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Plan

1 Review of learning to map to logical forms

2 Discussion of learning from denotations
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Related materials
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compositional semantics together.

• Liang, Percy; Michael I. Jordan; and Dan Klein. 2013. Learning
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39(2): 389-446.

Code
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• UW Semantic Parsing Framework

Data
• Geoquery, Jobsquery, Restaurant Query

• Abstract Meaning Representation Bank

• WebQuestions and Free917

• CCGBank (Penn Treebank in CCG; syntax only)

3 / 35

http://www.stanford.edu/~cgpotts/manuscripts/liang-potts-semantics.pdf
http://www.stanford.edu/~cgpotts/manuscripts/liang-potts-semantics.pdf
http://aclweb.org/anthology/J/J13/J13-2005.pdf
http://aclweb.org/anthology/J/J13/J13-2005.pdf
http://nlp.stanford.edu/software/sempre/
https://bitbucket.org/yoavartzi/spf
http://www.cs.utexas.edu/users/ml/nldata.html
http://amr.isi.edu
http://nlp.stanford.edu/software/sempre/
http://groups.inf.ed.ac.uk/ccg/ccgbank.html


Overview Semantic parsing Learning from denotations Refs.

Linguistic objects

〈u, t , r , d〉

• u: the utterance (sequence of strings/words)

• t : the syntactic structure (tree structure)

• r : the semantic representation (a.k.a. logical form)

• d: the denotation (meaning)

(The denotation might under-represent or mis-represent the speaker’s intended
message. We’ll return to that issue in the context of pragmatics.)
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Example interpreted grammar

Syntax Logical form Denotation

N→ one 1 1
N→ two 2 2

...
...

...
R→ plus + the R such that R(x, y) = x + y
R→ minus − the R such that R(x, y) = x − y
R→ times × the R such that R(x, y) = x ∗ y
S→ minus ¬ the f such that f(x) = −x

N→ S N pSqpNq ~pSq�(~pNq�)
N→ NL R NR (pRq pNLq pNRq) ~pRq�(~pNLq�, ~pNRq�)

Table: An illustrative grammar. puq is the translation of syntactic expression u, and ~r� is
the denotation of semantic representation r . N is the CFG’s start symbol. In the final rule,
the L and R subscripts are meta-annotations to ensure deterministic translation and
interpretation.
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Examples

Syntax Logical form Denotation

A. seven minus five (− 7 5) 2
B. minus three plus one (+ ¬3 1) −2
C. two minus two times two (× (− 2 2) 2) 0
D. two plus three plus four (+ 2 (+ 3 4)) 9
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Examples

N

N

seven

R

minus

N

five

(− 7 5)
7 − 5

2

7 the R such that
R(x, y) = x − y

5
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Examples

N : (− 7 5)

N : 7

seven

R : −

minus

N : 5

five

2

7 the R such that
R(x, y) = x − y

5
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Examples

N : (− 7 5)

N : 7

seven

R : −

minus

N : 5

five

2

7 the R such that
R(x, y) = x − y

5

N (+ ¬3 1)

N : ¬3
U : ¬

minus

N : 3

three

R : +

plus

N : 1

one

−2

−3

the f such
that f(x) = −x

3

the R such that
R(x, y) = x + y

1
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Parsing and ambiguity
The grammar determines the candidate space; dynamic programming algorithms
efficiently map us to that space.

Gen(two minus two times two) =

N : ~(× (− 2 2) 2)� = 0

(− 2 2)

N : 2

two

R : −

minus

N : 2

two

R : ×

times

N : 2

two

N : ~(− 2 (× 2 2))� = −2

N : 2

two

R : −

minus

(× 2 2)

N : 2

two

R : ×

times

N : 2

two
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Direct implementations

• Prominent recent examples: Bos 2005; Bos and Markert 2005

• Excel at inference (via theorem provers).

• Tend to be high precision, low recall — the analyst must anticipate every
lexical item and every constructional quirk.

typechange(N,NP,φ) = λp.(
x

;φ@x;p@x)

Tasks 1–2 are implemented using a recursive algorithm that traverses the
normal form derivation as output by the parser and returns a λ-expression.
Task 3 reduces this to the target semantic representation by applying β-
reduction to this λ-expression. The system is able to output underspecified
DRSs as well as fully resolved DRSs, either in Prolog format or in XML.
Some example output of our system is shown in Figure 1.

sem(7,

[word(7001,’Mubarak’),word(7002,reviewed),word(7003,the),word(7004,blueprints),word(7005,for),word(7006,a),

word(7007,number),word(7008,of),word(7009,other),word(7010,huge),word(7011,national),word(7012,projects),

word(7013,’,’),word(7014,known),word(7015,as),word(7016,’Egypts’),word(7017,’21st’),word(7018,century),

word(7019,project),word(7020,’.’)],

[pos(7001,’NNP’),pos(7002,’VBN’),pos(7003,’DT’),pos(7004,’NNS’),pos(7005,’IN’),pos(7006,’DT’),

pos(7007,’NN’),pos(7008,’IN’),pos(7009,’JJ’),pos(7010,’JJ’),pos(7011,’JJ’),pos(7012,’NNS’),pos(7013,’,’),

pos(7014,’VBN’),pos(7015,’IN’),pos(7016,’NNS’),pos(7017,’JJ’),pos(7018,’NN’),pos(7019,’NN’),pos(7021,’.’)],

alfa(nam,drs([7001:A],[7001:pred(’Mubarak’,[A]),7001:ne(A,’I-PER’)]),

alfa(def,drs([7003:B],[7004:pred(blueprint,[B])]),

merge(drs([7006:C],[7007:pred(number,[C])]),

merge(merge(drs([7009:D],[]),

alfa(def,drs([0:E],[7010:pred(huge,[E]),7011:pred(national,[E]),

7012:pred(project,[E])]),

drs([],[7009:not(drs([],[0:eq(D,E)])),

7010:pred(huge,[D]),7011:pred(national,[D]),

7012:pred(project,[D])]))),

drs([7014:F,7016:G,7002:H],[7008:pred(of,[C,D]),7014:pred(know,[F]),

7014:pred(patient,[F,C]),7016:pred(egypt,[G]),

7017:pred(’21st’,[G]),7017:ne(G,’I-DAT’),

7018:pred(century,[G]),7018:ne(G,’I-DAT’),

7019:pred(project,[G]),7015:pred(as,[F,G]),

7005:pred(for,[B,C]),7002:pred(review,[H]),

7002:pred(agent,[H,A]),7002:pred(patient,[H,B])])))))).

/*

______________ _______________ ____________ ______________ ________________ ________________

| x1 | | x2 | | x3 | | x5 | | x4 | | x7 x8 x6 |

|--------------| |---------------| |------------| |--------------| |----------------| |----------------|

(| Mubarak(x1) |A(| blueprint(x2) |A(| number(x3) |;((| huge(x5) |A| _________ |);| of(x3,x4) |)))

| ne(x1)=I-PER | |_______________| |____________| | national(x5) | | | || | know(x7) |

|______________| | project(x5) | | __ |---------|| | patient(x7,x3) |

|______________| | | | x4 = x5 || | egypt(x8) |

| |_________|| | 21st(x8) |

| huge(x4) | | ne(x8)=I-DAT |

| national(x4) | | century(x8) |

| project(x4) | | as(x7,x8) |

|________________| | project(x8) |

| for(x2,x3) |

| review(x6) |

| agent(x6,x1) |

| patient(x6,x2) |

|________________| */

Figure 1: Example DRS output in Prolog format and pretty print for
Mubarak reviewed the blueprints for a number of other huge national projects,
known as Egypts 21st century project.

7

Figure: Prolog representation from Bos 2005: Mubarak reviewed the blueprints for a
number of other huge national projects, known as Egypt’s 21st century project.
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Compositionality

Compositionality

The meaning of a phrase is a function of the meanings of its immediate syntactic
constituents and the way they are combined.

N (+ ¬3 1)

N : ¬3

U : ¬

minus

N : 3

three

R : +

plus

N : 1

one

−2

−3

the f such that
f(x) = −x

3

the R such that
R(x, y) = x + y

1

Liang and Potts (2014)

“the claim of compositionality is that being a semantic interpreter for a language L
amounts to mastering the syntax of L , the lexical meanings of L , and the modes
of semantic combination for L . This also suggests the outlines of a learning task.”
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Learning tasks

The grammar frames the task; different parts of it can be learned.

Syntax Logical form Denotation

N→ one 1 1
N→ two 2 2
...

...
...

R→ plus + the R such that R(x, y) = x + y
R→ minus − the R such that R(x, y) = x − y
R→ times × the R such that R(x, y) = x ∗ y
S→ minus ¬ the f such that f(x) = −x

N→ S N pSqpNq ~pSq�(~pNq�)
N→ NL R NR (pRq pNLq pNRq) ~pRq�(~pNLq�, ~pNRq�)

• Parsing

• Semantic parsing

• Interpretive
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Semantic parsing

〈 u, t , r , d〉

Pioneering work
• Logical: Woods et al. 1972; Warren and Pereira 1982

• Statistical: Zelle and Mooney 1996; Tang and Mooney 2001; Thompson and
Mooney 2003; Zettlemoyer and Collins 2005
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Basic formulation

Utterance Logical form

Train

seven minus five (− 7 5)
five minus seven (− 5 7)
three plus one (− 7 5)
minus three plus one (+ ¬3 1)
minus three plus one ¬(+ 3 1)
two minus two times two (× (− 2 2) 2)
two minus two times two (− 2 (× 2 2))
two plus three plus four (+ 2 (+ 3 4))

.

.

.

Test

three minus one ?
three times one ?
minus six times four ?
one plus three plus five ?

.

.

.

Table: Data requirements.

Syntax Logical form

N→ one 1
N→ one 2

.

.

.
N→ two 1
N→ two 2

.

.

.
R→ plus +
R→ plus −
R→ plus ×
R→ minus +
R→ minus −
R→ minus ×
R→ times +
R→ times −
R→ times ×
S→ minus ¬
N→ S N pSqpNq
N→ NL R NR (pRq pNLq pNRq)

Table: Crude grammar.
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Learning framework

1 Feature representations: φ(x, y) ∈ Rd

2 Scoring: Scorew(x, y) = w · φ(x, y) = ∑d
j=1 wjφ(x, y)j

3 Multiclass hinge-loss objective function:

min
w∈Rd

∑

(x,y)∈D
max

y′∈Gen(x)
[Scorew(x, y ′) + c(y, y ′)] − Scorew(x, y)

where D is a set of (x, y) training examples and c(a, b) = 1 if a , b, else 0.

4 Optimization:
StochasticGradientDescent(D,T , η)
1 Initialize w← 0
2 Repeat T times
3 for each (x, y) ∈ D (in random order)
4 ỹ ← arg maxy′∈Gen(x) Scorew(x, y ′) + c(y, y ′)
5 w← w + η(φ(x, y) − φ(x, ỹ))
6 Return w
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Example

(a) Candidates GEN(x) for utterance x = two times two plus three

y1 y2 y3

N:(+ (⇥ 2 2) 3) ) 7

N:(⇥ 2 2)

N:2

two

R:⇥

times

N:2

two

R:+

plus

N:3

three

N:(+ (+ 2 2) 3) ) 7

N:(+ 2 2)

N:2

two

R:+

times

N:2

two

R:+

plus

N:3

three

N:(⇥ 2 (+ 2 3)) ) 10

N:2

two

R:⇥

times

N:(+ 2 3)

N:2

two

R:+

plus

N:3

three

�(x, y1) =
R:⇥[times] : 1

R:+[plus] : 1

top[R:+] : 1

�(x, y2) =
R:+[times] : 1

R:+[plus] : 1

top[R:+] : 1

�(x, y3) =
R:⇥[times] : 1

R:+[plus] : 1

top[R:⇥] : 1

(b) Learning from logical forms (Section 4.1)

w =

R:⇥[times] : 0

R:+[times] : 0

R:+[plus] : 0

top[R:+] : 0

top[R:⇥] : 0

Scores: [0, 0, 0]

y = y1

ỹ = y3 (tied with y2)

) w =

R:⇥[times] : 0

R:+[times] : 0

R:+[plus] : 0

top[R:+] : 1

top[R:⇥] : -1

Scores: [1, 1,�1]

y = y1

ỹ = y2 (tied with y1)

) w =

R:⇥[times] : 1

R:+[times] : -1

R:+[plus] : 0

top[R:+] : 1

top[R:⇥] : -1

Scores: [2, 0, 0]

y = y1

ỹ = y1

Iteration 1 Iteration 2 Iteration 3

(c) Learning from denotations (Section 4.2)

w =

R:⇥[times] : 0

R:+[times] : 0

R:+[plus] : 0

top[R:+] : 0

top[R:⇥] : 0

Scores: [0, 0, 0]

GEN(x, d) = {y1, y2}
y = y1 (tied with y2)

ỹ = y3 (tied with y2)

) w =

R:⇥[times] : 0

R:+[times] : 0

R:+[plus] : 0

top[R:+] : 1

top[R:⇥] : -1

Scores: [1, 1,�1]

GEN(x, d) = {y1, y2}
y = y1 (tied with y2)

ỹ = y1 (tied with y2)

Iteration 1 Iteration 2
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Derivational ambiguity
In the rich grammars of Zettlemoyer and Collins (2005, 2007) and others, a given
logical expression might have multiple derivations.

Syntax Logical form

N→ one 1

N→ two 2
...

R→ plus +
R→ minus −
R→ times ×
S→ minus ¬

N→ S N pSqpNq
N→ NL R NR (pRq pNLq pNRq)

Q→ n (λf (f pnq))
N→ U Q (pQq pUq)

Table: Grammar with type-lifting.

Training instance: (minus three, ¬3)

N : ¬3

U : ¬

minus

N : 3

three

N : ((λf (f 3)) ¬) β⇒¬3

U : ¬

minus

Q : (λf (f 3))

three

(Beta-conversion
β⇒ is the syntactic counterpart

of functional application.)
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Derivations as latent variables
• The training instances are (u, r) pairs.
• Since r might have multiple derivations, derivations are latent variables.
• Zettlemoyer and Collins (2005, 2007) use log-linear latent variable models,

but our earlier framework can accommodate them as well.
• Latent support vector machine objective:

min
w∈Rd

∑

(x,r)∈D
max

y′∈Gen(x)
[Scorew(x, y ′) + c(r ,Root(y ′))] − max

y′′∈Gen(x,r)
Scorew(x, y ′′),

where D is a set of (utterance, formula) pairs; c(a, b) = 1 if a , b, else 0;
and Gen(x, r) =

{
y ∈ Gen(x) : Root(y) = r

}

• Optimization:
StochasticGradientDescent(D,T , η)
1 Initialize w← 0
2 Repeat T times
3 for each (x, r) ∈ D (in random order)
4 y ← arg maxy′′∈Gen(x,r) Scorew(x, y ′′)
5 ỹ ← arg maxy′∈Gen(x) Scorew(x, y ′) + c(y, y ′)
6 w← w + η(φ(x, y) − φ(x, ỹ))
7 Return w
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Taming the search space

The complexity issues trace to the fact that the size of Gen(x) is expontential in
the length of x.

• Variants of CKY parsing algorithms that track both syntactic and semantic
information (Zettlemoyer 2009:Appendix A).

• Assume parts of the lexicon are known (function words, easily specified
open-class items).

• Prune the lexicon during training, thereby keeping it small, thereby keeping
Gen(x) small (Zettlemoyer and Collins 2005).
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High-level look at results

Paper Recall (LFs) Recall (Answers)

Zettlemoyer and Collins (2005) 79.3 –
Zettlemoyer and Collins (2007) 81.6 –
Kwiatkowksi et al. (2010) 88.2 –
Kwiatkowski et al. (2011) 88.6 –

Liang et al. (2011, 2013) – 87.9
Liang et al. (2011, 2013) with L+ – 91.4

Table: Results for the Geo880 test set (Zelle and Mooney 1996). For a fuller summary, see
Liang et al. 2013:435. ‘L+’ here involves 22 pre-specified training instances for semantically
complex predicates like size.
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Recent developments and extensions

• Zettlemoyer and Collins (2007): grapping with messy data (ATIS
travel-planning)

• Artzi and Zettlemoyer (2011): bootstrapping from machine-generated dialog
systems

• Kwiatkowksi et al. (2010): learning (weights on) the modes of composition

• Matuszek et al. (2012b): mapping to a robot controller language

• Kwiatkowksi et al. (2010); Kwiatkowski et al. (2011): multilingual semantic
parsing

• Cai and Yates (2013): question-answering with Freebase
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Learning from denotations

〈 u, t , r , d 〉

Pioneering work
• Psychological: see Frank et al. 2009 for models and references

• NLP: Clarke et al. (2010); Liang et al. (2011, 2013)
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Motivations
Supervision

Detailed Supervision
- doesn’t scale up
- representation-dependent

What is the largest city in California?

expert

argmax({c : city(c) ^ loc(c, CA)}, population)

Natural Supervision
- scales up
- representation-independent

What is the largest city in California?

non-expert

Los Angeles

22

(Slide from Percy Liang)
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Basic formulation

Utterance Denotation

Train

seven minus five 2
five minus seven −2
three plus one 4
minus three plus one −2
minus three plus one −4
two minus two times two 0
two minus two times two −2
two plus three plus four 9

.

.

.

Test

three minus one ?
three times one ?
minus six times four ?
one plus three plus five ?

.

.

.

Table: Data requirements.

Syntax Logical form Denotation

N→ one 1 1
N→ one 2 2

.

.

.
N→ two 1 1
N→ two 2 2

.

.

.
R→ plus + addition
R→ plus − subtraction
R→ plus × multiplication
R→ minus + addition
R→ minus − subtraction
R→ minus × multiplication
R→ times + addition
R→ times − subtraction
R→ times × multiplication
S→ minus ¬ negative

N→ S N pSqpNq ~pSq�(~pNq�)
N→ NL R NR (pRq pNLq pNRq) ~pRq�(~pNLq�, ~pNRq�)

Table: Crude grammar.
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Learning framework

1 Feature representations: φ(x, y) ∈ Rd

2 Scoring: Scorew(x, y) = w · φ(x, y) = ∑d
j=1 wjφ(x, y)j

3 Latent support vector machine objective:

min
w∈Rd

∑

(x,d)∈D
max

y′∈Gen(x)
[Scorew(x, y ′) + c(d, ~y ′�)] − max

y∈Gen(x,d)
Scorew(x, y),

where Gen(x, d) =
{
y ∈ Gen(x) : ~y� = d

}
is the set of logical forms that

evaluate to denotation d.

4 Optimization:
StochasticGradientDescent(D,T , η)
1 Initialize w← 0
2 Repeat T times
3 for each (x, d) ∈ D (in random order)
4 y ← arg maxy′′∈GEN(x,d) Scorew(x, y ′′)
5 ỹ ← arg maxy′∈GEN(x) Scorew(x, y ′) + c(y, y ′)
6 w← w + η(φ(x, y) − φ(x, ỹ))
7 Return w
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Example

(a) Candidates GEN(x) for utterance x = two times two plus three

y1 y2 y3

N:(+ (⇥ 2 2) 3) ) 7

N:(⇥ 2 2)

N:2

two

R:⇥

times

N:2

two

R:+

plus

N:3

three

N:(+ (+ 2 2) 3) ) 7

N:(+ 2 2)

N:2

two

R:+

times

N:2

two

R:+

plus

N:3

three

N:(⇥ 2 (+ 2 3)) ) 10

N:2

two

R:⇥

times

N:(+ 2 3)

N:2

two

R:+

plus

N:3

three

�(x, y1) =
R:⇥[times] : 1

R:+[plus] : 1

top[R:+] : 1

�(x, y2) =
R:+[times] : 1

R:+[plus] : 1

top[R:+] : 1

�(x, y3) =
R:⇥[times] : 1

R:+[plus] : 1

top[R:⇥] : 1

(b) Learning from logical forms (Section 4.1)

w =

R:⇥[times] : 0

R:+[times] : 0

R:+[plus] : 0

top[R:+] : 0

top[R:⇥] : 0

Scores: [0, 0, 0]

y = y1

ỹ = y3 (tied with y2)

) w =

R:⇥[times] : 0

R:+[times] : 0

R:+[plus] : 0

top[R:+] : 1

top[R:⇥] : -1

Scores: [1, 1,�1]

y = y1

ỹ = y2 (tied with y1)

) w =

R:⇥[times] : 1

R:+[times] : -1

R:+[plus] : 0

top[R:+] : 1

top[R:⇥] : -1

Scores: [2, 0, 0]

y = y1

ỹ = y1

Iteration 1 Iteration 2 Iteration 3

(c) Learning from denotations (Section 4.2)

w =

R:⇥[times] : 0

R:+[times] : 0

R:+[plus] : 0

top[R:+] : 0

top[R:⇥] : 0

Scores: [0, 0, 0]

GEN(x, d) = {y1, y2}
y = y1 (tied with y2)

ỹ = y3 (tied with y2)

) w =

R:⇥[times] : 0

R:+[times] : 0

R:+[plus] : 0

top[R:+] : 1

top[R:⇥] : -1

Scores: [1, 1,�1]

GEN(x, d) = {y1, y2}
y = y1 (tied with y2)

ỹ = y1 (tied with y2)

Iteration 1 Iteration 2

(a) Candidates GEN(x) for utterance x = two times two plus three

y1 y2 y3

N:(+ (⇥ 2 2) 3) ) 7
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N:2

two
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two
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three
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N:(+ 2 3)
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R:+
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�(x, y1) =
R:⇥[times] : 1

R:+[plus] : 1

top[R:+] : 1

�(x, y2) =
R:+[times] : 1

R:+[plus] : 1

top[R:+] : 1

�(x, y3) =
R:⇥[times] : 1

R:+[plus] : 1

top[R:⇥] : 1

(b) Learning from logical forms (Section 4.1)

w =

R:⇥[times] : 0

R:+[times] : 0

R:+[plus] : 0

top[R:+] : 0

top[R:⇥] : 0

Scores: [0, 0, 0]

y = y1

ỹ = y3 (tied with y2)

) w =

R:⇥[times] : 0

R:+[times] : 0

R:+[plus] : 0

top[R:+] : 1

top[R:⇥] : -1

Scores: [1, 1,�1]

y = y1

ỹ = y2 (tied with y1)

) w =

R:⇥[times] : 1

R:+[times] : -1

R:+[plus] : 0

top[R:+] : 1

top[R:⇥] : -1

Scores: [2, 0, 0]

y = y1

ỹ = y1

Iteration 1 Iteration 2 Iteration 3

(c) Learning from denotations (Section 4.2)

w =

R:⇥[times] : 0

R:+[times] : 0

R:+[plus] : 0

top[R:+] : 0

top[R:⇥] : 0

Scores: [0, 0, 0]

GEN(x, d) = {y1, y2}
y = y1 (tied with y2)

ỹ = y3 (tied with y2)

) w =

R:⇥[times] : 0

R:+[times] : 0

R:+[plus] : 0

top[R:+] : 1

top[R:⇥] : -1

Scores: [1, 1,�1]

GEN(x, d) = {y1, y2}
y = y1 (tied with y2)

ỹ = y1 (tied with y2)

Iteration 1 Iteration 2

Not pictured: possibility of features on denotations!
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Probabilistic formulation Graphical Model

x
capital of
California?

parameters

✓ z

1

2

1

1

CA

capital

⇤⇤

world

w y Sacramento

Semantic Parsing: p(z | x, ✓)
(probabilistic)

Interpretation: p(y | z, w)
(deterministic)

24(Slide from Percy Liang)
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EM-style learning Learning

Objective Function:

p(y | z, w) p(z | x, ✓)
Interpretation Semantic parsing
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EM-style learning Learning

Objective Function:

max✓ p(y | z, w) p(z | x, ✓)
Interpretation Semantic parsing
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EM-style learning Learning

Objective Function:

max✓

P
z p(y | z, w) p(z | x, ✓)

Interpretation Semantic parsing
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EM-style learning Learning

Objective Function:

max✓

P
z p(y | z, w) p(z | x, ✓)

Interpretation Semantic parsing

EM-like Algorithm:

parameters ✓

(0, 0, . . . , 0)
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EM-style learning Learning

Objective Function:

max✓

P
z p(y | z, w) p(z | x, ✓)

Interpretation Semantic parsing

EM-like Algorithm:

parameters ✓

(0, 0, . . . , 0)

enumerate/score DCS trees
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EM-style learning Learning

Objective Function:

max✓

P
z p(y | z, w) p(z | x, ✓)

Interpretation Semantic parsing

EM-like Algorithm:

parameters ✓ k-best list

(0, 0, . . . , 0)

enumerate/score DCS trees
tree1

tree2

tree3

tree4

tree5
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EM-style learning Learning

Objective Function:

max✓

P
z p(y | z, w) p(z | x, ✓)

Interpretation Semantic parsing

EM-like Algorithm:

parameters ✓ k-best list

(0.2,�1.3, . . . , 0.7)

enumerate/score DCS trees

numerical optimization (L-BFGS)

tree1

tree2

tree3

tree4

tree5

26(Slide from Percy Liang)

26 / 35

http://www.stanford.edu/class/cs224u/slides/2013/cs224u-semantic-parsing.pdf


Overview Semantic parsing Learning from denotations Refs.

EM-style learning Learning

Objective Function:

max✓

P
z p(y | z, w) p(z | x, ✓)

Interpretation Semantic parsing

EM-like Algorithm:

parameters ✓ k-best list

(0.2,�1.3, . . . , 0.7)

enumerate/score DCS trees

numerical optimization (L-BFGS)

tree3

tree8

tree6

tree2

tree4
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EM-style learning Learning

Objective Function:

max✓

P
z p(y | z, w) p(z | x, ✓)

Interpretation Semantic parsing

EM-like Algorithm:

parameters ✓ k-best list

(0.3,�1.4, . . . , 0.6)

enumerate/score DCS trees

numerical optimization (L-BFGS)

tree3

tree8

tree6

tree2

tree4
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EM-style learning Learning

Objective Function:

max✓

P
z p(y | z, w) p(z | x, ✓)

Interpretation Semantic parsing

EM-like Algorithm:

parameters ✓ k-best list

(0.3,�1.4, . . . , 0.6)

enumerate/score DCS trees

numerical optimization (L-BFGS)

tree3

tree8

tree2

tree4

tree9
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Basic Dependency-based Compositional Semantics (DCS)

A sub-logic of the full version in Liang et al. 2013:§2.5:

~Pn� =
{
〈x1, . . . , xn〉, . . .

}

�

�

�

�

�

�

�

a i j
b

�

�

�

�

�

�

�

=
{
x ∈ ~a� : xi = yj for some y ∈ ~b�

}

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

a i j
b

k
p c

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

=

{
x ∈ ~a� : xi = yj for some y ∈ ~b�

}

∩{
x ∈ ~a� : xk = zp for some z ∈ ~b�

}

�

�

�

�

�

�

�

∑
b

�

�

�

�

�

�

�

=
{
~b�

}
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Basic DCS examples
~lisa� =





~admire� =



〈
,
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Basic DCS examples~lisa� =

8>><>>:

9>>=>>;

~admire� =
⇢
h , i, h , i, h , i

�

⇢

�

�

�

�

�

�

�

�

�

⌧

admire
1 1

lisa

�

�

�

�

�

�

�

�

�

�

�

=
⇢
x 2 ~admire� : x1 = y1 for some y 2

�

=
⇢
h , i

�

⇢

�

�

�

�

�

�

�

�

�

⌧

admire
2 1

lisa

�

�

�

�

�

�

�

�

�

�

�

=
⇢
x 2 ~admire� : x2 = y1 for some y 2

�

=
⇢
h , i, h , i

�

⇢

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

⌧

admire
2 1

lisa

1

1 boy

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

= {x 2 ~admire� : x2 = y1, y 2 ~lisa�} \ {x 2 ~admire� : x1 = z1, z 2 ~boy�}

=

⇢
h , i, h , i

�

\⇢
h , i

�
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DCS, mark/execute, and scope ambiguity

Some river traverses every city.

Liang, Jordan, and Klein Learning Dependency-Based Compositional Semantics

Figure 14
(a) An example of applying the execute operation on column i with the quantify relation Q.
Before executing, note that A = {} (because Alaska does not border any states). The restrictor (A)
is the set of all states, and the nuclear scope (B) is empty. Because the pair (A, B) does exist in
w(no), the final denotation is 〈〈{[ ]}〉〉 (which represents true). (b) Although the execute operation
actually works on the denotation, think of it in terms of expanding the DCS tree. We introduce
an extra projection relation [−1], which projects away the first column of the child subtree’s
denotation.

quantifier scope ambiguity is resolved by the choice of execute relation: X12 gives the
surface scope reading, X21 gives the inverse scope reading.

Figure 8(d) shows how extraction and quantification work together. First, the no

quantifier is processed for each city, which is an unprocessed marked node. Here, the
extract relation is a technical trick to give city wider scope.

Comparatives and Superlatives. Comparative and superlative constructions involve com-
paring entities, and for this we rely on a set S of entity–degree pairs (x, y), where x is an

Figure 15
Denotation of Figure 8(c) before the execute relation is applied.

413• Execute x12 processes column 3, then column 2: wide-scope some river

• Execute x21 processes column 2, then column 3: wide-scope every city

See also Percy’s slides from last year.
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Lambda DCS (Liang 2013)

Lambda DCS Lambda DCS type Lambda expression

a e λx (x = a)
R 〈e, 〈e, t〉〉 λx (λy R(x, y))
R.a 〈e, t〉 λx ∃y (R(x, y) ∧ a(y))
P u Q 〈e, t〉 λx (P(x) ∧ Q(x))
P t Q 〈e, t〉 λx (P(x) ∨ Q(x))
¬P 〈e, t〉 λx ¬P(x)
µx (R.S.x) 〈e, t〉 λx ∃y (R(x, y) ∧ S(y, x))

...

Table: Language definition.

Lambda DCS Lambda expression

peru λx (x = peru)
Birthplace λx (λy Birthplace(x, y))
Birthplace.peru λx ∃y (Birthplace(x, y) ∧ peru(y))
Birthplace.peru u Linguist λx (Birthplace.peru(x) ∧ Linguist(x))
µx (Student.Influenced.x) λx ∃y (Student(x, y) ∧ Influenced(y, x))

Table: Examples.
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High-level look at results

Paper Recall (LFs) Recall (Answers)

Zettlemoyer and Collins (2005) 79.3 –
Zettlemoyer and Collins (2007) 81.6 –
Kwiatkowksi et al. (2010) 88.2 –
Kwiatkowski et al. (2011) 88.6 –

Liang et al. (2011, 2013) – 87.9
Liang et al. (2011, 2013) with L+ – 91.4

Table: Results for the Geo880 test set (Zelle and Mooney 1996). For a fuller summary, see
Liang et al. 2013:435. ‘L+’ here involves 22 pre-specified training instances for semantically
complex predicates like size.
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Recent developments and extensions

• Learning from large databases: Clarke et al. 2010; Berant et al. 2013;
Berant and Liang 2014; Kwiatkowski et al. 2013.

• Computer programming tasks: Kushman and Barzilay 2013; Lei et al. 2013

• Computer games: Branavan et al. 2010, 2011

• Learning via perception: Matuszek et al. 2012a; Tellex et al. 2011;
Krishnamurthy and Kollar 2013
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