Learning compositional semantic theories

Christopher Potts

CS 244U: Natural language understanding
 May 5

Plan

(1) Review of learning to map to logical forms
(2) Discussion of learning from denotations

Related materials

Readings

- Liang, Percy and Christopher Potts. 2014. Bringing machine learning and compositional semantics together.
- Liang, Percy; Michael I. Jordan; and Dan Klein. 2013. Learning dependency-based compositional semantics. Computational Linguistics 39(2): 389-446.

Code

- SEMPRE: Semantic Parsing with Execution
- UW Semantic Parsing Framework

Data

- Geoquery, Jobsquery, Restaurant Query
- Abstract Meaning Representation Bank
- WebQuestions and Free917
- CCGBank (Penn Treebank in CCG; syntax only)

Linguistic objects

$\langle u, t, r, d\rangle$

- u : the utterance
- t : the syntactic structure
(sequence of strings/words)
- r : the semantic representation
- d: the denotation

Example interpreted grammar

Syntax	Logical form	Denotation
$N \rightarrow$ one	1	1
$N \rightarrow$ two	2	2
	:	\vdots
$R \rightarrow$ plus	+	the R such that $R(x, y)=x+y$
$R \rightarrow$ minus	-	the R such that $R(x, y)=x-y$
$R \rightarrow$ times	\times	the R such that $R(x, y)=x * y$
$\mathrm{S} \rightarrow$ minus	\neg	the f such that $f(x)=-x$
$N \rightarrow S N$	「S7「N7	$\llbracket\ulcorner S\urcorner \rrbracket(\llbracket\ulcorner N\urcorner \rrbracket)$
$\mathrm{N} \rightarrow \mathrm{N}_{L} \mathrm{R} \mathrm{N}_{R}$	$\left(\ulcorner\mathrm{R}\urcorner\left\ulcorner\mathrm{N}_{L}\right\urcorner\left\ulcorner\mathrm{N}_{R}\right\urcorner\right.$)	$\left.\llbracket\ulcorner\mathrm{R}\urcorner \rrbracket\left(\llbracket\left\ulcorner\mathrm{N}_{L}\right\urcorner \rrbracket\right], \llbracket\left\ulcorner\mathrm{N}_{R}\right\urcorner \rrbracket\right)$

Table: An illustrative grammar. $\ulcorner u\urcorner$ is the translation of syntactic expression u, and $\llbracket r \rrbracket$ is the denotation of semantic representation r. N is the CFG's start symbol. In the final rule, the L and R subscripts are meta-annotations to ensure deterministic translation and interpretation.

Examples

Syntax	Logical form	Denotation
A. seven minus five	(-7 5)	2
B. minus three plus one	$(+\neg 31)$	-2
C. two minus two times two	$(\times(-22) 2)$	0
D. two plus three plus four	$(+2(+34))$	9

Examples

Examples

Examples

minus three

the f such 3

that $f(x)=-x$

Parsing and ambiguity

The grammar determines the candidate space; dynamic programming algorithms efficiently map us to that space.

$\operatorname{Gen}($ two minus two times two $)=$

Direct implementations

- Prominent recent examples: Bos 2005; Bos and Markert 2005
- Excel at inference (via theorem provers).
- Tend to be high precision, low recall - the analyst must anticipate every lexical item and every constructional quirk.

```
sem(7,
    [word(7001,'Mubarak'),word(7002, reviewed),word(7003,the),word(7004, blueprints),word(7005,for),word(7006,a),
    word(7007,number), word(7008,of),word(7009,other),word(7010,huge),word(7011, national), word(7012,projects)
    word(7013,','),word(7014, known),word(7015,as), word(7016,'Egypts'),word(7017,'21st'),word(7018,century),
    word(7019, project),word (7020,''')],
    [pos(7001,'NNP'),pos(7002,'VBN'),pos(7003,'DT'), pos(7004,'NNS'), pos(7005,'IN'),pos(7006, 'DT'),
    pos(7007,'NN'),pos(7008,'IN'), pos(7009,'JJ'),pos(7010,'JJ'),pos(7011,'JJ'),pos(7012,'NNS'),pos(7013,','),
    pos(7014,'VBN'),pos(7015,'IN'),pos(7016, 'NNS'),pos(7017,'JJ'), pos(7018,'NN'),pos(7019,'NN'),pos(7021,'.')],
alfa(nam,drs([7001:A],[7001:pred('Mubarak', [A]),7001:ne(A,'I-PER')]),
    alfa(def,drs([7003:B],[7004:pred(blueprint,[B])]),
        merge(drs([7006: C], [7007:pred(number,[C])]),
                merge(merge(drs([7009:D],[]),
            alfa(def,drs([0:E], [7010:pred(huge, [E]),7011:pred(national,[E]),
                7012:pred(project,[E])]),
                            drs([],[7009:not(drs([],[0:eq(D,E)])),
                            7010:pred(huge, [D]),7011:pred(national, [D]),
                            7012: pred(project,[D])]))),
                            drs([7014:F,7016:G,7002:H], [7008:pred(of, [C,D]),7014:pred(know,[F]),
                            7014:pred(patient, [F,C]),7016: pred(egypt, [G]),
                            7017:pred('21st',[G]) 7017:ne(G,'I-DAT')
                            7017:pred(21st',[G]),7017:ne(G,',-DAT')')
                            7018:pred(century,[G]), 7018:ne(G,'I-DAT'),
                            7019:pred(project,[G]), 7015: pred(as, [F,G]),
                            7002:pred(agent,[H,A]),7002:pred(patient,[H,B])])))))).
```

Figure: Prolog representation from Bos 2005: Mubarak reviewed the blueprints for a number of other huge national projects, known as Egypt's 21st century project.

Compositionality

Compositionality

The meaning of a phrase is a function of the meanings of its immediate syntactic constituents and the way they are combined.

Compositionality

Compositionality

The meaning of a phrase is a function of the meanings of its immediate syntactic constituents and the way they are combined.

Liang and Potts (2014)

"the claim of compositionality is that being a semantic interpreter for a language L amounts to mastering the syntax of L, the lexical meanings of L, and the modes of semantic combination for L. This also suggests the outlines of a learning task."

Learning tasks

The grammar frames the task; different parts of it can be learned.

Syntax	Logical form	Denotation
$N \rightarrow$ one	1	1
$\mathrm{N} \rightarrow$ two	2	2
\vdots	:	:
$\mathrm{R} \rightarrow$ plus	+	the R such that $R(x, y)=x+y$
$R \rightarrow$ minus	-	the R such that $R(x, y)=x-y$
$R \rightarrow$ times	\times	the R such that $R(x, y)=x * y$
$S \rightarrow$ minus	\neg	the f such that $f(x)=-x$
$N \rightarrow S N$	「ST「N7	$\llbracket\ulcorner S\urcorner \rrbracket(\llbracket\ulcorner\mathrm{N}\urcorner \rrbracket)$
$\mathrm{N} \rightarrow \mathrm{N}_{L} \mathrm{R} \mathrm{N}_{R}$	$\left(\ulcorner\mathrm{R}\urcorner\left\ulcorner\mathrm{N}_{L}\right\urcorner\left\ulcorner\mathrm{N}_{R}\right\urcorner\right.$)	$\left.\llbracket\ulcorner\mathrm{R}\urcorner \rrbracket\left(\llbracket\left\ulcorner\mathrm{N}_{L}\right\urcorner \rrbracket\right], \llbracket\left\ulcorner\mathrm{N}_{R}\right\urcorner \rrbracket\right)$

- Parsing
- Semantic parsing
- Interpretive

Learning tasks

The grammar frames the task；different parts of it can be learned．

Syntax	Logical form	Denotation
$N \rightarrow$ one	1	1
$\mathrm{N} \rightarrow$ two	2	2
：		
$\mathrm{R} \rightarrow$ plus	＋	the R such that $R(x, y)=x+y$
$R \rightarrow$ minus	－	the R such that $R(x, y)=x-y$
$\mathrm{R} \rightarrow$ times	\times	the R such that $R(x, y)=x * y$
$\mathrm{S} \rightarrow$ minus	\neg	the f such that $f(x)=-x$
$N \rightarrow S N$	「S7「N7	$\llbracket\ulcorner\mathrm{S}\urcorner \rrbracket(\mathbb{}$
$N \rightarrow N_{L} R N_{R}$	$\left(\ulcorner\mathrm{R}\urcorner\left\ulcorner\mathrm{N}_{L}\right\urcorner\left\ulcorner\mathrm{N}_{R}\right\urcorner\right.$ ）	$\llbracket\ulcorner\mathrm{R}\urcorner \rrbracket\left(\right.$（［「 $\left.\left.\left.\mathrm{N}_{L}\right\urcorner \rrbracket\right], \llbracket\left\ulcorner\mathrm{N}_{R}\right\urcorner \rrbracket\right)$

－Parsing
－Semantic parsing
－Interpretive

Learning tasks

The grammar frames the task; different parts of it can be learned.

Syntax	Logical form	Denotation
$\mathrm{N} \rightarrow$ one	1	1
$\mathrm{~N} \rightarrow$ two	2	2
\vdots	\vdots	\vdots
$\mathrm{R} \rightarrow$ plus	+	the R such that $R(x, y)=x+y$
$\mathrm{R} \rightarrow$ minus	-	the R such that $R(x, y)=x-y$
$\mathrm{R} \rightarrow$ times	\times	the R such that $R(x, y)=x * y$
$\mathrm{~S} \rightarrow$ minus	\neg	the f such that $f(x)=-x$
$\mathrm{~N} \rightarrow \mathrm{~S} \mathrm{~N}$	$\ulcorner\mathrm{~S}\urcorner\ulcorner\mathrm{N}\urcorner$	$\llbracket\ulcorner\mathrm{S}\urcorner \rrbracket(\llbracket\ulcorner\mathrm{N}\urcorner \rrbracket)$
$\mathrm{N} \rightarrow \mathrm{N}_{L} \mathrm{R} \mathrm{N}_{R}$	$\left(\ulcorner\mathrm{R}\urcorner\left\ulcorner\mathrm{N}_{L}\right\urcorner\left\ulcorner\mathrm{N}_{R}\right\urcorner\right)$	$\llbracket\ulcorner\mathrm{R}\urcorner \rrbracket\left(\llbracket\left\ulcorner\mathrm{N}_{L}\right\urcorner \rrbracket, \llbracket\left\ulcorner\mathrm{N}_{R}\right\urcorner \rrbracket\right)$

- Parsing
- Semantic parsing
- Interpretive

Learning tasks

The grammar frames the task; different parts of it can be learned.

Syntax	Logical form	Denotation
$N \rightarrow$ one	1	1
$N \rightarrow$ two	2	2
:	:	
$\mathrm{R} \rightarrow$ plus	+	the R such that $R(x, y)=x+y$
$R \rightarrow$ minus	-	the R such that $R(x, y)=x-y$
$\mathrm{R} \rightarrow$ times	\times	the R such that $R(x, y)=x * y$
$\mathrm{S} \rightarrow$ minus	\neg	the f such that $f(x)=-x$
$N \rightarrow S N$	「S7「N7	$\llbracket\ulcorner S\urcorner \rrbracket(\llbracket\ulcorner N\urcorner \rrbracket)$
$N \rightarrow N_{L} R N_{R}$	$\left(\ulcorner R\urcorner\left\ulcorner N_{L}\right\urcorner\left\ulcorner N_{R}\right\urcorner\right.$)	$\left.\llbracket\ulcorner R\urcorner \rrbracket\left(\llbracket\left\ulcorner N_{L}\right\urcorner \rrbracket\right], \llbracket\left\ulcorner N_{R}\right\urcorner \rrbracket\right)$

- Parsing
- Semantic parsing
- Interpretive

Learning tasks

The grammar frames the task; different parts of it can be learned.

Syntax	Logical form	Denotation
$N \rightarrow$ one	1	1
$\mathrm{N} \rightarrow$ two	2	2
\vdots	:	:
$\mathrm{R} \rightarrow$ plus	+	the R such that $R(x, y)=x+y$
$R \rightarrow$ minus	-	the R such that $R(x, y)=x-y$
$R \rightarrow$ times	\times	the R such that $R(x, y)=x * y$
$\mathrm{S} \rightarrow$ minus	\neg	the f such that $f(x)=-x$
$\mathrm{N} \rightarrow \mathrm{SN}$		$\llbracket\ulcorner\mathrm{S}\urcorner \rrbracket]([\ulcorner\mathrm{N}\urcorner \rrbracket])$
$\mathrm{N} \rightarrow \mathrm{N}_{L} \mathrm{R} \mathrm{N}_{R}$	$\left(\ulcorner\mathrm{R}\urcorner\left\ulcorner\mathrm{N}_{L}\right\urcorner\left\ulcorner\mathrm{N}_{R}\right\urcorner\right.$)	$\llbracket\ulcorner\mathrm{R}\urcorner \rrbracket\left(\right.$ ([「 $\left.\left.\left.\mathrm{N}_{L}\right\urcorner \rrbracket\right], \llbracket\left\ulcorner\mathrm{N}_{R}\right\urcorner \rrbracket\right)$

- Parsing
- Semantic parsing
- Interpretive

Learning tasks

The grammar frames the task; different parts of it can be learned.

Syntax	Logical form	Denotation
$N \rightarrow$ one	1	1
$\mathrm{N} \rightarrow$ two	2	2
:	:	:
$\mathrm{R} \rightarrow$ plus	+	the R such that $R(x, y)=x+y$
$R \rightarrow$ minus	-	the R such that $R(x, y)=x-y$
$\mathrm{R} \rightarrow$ times	\times	the R such that $R(x, y)=x * y$
$\mathrm{S} \rightarrow$ minus	\neg	the f such that $f(x)=-x$
$N \rightarrow S N$	$\ulcorner\mathrm{S} 7$ 「N7	[「S $\urcorner \rrbracket([\ulcorner\mathrm{N}\urcorner \rrbracket])$
$\mathrm{N} \rightarrow \mathrm{N}_{L} \mathrm{R} \mathrm{N}_{R}$	$\left(\ulcorner\mathrm{R}\urcorner\left\ulcorner\mathrm{N}_{L}\right\urcorner\left\ulcorner\mathrm{N}_{R}\right\urcorner\right.$)	

- Parsing
- Semantic parsing
- Interpretive

Semantic parsing

$$
\langle u, t, r, d\rangle
$$

Pioneering work

- Logical: Woods et al. 1972; Warren and Pereira 1982
- Statistical: Zelle and Mooney 1996; Tang and Mooney 2001; Thompson and Mooney 2003; Zettlemoyer and Collins 2005

Basic formulation

Syntax	Logical form
$\mathrm{N} \rightarrow$ one	1
$\mathrm{~N} \rightarrow$ one	2
	\vdots
$\mathrm{~N} \rightarrow$ two	1
$\mathrm{~N} \rightarrow$ two	2
	\vdots
$\mathrm{R} \rightarrow$ plus	+
$\mathrm{R} \rightarrow$ plus	-
$\mathrm{R} \rightarrow$ plus	\times
$\mathrm{R} \rightarrow$ minus	+
$\mathrm{R} \rightarrow$ minus	-
$\mathrm{R} \rightarrow$ minus	\times
$\mathrm{R} \rightarrow$ times	+
$\mathrm{R} \rightarrow$ times	-
$\mathrm{R} \rightarrow$ times	\times
$\mathrm{S} \rightarrow$ minus	\neg
$\mathrm{N} \rightarrow$ S N	$\ulcorner\mathrm{S}\urcorner\ulcorner\mathrm{N}\urcorner$
$\mathrm{N} \rightarrow \mathrm{N}_{L} \mathrm{R} \mathrm{N}_{R}$	$\left(\ulcorner\mathrm{R}\urcorner\left\ulcorner\mathrm{N}_{L}\right\urcorner\left\ulcorner\mathrm{N}_{R}\right\urcorner\right)$

Table: Crude grammar.

Learning framework

(1) Feature representations: $\phi(x, y) \in \mathbb{R}^{d}$
(2) Scoring: $\operatorname{Score}_{\mathrm{w}}(x, y)=\mathbf{w} \cdot \phi(x, y)=\sum_{j=1}^{d} w_{j} \phi(x, y)_{j}$
(3) Multiclass hinge-loss objective function:

$$
\min _{\mathbf{w} \in \mathbb{R}^{d}} \sum_{(x, y) \in \mathcal{D}^{\prime}} \max _{y^{\prime} \in \operatorname{GEN}(x)}\left[\operatorname{Score}_{\mathbf{w}}\left(x, y^{\prime}\right)+c\left(y, y^{\prime}\right)\right]-\operatorname{Score}_{\mathbf{w}}(x, y)
$$

where \mathcal{D} is a set of (x, y) training examples and $c(a, b)=1$ if $a \neq b$, else 0 .
(4) Optimization:

StochasticGradientDescent(\mathcal{D}, T, η)
1 Initialize w $\leftarrow \mathbf{0}$
2 Repeat T times
for each $(x, y) \in \mathcal{D}$ (in random order)
$\tilde{y} \leftarrow \arg \max _{y^{\prime} \in \operatorname{GeN}(x)} \operatorname{Score}_{\mathrm{w}}\left(x, y^{\prime}\right)+c\left(y, y^{\prime}\right)$
$\mathbf{w} \leftarrow \mathbf{w}+\eta(\phi(x, y)-\phi(x, \tilde{y}))$
6 Return w

Example

(a) Candidates $\operatorname{GEN}(x)$ for utterance $x=$ two times two plus three

(b) Learning from logical forms (Section 4.1)

Derivational ambiguity

In the rich grammars of Zettlemoyer and Collins $(2005,2007)$ and others, a given logical expression might have multiple derivations.

Syntax	Logical form
$\mathrm{N} \rightarrow$ one	1
$\mathrm{N} \rightarrow$ two	2
	:
$\mathrm{R} \rightarrow$ plus	$+$
$R \rightarrow$ minus	-
$\mathrm{R} \rightarrow$ times	\times
$S \rightarrow$ minus	\neg
$N \rightarrow S N$	
$\mathrm{N} \rightarrow \mathrm{N}_{L} R \mathrm{~N}_{R}$	$\left(\ulcorner\mathrm{R}\urcorner\left\ulcorner\mathrm{N}_{L}\right\urcorner\left\ulcorner\mathrm{N}_{R}\right\urcorner\right)$
$\mathrm{Q} \rightarrow n$	$(\lambda f(f\ulcorner n\urcorner))$
$N \rightarrow \cup Q$	$(\ulcorner Q\urcorner\ulcorner\cup\urcorner)$

Table: Grammar with type-lifting.

Training instance: (minus three, $\neg 3$)

$\mathrm{N}:((\lambda f(f 3)) \neg) \stackrel{\beta}{\Rightarrow} \neg 3$

(Beta-conversion $\stackrel{\beta}{\Rightarrow}$ is the syntactic counterpart of functional application.)

Derivations as latent variables

- The training instances are (u, r) pairs.
- Since r might have multiple derivations, derivations are latent variables.
- Zettlemoyer and Collins $(2005,2007)$ use log-linear latent variable models, but our earlier framework can accommodate them as well.
- Latent support vector machine objective:
$\min _{\mathbf{w} \in \mathbb{R}^{d}} \sum_{(x, r) \in \mathcal{D}} \max _{y^{\prime} \in \operatorname{G\in N}(x)}\left[\operatorname{Score}_{\mathbf{w}}\left(x, y^{\prime}\right)+c\left(r, \operatorname{Root}\left(y^{\prime}\right)\right)\right]-\max _{y^{\prime \prime} \in \operatorname{GEN}(x, r)} \operatorname{Score}_{\mathbf{w}}\left(x, y^{\prime \prime}\right)$,
where \mathcal{D} is a set of (utterance, formula) pairs; $c(a, b)=1$ if $a \neq b$, else 0 ; and $\operatorname{Gen}(x, r)=\{y \in \operatorname{Gen}(x): \operatorname{Root}(y)=r\}$
- Optimization:

StochasticGradientDescent(\mathcal{D}, T, η)
1 Initialize $\mathbf{w} \leftarrow \mathbf{0}$
2 Repeat T times
3 for each $(x, r) \in \mathcal{D}$ (in random order)
$4 \quad y \leftarrow \arg \max _{y^{\prime \prime} \in \operatorname{GEN}(x, r)} \operatorname{Score}_{\mathrm{w}}\left(x, y^{\prime \prime}\right)$
$5 \quad \tilde{y} \leftarrow \operatorname{argmax}_{\text {y }^{\prime} \in \operatorname{Gen}(x)} \operatorname{Score}_{\mathrm{w}}\left(x, y^{\prime}\right)+c\left(y, y^{\prime}\right)$
$6 \quad \mathbf{w} \leftarrow \mathbf{w}+\eta(\phi(x, y)-\phi(x, \tilde{y}))$
7 Return w

Taming the search space

The complexity issues trace to the fact that the size of $\operatorname{Gen}(x)$ is expontential in the length of x.

- Variants of CKY parsing algorithms that track both syntactic and semantic information (Zettlemoyer 2009:Appendix A).
- Assume parts of the lexicon are known (function words, easily specified open-class items).
- Prune the lexicon during training, thereby keeping it small, thereby keeping Gen(x) small (Zettlemoyer and Collins 2005).

High-level look at results

Paper	Recall (LFs)	Recall (Answers)
Zettlemoyer and Collins (2005)	79.3	-
Zettlemoyer and Collins (2007)	81.6	-
Kwiatkowksi et al. (2010)	88.2	-
Kwiatkowski et al. (2011)	88.6	-

Table: Results for the Geo880 test set (Zelle and Mooney 1996). For a fuller summary, see Liang et al. 2013:435.

Recent developments and extensions

- Zettlemoyer and Collins (2007): grapping with messy data (ATIS travel-planning)
- Artzi and Zettlemoyer (2011): bootstrapping from machine-generated dialog systems
- Kwiatkowksi et al. (2010): learning (weights on) the modes of composition
- Matuszek et al. (2012b): mapping to a robot controller language
- Kwiatkowksi et al. (2010); Kwiatkowski et al. (2011): multilingual semantic parsing
- Cai and Yates (2013): question-answering with Freebase

Learning from denotations

$$
\langle u, t, r, d\rangle
$$

Pioneering work

- Psychological: see Frank et al. 2009 for models and references
- NLP: Clarke et al. (2010); Liang et al. $(2011,2013)$

Motivations

Detailed Supervision
- doesn't scale up
- representation-dependent

What is the largest city in California?

```
expert
argmax}({c:\operatorname{city}(c)\wedge\operatorname{loc}(c,\textrm{CA})},\mathrm{ population)
```

Natural Supervision

- scales up
- representation-independent

What is the largest city in California?

Los Angeles
(Slide from Percy Liang)

Basic formulation

Table: Data requirements.

Learning framework

(1) Feature representations: $\phi(x, y) \in \mathbb{R}^{d}$
(2) Scoring: $\operatorname{Score}_{\mathrm{w}}(x, y)=\mathbf{w} \cdot \phi(x, y)=\sum_{j=1}^{d} w_{j} \phi(x, y)_{j}$
(3) Latent support vector machine objective:

$$
\min _{\mathbf{w} \in \mathbb{R}^{d}} \sum_{(x, d) \in \mathcal{D}} \max _{y^{\prime} \in \operatorname{GeN}(x)}\left[\operatorname{Score}_{\mathbf{w}}\left(x, y^{\prime}\right)+c\left(d, \llbracket y^{\prime} \rrbracket\right)\right]-\max _{y \in \operatorname{GeN}(x, d)} \operatorname{Score}_{\mathbf{w}}(x, y),
$$

where $\operatorname{Gen}(x, d)=\{y \in \operatorname{Gen}(x): \llbracket y \rrbracket=d\}$ is the set of logical forms that evaluate to denotation d.
(4) Optimization:

StochasticGradientDescent (\mathcal{D}, T, η)
1 Initialize w $\leftarrow \mathbf{0}$
2 Repeat T times
3 for each $(x, d) \in \mathcal{D}$ (in random order)
$4 \quad y \leftarrow \arg \max _{y^{\prime \prime} \in \operatorname{GEN}(x, d)} \operatorname{Score}_{\mathrm{w}}\left(x, y^{\prime \prime}\right)$
$5 \quad \tilde{y} \leftarrow \arg \max _{y^{\prime} \in \operatorname{GEN}(x)} \operatorname{Score}_{\mathrm{w}}\left(x, y^{\prime}\right)+c\left(y, y^{\prime}\right)$
$6 \quad \mathbf{w} \leftarrow \mathbf{w}+\eta(\phi(x, y)-\phi(x, \tilde{y}))$
7 Return w

Example

(a) Candidates $\operatorname{GEN}(x)$ for utterance $x=$ two times two plus three

(c) Learning from denotations (Section 4.2)
Iteration 1

$\mathbf{w}=$| Iteration 2 | |
| ---: | :--- |
| $\mathrm{R}: \times[$ times $]: 0$
 $\mathrm{R}:+[$ times $]: 0$
 $\mathrm{R}:+[$ plus $]: 0$
 top $[\mathrm{R}:+]: 0$
 top $[\mathrm{R}: \times]: 0$ | Scores: $[0,0,0]$
 $\mathrm{GEN}(x, d)=\left\{y_{1}, y_{2}\right\}$
 $y=y_{1}\left(\right.$ tied with $\left.y_{2}\right)$
 $\tilde{y}=y_{3}\left(\right.$ tied with $\left.y_{2}\right)$ |$\Rightarrow \quad \mathbf{w}=$| $\mathrm{R}: \times[$ times $]: 0$ |
| ---: | ---: |
| $\mathrm{R}:+[$ times $]: 0$ |
| $\mathrm{R}:+[$ plus $]: 0$ |
| top $[\mathrm{R}:+]: 1$ |
| top $[\mathrm{R}: \times]:-1$ | | Scores: $[1,1,-1]$ |
| :--- |
| $\mathrm{GEN}(x, d)=\left\{y_{1}, y_{2}\right\}$ |
| $y=y_{1}$ (tied with $\left.y_{2}\right)$ |
| $\tilde{y}=y_{1}$ (tied with $\left.y_{2}\right)$ |

Not pictured: possibility of features on denotations!

Probabilistic formulation

(Slide from Percy Liang)

EM-style learning

Objective Function:

$$
p(y \mid z, w) p(z \mid x, \theta)
$$

(Slide from Percy Liang)

EM-style learning

Objective Function:

$$
\max _{\theta} \quad p(y \mid z, w) p(z \mid x, \theta)
$$

(Slide from Percy Liang)

EM-style learning

Objective Function:

$$
\max _{\theta} \sum_{z} p(y \mid z, w) p(z \mid x, \theta)
$$

(Slide from Percy Liang)

EM-style learning

Objective Function:

$$
\max _{\theta} \sum_{z} p(y \mid z, w) p(z \mid x, \theta)
$$

EM-like Algorithm:

```
parameters \(\theta\)
```

$$
(0,0, \ldots, 0)
$$

EM-style learning

Objective Function:

$$
\max _{\theta} \sum_{z} p(y \mid z, w) p(z \mid x, \theta)
$$

EM-like Algorithm:
parameters θ

$$
(0,0, \ldots, 0) \quad \text { enumerate/score DCS trees }
$$

(Slide from Percy Liang)

EM-style learning

Objective Function:

$$
\max _{\theta} \sum_{z} p(y \mid z, w) p(z \mid x, \theta)
$$

EM-like Algorithm:

parameters θ		k-best list
	enumerate/score DCS trees	tree1 X
		tree2 X
$(0,0, \ldots, 0)$		tree3 \checkmark
		tree4 X
		tree5 X

(Slide from Percy Liang)

EM-style learning

Objective Function:

$$
\max _{\theta} \sum_{z} p(y \mid z, w) p(z \mid x, \theta)
$$

EM-like Algorithm:

parameters θ		k-best list
	enumerate/score DCS trees	$\text { tree1 } X$ tree2
$(0.2,-1.3, \ldots, 0.7)$		tree3
	merical optimization (L-BFGS)	tree4 X tree5

(Slide from Percy Liang)

EM-style learning

Objective Function:

$$
\max _{\theta} \sum_{z} p(y \mid z, w) p(z \mid x, \theta)
$$

EM-like Algorithm:

parameters θ		k-best list
	enumerate/score DCS trees	tree3 tree8
$(0.2,-1.3, \ldots, 0.7)$		tree6 X
	merical optimization (L-BFGS)	tree2 tree4

(Slide from Percy Liang)

EM-style learning

Objective Function:

$$
\max _{\theta} \sum_{z} p(y \mid z, w) p(z \mid x, \theta)
$$

EM-like Algorithm:

parameters θ		k-best list
	enumerate/score DCS trees	tree3 tree8
$(0.3,-1.4, \ldots, 0.6)$		tree6 X
	erical optimization (L-BFGS)	tree2 tree4

(Slide from Percy Liang)

EM-style learning

Objective Function:

$$
\max _{\theta} \sum_{z} p(y \mid z, w) p(z \mid x, \theta)
$$

EM-like Algorithm:

parameters θ		k-best list
	enumerate/score DCS trees	tree3 tree8
$(0.3,-1.4, \ldots, 0.6)$		tree2 X
	merical optimization (L-BFGS)	tree4 X tree9

(Slide from Percy Liang)

Basic Dependency-based Compositional Semantics (DCS)

A sub-logic of the full version in Liang et al. 2013:§2.5:

Basic DCS examples

DCS, mark/execute, and scope ambiguity

Some river traverses every city.

	column 1 $[($ Hudson,NYC $)$	column 2 (Hudson)	column 3 (NYC) $]$
$A:[($ Columbia,Portland)	$($ Columbia)	(Portland)]	
$r:$	\ldots	\ldots	\ldots
$b:$	\varnothing	Q	Q
$c:$	\varnothing	$\llbracket\langle$ river $\rangle \rrbracket_{w}$	$\llbracket\langle$ city $\rangle \rrbracket_{w}$
	\varnothing	$\llbracket\langle$ some $\rangle \rrbracket_{w}$	$\llbracket\langle$ every $\rangle \rrbracket_{w}$

Denotation

DCS tree
Figure 15
Denotation of Figure 8(c) before the execute relation is applied.

- Execute \mathbf{x}_{12} processes column 3, then column 2: wide-scope some river
- Execute \mathbf{x}_{21} processes column 2, then column 3: wide-scope every city

Lambda DCS (Liang 2013)

Lambda DCS	Lambda DCS type	Lambda expression
a	e	$\lambda x(x=\mathrm{a})$
R	$\langle e,\langle e, t\rangle\rangle$	$\lambda x(\lambda y \mathrm{R}(x, y))$
$\mathrm{R} . \mathrm{a}$	$\langle e, t\rangle$	$\lambda x \exists y(\mathrm{R}(x, y) \wedge \mathrm{a}(y))$
$\mathrm{P} \sqcap \mathrm{Q}$	$\langle e, t\rangle$	$\lambda x(\mathrm{P}(x) \wedge \mathrm{Q}(x))$
$\mathrm{P} \sqcup \mathrm{Q}$	$\langle e, t\rangle$	$\lambda x(\mathrm{P}(x) \vee \mathrm{Q}(x))$
$\neg \mathrm{P}$	$\langle e, t\rangle$	$\lambda x \neg \mathrm{P}(x)$
$\mu x($ R.S. $x)$	$\langle e, t\rangle$	$\lambda x \exists y(\mathrm{R}(x, y) \wedge \mathrm{S}(y, x))$
	\vdots	

Table: Language definition.

Lambda DCS (Liang 2013)

Lambda DCS	Lambda DCS type	Lambda expression
a	e	$\lambda x(x=\mathrm{a})$
R	$\langle e,\langle e, t\rangle\rangle$	$\lambda x(\lambda y \mathrm{R}(x, y))$
$\mathrm{R} . \mathrm{a}$	$\langle e, t\rangle$	$\lambda x \exists y(\mathrm{R}(x, y) \wedge \mathrm{a}(y))$
$\mathrm{P} \sqcap \mathrm{Q}$	$\langle e, t\rangle$	$\lambda x(\mathrm{P}(x) \wedge \mathrm{Q}(x))$
$\mathrm{P} \sqcup \mathrm{Q}$	$\langle e, t\rangle$	$\lambda x(\mathrm{P}(x) \vee \mathrm{Q}(x))$
$\neg \mathrm{P}$	$\langle e, t\rangle$	$\lambda x \neg \mathrm{P}(x)$
$\mu x(\mathrm{R} . \mathrm{S} . x)$	$\langle e, t\rangle$	$\lambda x \exists y(\mathrm{R}(x, y) \wedge \mathrm{S}(y, x))$
	\vdots	

Table: Language definition.

Lambda DCS	Lambda expression
peru	$\lambda x(x=\operatorname{peru})$
Birthplace	$\lambda x(\lambda y \operatorname{Birthplace}(x, y))$
Birthplace.peru	$\lambda x \exists y(\operatorname{Birthplace}(x, y) \wedge \operatorname{peru}(y))$
Birthplace.peru \cap Linguist	$\lambda x(\operatorname{Birthplace.peru(x)\wedge \operatorname {Linguist}(x))}$
$\mu x($ Student.Influenced. $x)$	$\lambda x \exists y($ Student $(x, y) \wedge \operatorname{Influenced}(y, x))$

Table: Examples.

High-level look at results

Paper	Recall (LFs)	Recall (Answers)
Zettlemoyer and Collins (2005)	79.3	-
Zettlemoyer and Collins (2007)	81.6	-
Kwiatkowksi et al. (2010)	88.2	-
Kwiatkowski et al. (2011)	88.6	-
Liang et al. (2011, 2013)	-	87.9
Liang et al. (2011, 2013) with L^{+}	-	91.4

Table: Results for the Geo880 test set (Zelle and Mooney 1996). For a fuller summary, see Liang et al. 2013:435. ' L^{+}' here involves 22 pre-specified training instances for semantically complex predicates like size.

Recent developments and extensions

- Learning from large databases: Clarke et al. 2010; Berant et al. 2013; Berant and Liang 2014; Kwiatkowski et al. 2013.
- Computer programming tasks: Kushman and Barzilay 2013; Lei et al. 2013
- Computer games: Branavan et al. 2010, 2011
- Learning via perception: Matuszek et al. 2012a; Tellex et al. 2011; Krishnamurthy and Kollar 2013

References I

Artzi, Yoav and Luke S. Zettlemoyer. 2011. Bootstrapping semantic parsers from conversations. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, 421-432. Edinburgh: ACL. URL http://www. aclweb.org/anthology/D11-1039.
Berant, Jonathan; Andrew Chou; Roy Frostig; and Percy Liang. 2013. Semantic parsing on Freebase from question-answer pairs. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, 1533-1544. Stroudsburg, PA: ACL. URL http://www. aclweb.org/anthology/D13-1160.
Berant, Jonathan and Percy Liang. 2014. Semantic parsing via paraphrasing. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics: Human Language Technologies.
Bos, Johan. 2005. Towards wide-coverage semantic interpretation. In Proceedings of Sixth International Workshop on Computational Semantics, 42-53.
Bos, Johan and Katja Markert. 2005. Recognising textual entailment with logical inference. In Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing, 628-635. Stroudsburg, PA: ACL.
Branavan, S.R.K; David Silver; and Regina Barzilay. 2011. Learning to win by reading manuals in a monte-carlo framework. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, 268-277. Portland, Oregon, USA: ACL. URL http://www.aclweb.org/anthology/P11-1028.
Branavan, S.R.K.; Luke Zettlemoyer; and Regina Barzilay. 2010. Reading between the lines: Learning to map high-level instructions to commands. In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, 1268-1277. Uppsala, Sweden: ACL. URL http://www.aclweb.org/anthology/P10-1129.
Cai, Qingqing and Alexander Yates. 2013. Large-scale semantic parsing via schema matching and lexicon extension. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 423-433. Sofia, Bulgaria: ACL. URL http://www. aclweb.org/anthology/P13-1042.
Clarke, James; Dan Goldwasser; Ming-Wei Chang; and Dan Roth. 2010. Driving semantic parsing from the world's response. In Proceedings of the Fourteenth Conference on Computational Natural Language Learning, 18-27. Uppsala, Sweden: ACL. URL http://www.aclweb.org/anthology/W10-2903.
Frank, Michael C.; Noah D. Goodman; and Joshua B. Tenenbaum. 2009. Using speakers' referential intentions to model early cross-situational word learning. Psychological Science 20(5):578-585.
Krishnamurthy, Jayant and Thomas Kollar. 2013. Jointly learning to parse and perceive: Connecting natural language to the physical world. Transactions of the Association for Computational Linguistics 1:193-206.
Kushman, Nate and Regina Barzilay. 2013. Using semantic unification to generate regular expressions from natural language. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 826-836. Atlanta, Georgia: ACL. URL http://www. aclweb.org/anthology/N13-1103.
Kwiatkowksi, Tom; Luke S. Zettlemoyer; Sharon Goldwater; and Mark Steedman. 2010. Inducing probabilistic CCG grammars from logical form with higher-order unification. In Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, 1223-1233. Cambridge, MA: Association for Computational Linguistics. URL http://www. aclweb.org/anthology/D10-1119.

References II

Kwiatkowski, Tom; Eunsol Choi; Yoav Artzi; and Luke Zettlemoyer. 2013. Scaling semantic parsers with on-the-fly ontology matching. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, 1545-1556. Seattle, Washington: Association for Computational Linguistics. URL http://www. aclweb.org/anthology/D13-1161.
Kwiatkowski, Tom; Luke S. Zettlemoyer; Sharon Goldwater; and Mark Steedman. 2011. Lexical generalization in CCG grammar induction for semantic parsing. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, 1512-1523. Stroudsburg, PA, USA: ACL.
Lei, Tao; Fan Long; Regina Barzilay; and Martin Rinard. 2013. From natural language specifications to program input parsers. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 1294-1303. Sofia, Bulgaria: ACL. URL http://www. aclweb.org/anthology/P13-1127.
Liang, Percy. 2013. Lambda dependency-based compositional semantics. Technical Report arXiv:1309.4408, Stanford.
Liang, Percy; Michael Jordan; and Dan Klein. 2011. Learning dependency-based compositional semantics. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, 590-599. Portland, Oregon, USA: Association for Computational Linguistics. URL http://www. aclweb.org/anthology/P11-1060.
Liang, Percy; Michael I. Jordan; and Dan Klein. 2013. Learning dependency-based compositional semantics. Computational Linguistics 39(2):389-446. doi:\bibinfo\{doi\}\{10.1162/COLI_a_00127\}.
Liang, Percy and Christopher Potts. 2014. Bringing machine learning and compositional semantics together. Submitted to the Annual Review of Linguistics.
Matuszek, Cynthia; Nicholas FitzGerald; Luke S. Zettlemoyer; Liefeng Bo; and Dieter Fox. 2012a. A joint model of language and perception for grounded attribute learning. In John Langford and Joelle Pineau, eds., Proceedings of the 29th International Conference on Machine Learning, 1671-1678. Omnipress.
Matuszek, Cynthia; Even Herbst; Luke S. Zettlemoyer; and Dieter Fox. 2012b. Learning to parse natural language commands to a robot control system. In Proceedings of the 13th International Symposium on Experimental Robotics.
Tang, Lappoon R. and Raymond J. Mooney. 2001. Using multiple clause constructors in inductive logic programming for semantic parsing. In Proceedings of the 12th European Conference on Machine Learning, 466-477. London, UK, UK: Springer-Verlag.
Tellex, Stefanie; Thomas Kollar; Steven Dickerson; Matthew R. Walter; Ashis Gopal Banerjee; Seth Teller; and Nicholas Roy. 2011. Understanding natural language commands for robotic navigation and mobile manipulation. In Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, 1507-1514. San Francisco: AAAI Press.
Thompson, Cynthia A. and Raymond J. Mooney. 2003. Acquiring word-meaning mappings for natural language interfaces. Journal of Artificial Intelligence Research 18(1):1-44.
Warren, David H. D. and Fernando C. N. Pereira. 1982. An efficient easily adaptable system for interpreting natural language queries. American Journal of Computational Linguistics 8(3-4):110-122.
Woods, William A; Ronald M Kaplan; and Bonnie Nash-Webber. 1972. The lunar sciences natural language information system: Final report. Technical Report, BBN Report 2378, Bolt Beranek and Newman Inc.
Zelle, John M. and Raymond J. Mooney. 1996. Learning to parse database queries using inductive logic programming. In Proceedings of the Thirteenth National Conference on Artificial Intelligence - Volume 2, 1050-1055. AAAI Press.

References III

Zettlemoyer, Luke S. 2009. Learning to Map Sentences to Logical Form. Ph.D. thesis, MIT.
Zettlemoyer, Luke S. and Michael Collins. 2005. Learning to map sentences to logical form: Structured classification with probabilistic categorial grammars. In Proceedings of the Twenty First Conference on Uncertainty in Artificial Intelligence.
Zettlemoyer, Luke S. and Michael Collins. 2007. Online learning of relaxed CCG grammars for parsing to logical form. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), 678-687. Prague, Czech Republic: Association for Computational Linguistics. URL http://www.aclweb.org/anthology/D/D07/D07-1071.

