark) # ((some dog) (not bark))

The model: an RNTN for NLI



- Parameters are shared between copies of the composition layer
- Input word vectors are initialized randomly and learned.

Five experiments

- All-in: train and test on all data. \Rightarrow 100%
- All-split: train on 85% of each pattern, test on rest.
 ⇒ 100%

(most dog) bark | (no dog) alive (all cat) French □ (some cat) European

(most dog) French | (no dog) European

Five experiments

- One-set-out: hold out one pattern for testing only, split remaining data 85/15.
 - o (most x) European | (no x) European
- One-subclass-out: hold out one set of patterns for testing only, split remaining data 85/15.

 \circ (most x) y | (no x) y

• One-pair-out: hold out one every pattern with a given pair of quantifiers for testing only, split rest.

 \circ (most (not x)) y # (no x) z...

Pilot results

Target dataset	Data evaluated	SET-OUT	SUBCLOUT	PAIR-OUT
(most x) bark (no x) bark	target dataset only	100%	100%	93.6%
	all held out datasets	(100%)	36.8%	78.8%
	all test data	99.8%	95.9%	93.8%
(two x) bark # (all x) bark	target dataset only	0%	100%	94.7%
	all held out datasets	(0%)	100%	62.7%
	all test data	97.5%	99.3%	93.0%
(some x) bark $^{\wedge}$ (no x) bark	target dataset only	0%	0%	0%
	all held out datasets	(0%)	0%	25.2%
	all test data	97.7%	94.0%	85.5%

MacCartney's join:

(most x) $y \sqsubset$ (some x) y , (some x) $y^{(no x)} y$

⊢ (most x) y | (no x) y

(some x) $y \supseteq$ (most x) y , (most x) y | (no x) y

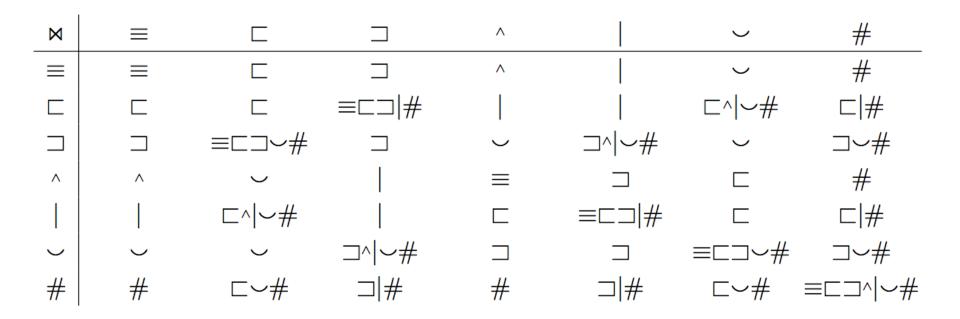
⊨ (some x) y {⊐^|#~} (no x) y

Today

Can these techniques learn models for general purpose NLU?

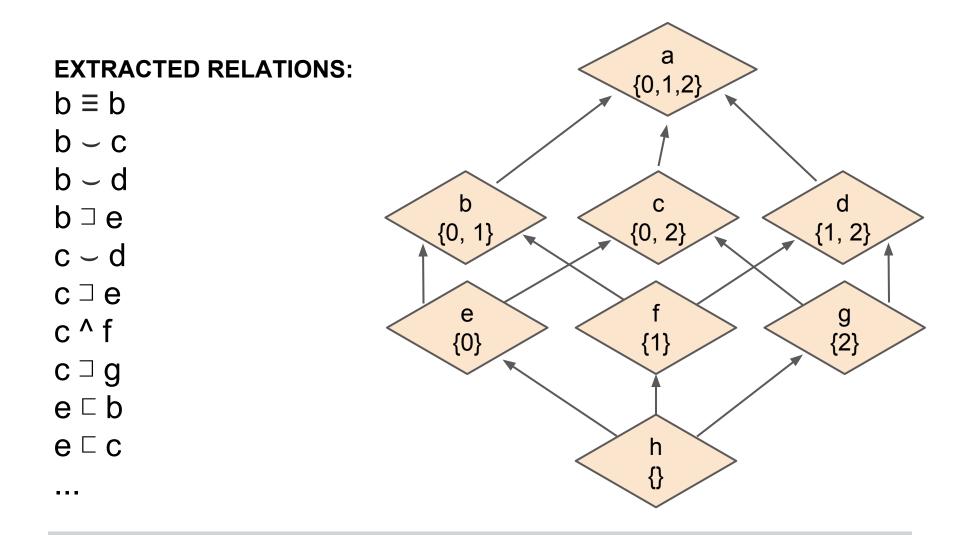
- Survey: Deep learning models for NLU
- Experiment: Can RNTNs learn to reason with quantifiers (in an ideal world)?
- Experiment: Can RNTNs learn the natural logic *join* operator?
- Experiment: How do these models do on a challenge dataset?

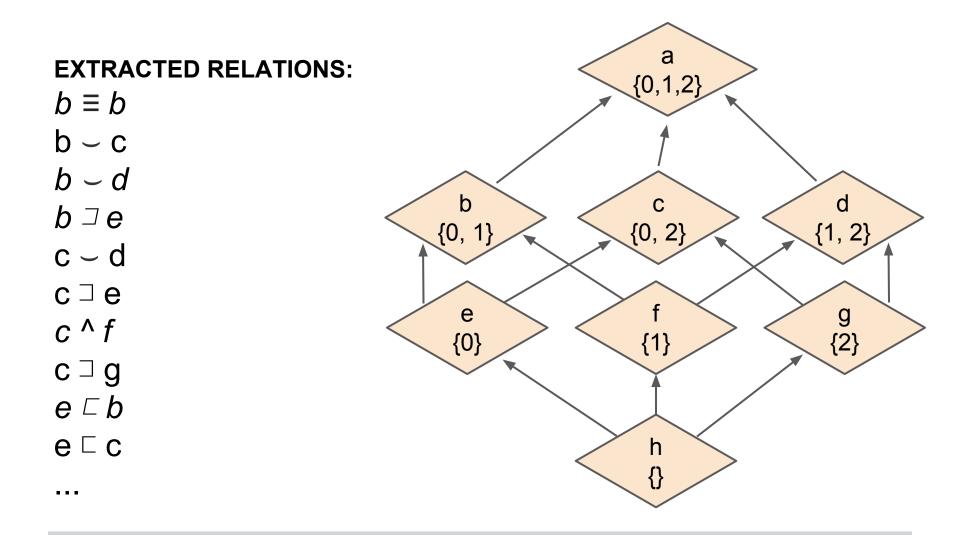
Extra experiments: MacC's Join



MacCartney's join table: $aRb \& bR'c \Rightarrow a\{join(R,R')\}c$

Cells that contain # represent uncertain results and can be approximated by just #.



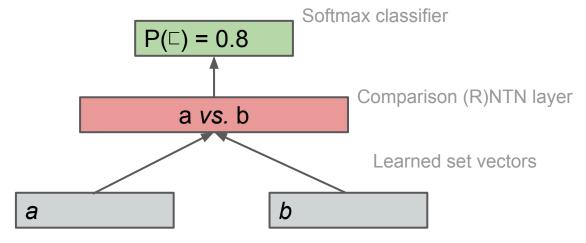


а **TRAIN:** TEST: {0,1,2} $b \equiv b$ b – c b ~ d b С d b ⊐ e {0, 1} {0, 2} {1, 2} c – d c ⊐ e g {2} е c ^ f {0} {1} c ⊐ g e⊏b e ⊏ c h - - -

а **TRAIN:** TEST: {0,1,2} $b \equiv b$ b ~ c b ~ d b С d b∃_e {0, 1} {0, 2} {1, 2} c – d c ⊐ e g {2} е <u>c ^ f</u> {0} {1} c ⊐ g e⊏b e ⊏ c h - - -

- Same model as in the monotonicity experiments above, but no composition/internal structure in the sentences.
- Lattice with 50 sets/nodes, 50% of data held out for testing.

⇒ 100% accuracy



Today

Can these techniques learn models for general purpose NLU?

- Survey: Deep learning models for NLU
- Experiment: Can RNTNs learn to reason with quantifiers (in an ideal world)?
- Experiment: Can RNTNs learn the natural logic *join* operator?
- Experiment: How do these models do on a challenge dataset?

SemEval SICK

- NLP challenge dataset:
 - 10,000 sentence pairs labeled:
 - {forward entailment, contradiction, neutral}
 - "Sentences involving compositional knowledge" challenge:
 - No idioms, no named entities, no anaphora, tense doesn't matter.
 - Requires general knowledge about word meaning and hypernymy, but no factoid knowledge.

SemEval SICK data

CONTRADICTION:

The woman in a red costume is leaning against a brick wall and playing an instrument.

The woman in a red costume is not leaning against a brick wall and is not playing an instrument.

NEUTRAL:

The player is dunking the basketball into the net and a crowd is in background.

A man with a jersey is dunking the ball at a basketball game. ENTAILMENT:

Four kids are doing backbends in the park

Four children are doing backbends in the park

SemEval SICK model

all

- Dependency tree RNNs
- Pretrained word vectors
- Partially-trained words

•
$$y = M_{head}x_{head} + f(M_{rel(1)}x_1) + f(M_{rel(2)}x_2)...$$
 all red dogs bark
NSUBJ
all dogs
bark
Learned word vectors
all
Vords transformed into constituents

red

. . .

ROOT 1

Learned word vectors

Results so far... eh?

- String inclusion baseline: 55.2%
- Most frequent class (Neutral): 56.4%
- Best dependency tree RNN: 74.5%
- Best SemEval result (Ullinois): 84.6%

But!

• No alignment or word sense disambiguation

Deep learning logistics

- There isn't any library yet that can do everything you'll need well.
 - But! Research code is available in MATLAB and Java
- Training monotonicity and SICK models: 4-18 hrs
- Lots of knobs to twiddle:
 - Stochastic optimization (AdaGrad/SGD) v. batch (L-BFGS)
 - Number of layers, dimensionality, L1 v. L2
 - Type of nonlinearity
 - Train/test split
 - DepTree RNNs: diagonal v. square matrices

. . .

Thanks!

Code is available for all three experiments. sbowman@stanford.edu

Next steps

- Better formal characterizations of what it takes to learn to do inference
- Better formal characterizations of the structures that can be learned
- More types of network
- More semantic phenomena
- Test on natural language data