Introduction to semantic parsing and the lambda calculus

Bill MacCartney
CS224U
28 April 2014

Reminder

Lit Review due in one week!

Time to get cracking!

Full understanding?

- We're doing natural language understanding, right?
- Are we there yet? Do we fully understand?
- With VSMs? Dependency parses? Relation extraction?
- Arguably, all are steps toward to NLU ... but are they sufficient?
- What aspects of meaning are we still unable to capture?
- Higher-arity relations, events with multiple participants, temporal aspects, negation, disjunction, quantification, propositional attitudes, modals, ...

Logic games from LSAT (\& old GRE)

Six sculptures - C, D, E, F, G, H - are to be exhibited in rooms 1, 2, and 3 of an art gallery.

- Sculptures C and E may not be exhibited in the same room.
- Sculptures D and G must be exhibited in the same room.
- If sculptures E and F are exhibited in the same room, no other sculpture may be exhibited in that room.
- At least one sculpture must be exhibited in each room, and no more than three sculptures may be exhibited in any room.

If sculpture D is exhibited in room 3 and sculptures E and F are exhibited in room 1, which of the following may be true?
A. Sculpture C is exhibited in room 1.
B. Sculpture H is exhibited in room 1.
C. Sculpture G is exhibited in room 2.
D. Sculptures C and H are exhibited in the same room.
E. Sculptures G and F are exhibited in the same room.

Travel reservations

Yes, hi, I need to book a flight for myself and my
husband from Boston to SFO, or Oakland would be
OK too. We need to fly out on Friday the 12 ${ }^{\text {th }}$, and
then I could come back on Sunday evening or
Monday morning, but he won't return until
Wednesday the $18^{\text {th }}$, because he's staying for business. No flights with more than one stop, and we don't want to fly on United because we hate their guts.

SHRDLU (Winograd 1972)

Find a block which is taller than the one you are holding and put it into the box. OK.

How many blocks are not in the box? FOUR OF THEM.

Is at least one of them narrower than the one which I told you to pick up? YES, THE RED CUBE.
http://youtube.com/watch?v=8SvD-INg0TA http://hci.stanford.edu/winograd/shrdlu/

- Developed 1979-82 by Fernando Pereira \& David Warren
- Proof-of-concept natural language interface to database
- Could answer questions about geography
- Implemented in Prolog
- Hand-built lexicon \& grammar
- Highly influential NLIDB system

CHAT-80 demo

You can run Chat-80 yourself on the myth machines!

1. ssh myth.stanford.edu
2. cd /afs/ir/class/cs224n/src/chat/
3. /usr/sweet/bin/sicstus
4. [load].
5. hi.
6. what is the capital of france?

Sample queries can be found at: /afs/ir/class/cs224n/src/chat/demo

All the source code is there for your perusal as well

Things you could ask CHAT-80

- Is there more than one country in each continent?
- What countries border Denmark?
- What are the countries from which a river flows into the Black_Sea?
- What is the total area of countries south of the Equator and not in Australasia?
- Which country bordering the Mediterranean borders a country that is bordered by a country whose population exceeds the population of India?
- How far is London from Paris? I don't understand!

The CHAT-80 database

\% Facts about countries.
\% country(Country, Region, Latitude, Longitude, \% Area(sqmiles), Population, Capital, Currency) country(andorra, southern_europe, 42, -1, 179, 25000, andorra_la_villa, franc_peseta).
country (angola, southern_africa, $-12,-18,481351$, 5810000, luanda, ?).
country (argentina, south_america, $-35,66,1072067$, 23920000, buenos_aires, peso).
capital(C, Cap) :- country(C,_,_,_,_,_, Cap,_).

The CHAT-80 grammar

```
/* Sentences */
sentence(S) --> declarative(S), terminator(.)
sentence(S) --> wh_question(S), terminator(?) .
sentence(S) --> yn_question(S), terminator(?) .
sentence(S) --> imperative(S), terminator(!) .
/* Noun Phrase */
np(np(Agmt, Pronoun, []),Agmt,NPCase,def,_,Set,Nil) -->
    {is_pp(Set)},
    pers_pron(Pronoun,Agmt, Case),
    {empty(Nil), role(Case,decl,NPCase)}.
/* Prepositional Phrase */
pp(pp(Prep,Arg), Case,Set,Mask) -->
    prep(Prep),
    {prep_case(NPCase)},
    np(Arg,_,NPCase,_,Case,Set,Mask) .
```


Precision vs. robustness

SHRDLU CHAT-80
Precise, complete understanding

Brittle, narrow coverage

Carbon emissions

Which country has the highest CO2 emissions?
What about highest per capita?
Which had the biggest increase over the last five years?
What fraction was from European countries?

Baseball statistics

Pitchers who have struck out four batters in one inning Players who have stolen at least 100 bases in a season Complete games with fewer than 90 pitches
Most home runs hit in one game

Voice commands

How do I get to the Ferry Building by bike
Book a table for four at Nopa on Friday after 9pm
Text my wife I'm going to be twenty minutes late
Add House of Cards to my Netflix queue at the top

Semantic parsing

If we want to understand natural language completely and precisely, we need to do semantic parsing.

That is, translate natural language into a formal meaning representation on which a machine can act.

First, we need to define our goal.
What should we choose as our target output representation of meaning?

Database queries

To facilitate data exploration and analysis, you might want to parse natural language into database queries:

```
which country had the highest carbon emissions last year
SELECT country.name
FROM country, co2_emissions
WHERE country.id = co2_emissions.country_id
AND co2_emissions.year = 2013
ORDER BY co2_emissions.volume DESC
LIMIT 1;
```


Robot control

For a robot control application, you might want a custom-designed procedural language:

```
Go to the third junction and take a left.
    (do-sequentially
    (do-n-times 3
    (do-sequentially
            (move-to forward-loc)
        (do-until
            (junction current-loc)
            (move-to forward-loc))))
    (turn-left))
```


Intents and arguments

For smartphone voice commands, you might want relatively simple meaning representations, with intents and arguments:

```
directions to SF by train
(TravelQuery
    (Destination /m/0d6lp)
    (Mode TRANSIT))
```

```
angelina jolie net worth
(FactoidQuery
    (Entity /m/0£4vbz)
    (Attribute /person/net_worth))
```

```
play sunny by boney m
```

(PlayMedia

(MediaType MUSIC)

(SongTitle "sunny")
(MusicArtist /m/017mh))
weather friday austin $t x$
(WeatherQuery
(Location $/ \mathrm{m} / 0 \mathrm{vzm}$)
(Date 2013-12-13))
is REI open on sunday
(LocalQuery
(QueryType OPENING_HOURS)
(Location /m/02nx4d)
(Date 2013-12-15))

Demo: wit.ai

For a very simple NLU system based on identifying intents and arguments, check out this startup:

http://wit.ai/

First-order logic

Blackburn \& Bos make a strong argument for using first-order logic as the meaning representation.

Powerful, flexible, general.
Can subsume most other representations as special cases.

```
John walks
John loves Mary
Every man loves Mary
```

```
walk(john)
```

walk(john)
love(john, mary)
love(john, mary)
\forallx (man(x) -> love(x, mary))

```
\forallx (man(x) -> love(x, mary))
```

(Lambda calculus will be the vehicle; first-order logic will be the final destination.)

FOL syntax, in a nutshell

- FOL symbols
- Constants: john, mary
- Predicates \& relations: man, walks, loves
- Variables: x,y
- Logical connectives: $\wedge \vee \neg \rightarrow$
- Quantifiers: $\forall \exists$
- Other punctuation: parens, commas
- FOL formulae
- Atomic formulae: loves(john, mary)
- Connective applications: man(john) ^ loves(john, mary)
- Quantified formulae: $\exists x(\operatorname{man}(x))$

An NLU pipeline

- English sentences

John smokes. Everyone who smokes snores.

- Syntactic analysis
(S (NP John) (VP smokes))
- Semantic analysis
smoke(john)
- Inference
\forall x.smoke(x) \rightarrow snore(x), smoke(john)
\Rightarrow snore(john)

From language to logic

How can we design a general algorithm for translating from natural language into logical formulae?

John walks
John loves Mary
A man walks
A man loves Mary
John and Mary walk
Every man walks
Every man loves a woman

We don't want to simply memorize these pairs, because that won't generalize to new sentences.

Machine translation (MT)

How can we design a general algorithm for translating from one language into another?

John walks
John loves Mary
A man walks
A man loves Mary
John and Mary walk
Every man walks
Every man loves a woman

In MT, we break the input into pieces, translate the pieces, and then put the pieces back together.

A logical lexicon (first attempt)

John walks
John loves Mary
A man walks
A man loves Mary
John and Mary walk
Every man walks
Every man loves a woman

John : john	walks $:$ walk(?)	and $: \wedge$
Mary : mary	loves $:$ love(?,?)	
	man $: \operatorname{man}(?)$	$a: \exists \mathrm{x} . ? \wedge ?$
	woman $:$ woman(?)	every $: \forall \mathrm{x} . ? \rightarrow ?$

Compositional semantics

Now how do we put the pieces back together?
Idea: syntax-driven compositional semantics

1. Parse sentence to get syntax tree
2. Look up the semantics of each word in lexicon
3. Build the semantics for each constituent bottom-up, by combining the semantics of its children

Principle of compositionality

Example: syntactic analysis

Example: semantic lexicon

Example: semantic composition

Example: semantic composition

Compositionality

The meaning of the sentence is constructed from:

- the meaning of the words (i.e., the lexicon)
- paralleling the syntactic construction (i.e., the semantic rules)

Systematicity

How do we know how to construct the VP? love(?, mary) OR love(mary, ?)
How can we specify in which way the bits \& pieces combine?

Systematicity (continued)

- How do we want to represents parts of formulae?
E.g. for the VP loves Mary ?
love(?, mary)
love(x, mary)
bad: not FOL
bad: no control over free variable
- Familiar well-formed formulae (sentences)
$\forall x$ (love(x, mary)) Everyone loves Mary
$\exists \mathrm{x}$ (love(mary, x)) Mary loves someone

Lambda abstraction

- Add a new operator λ to bind free variables λx.love(x, mary) loves Mary
- The new meta-logical symbol λ marks missing information in the object language (λ-)FOL
- We abstract over x
- Just like in programming languages!

$$
\begin{array}{ll}
\text { Python: } & \text { lambda } x: x \circ 2==0 \\
\text { Ruby: } & \text { lambda }\{|x| x \% 2==0\}
\end{array}
$$

- How do we combine these new formulae and terms?

Super glue

- Gluing together formulae/terms with function application
($\lambda x . l o v e(x$, mary)) @ john
(λx.love(x, mary))(john)
- How do we get back to the familiar love(john, mary) ?
- FA triggers a simple operation: beta reduction replace the λ-bound variable by the argument throughout the body

Beta reduction

(λx.love(x, mary)) (john)

1. Strip off the λ prefix
(love(x, mary)) (john)
2. Remove the argument
love(x, mary)
3. Replace all occurrences of λ-bound variable by argument
love(john, mary)

Application vs. abstraction

(λx.love(x, mary)) (john)

Semantic construction with lambdas

A semantic grammar

Lexicon

$$
\begin{aligned}
& \text { John } \leftarrow \mathrm{NP}: \text { john } \\
& \text { Mary } \leftarrow \mathrm{FP}: \text { mary } \\
& \text { loves } \leftarrow \mathrm{TV}: \lambda y \text {. } \lambda \mathrm{x} \text {.love }(\mathrm{x}, \mathrm{y})
\end{aligned}
$$

Composition rules

$$
\begin{aligned}
& V P: f(a) \rightarrow \text { TV:f } N P: a \\
& S: f(a) \rightarrow N P: a \quad V P: f
\end{aligned}
$$

Note the semantic attachments - these are augmented CFG rules Note the use of function application to glue things together For binary rules, four possibilities for semantics of parent (what?)

Montague semantics

This approach to formal semantics was pioneered by Richard Montague (1930-1971)
"... I reject the contention that an important theoretical difference exists between formal and natural languages ..."

What about determiners?

How to handle determiners, as in A man loves Mary?
Maybe interpret "a man" as $\exists \mathrm{x}$.man(x) ?

Analyzing determiners

Our goal is:

$$
\begin{aligned}
& \text { A man loves Mary } \rightarrow \exists \mathrm{z}(\operatorname{man}(\mathrm{z}) \wedge \text { love }(z, \text { mary })) \\
& \exists \mathrm{z}((\lambda y \cdot \operatorname{man}(\mathrm{y}))(\mathrm{z}) \wedge(\lambda x . \operatorname{love}(\mathrm{x}, \text { mary }))(\mathrm{z}))
\end{aligned}
$$

What if we allow abstractions over any term?

$$
\begin{aligned}
& (\lambda Q \cdot \exists z((\lambda y \cdot \operatorname{man}(y))(z) \wedge Q(z)))(\lambda x . \text { love }(x, \text { mary })) \\
& (\lambda P \cdot \lambda Q \cdot \exists z(P(z) \wedge Q(z)))(\lambda x . l o v e(x, \text { mary }))(\lambda y \cdot m a n(y))
\end{aligned}
$$

Add to lexicon:

$$
a \rightarrow \mathrm{DT}: \lambda \mathrm{P} . \lambda \mathrm{Q} . \exists \mathrm{z}(\mathrm{P}(\mathrm{z}) \wedge \mathrm{Q}(\mathrm{z}))
$$

And similarly:

$$
\begin{aligned}
& \text { every } \rightarrow \mathrm{DT}: \lambda \mathrm{AP} . \lambda \mathrm{Q} . \forall \mathrm{z}(\mathrm{P}(\mathrm{z}) \rightarrow \mathrm{Q}(\mathrm{z})) \\
& n o \rightarrow \mathrm{DT}: \lambda \mathrm{P} . \lambda \mathrm{Q} . \forall \mathrm{z}(\mathrm{P}(\mathrm{z}) \rightarrow \neg \mathrm{Q}(\mathrm{z}))
\end{aligned}
$$

Determiners in action

$S:(\lambda \mathrm{Q} . \exists \mathrm{z}(\operatorname{man}(\mathrm{z}) \wedge \mathrm{Q}(\mathrm{z})))(\lambda x . \operatorname{loves}(\mathrm{x}, \operatorname{mary}))$

$$
=\exists z(\operatorname{man}(z) \wedge(\lambda x . l o v e s(x, \text { mary }))(z))
$$ $=\exists \mathrm{z}(\operatorname{man}(\mathrm{z}) \wedge$ loves(z, mary))

Add to grammar:
$N P: f(a) \leftarrow$ DT:f N:a
$\mathrm{S}: \mathrm{f}(\mathrm{a}) \leftarrow \mathrm{NP}: \mathrm{f}$ VP:a different!

Type raising!

Wait, now how are we going to handle John loves Mary?
$(\lambda x . l o v e(x$, mary)) @ (john)
(john) @ (λx. love(x, mary))
$(\lambda P . P(j o h n)) @(\lambda x . l o v e(x$, mary))
$=(\lambda x . l o v e(x$, mary))(john)
$=$ love(john, mary)
not systematic!
not reducible! better?
yes!

So revise lexicon:
John \leftarrow NP:入P.P(john)
Mary \leftarrow NP: AP.P(mary)

This is called type-raising: old type: e new type: $(\mathrm{e} \rightarrow \mathrm{t}) \rightarrow \mathrm{t}$

The argument becomes the function! (cf. callbacks, inversion of control)

Transitive verbs

We had this in our lexicon: loves \leftarrow TV : $\lambda \mathrm{y}$. $\lambda \mathrm{x}$.love (x, y)
But if we now have: Mary $\leftarrow \mathrm{NP}: \lambda \mathrm{P} . \mathrm{P}$ (mary)
then loves Mary will be
($\lambda y . \lambda x . \operatorname{love}(x, y))(\lambda P . P($ mary $))$
= $\lambda x . l o v e(x, \lambda P . P(m a r y))$

Uh-oh! Solution?
Type-raising again!
Old type for loves:
loves \leftarrow TV: $\lambda \mathrm{R} . \lambda \mathrm{x} . \mathrm{R}(\lambda y . \operatorname{love}(\mathrm{x}, \mathrm{y}))$
$\mathrm{e} \rightarrow(\mathrm{e} \rightarrow \mathrm{t})$
New type for loves:
$((\mathrm{e} \rightarrow \mathrm{t}) \rightarrow \mathrm{t}) \rightarrow(\mathrm{e} \rightarrow \mathrm{t})$
Let's see it in action ...

Transitive verbs in action

Summing up

Our semantic lexicon covers many common syntactic types:

common nouns	man	$\leftarrow \lambda \mathrm{x} \cdot \mathrm{man}(\mathrm{x})$
proper nouns	Mary	$\leftarrow \lambda \mathrm{P} \cdot \mathrm{P}($ mary $)$
transitive verbs	loves	$\leftarrow \lambda R \cdot \lambda \mathrm{R} \cdot \mathrm{R}(\lambda \mathrm{y} \cdot$ love $(\mathrm{x}, \mathrm{y}))$
intransitive verbs	walks	$\leftarrow \lambda \mathrm{x} \cdot \mathrm{walk}(\mathrm{x})$
determiners	a	$\leftarrow \lambda \mathrm{P} \cdot \lambda \mathrm{Q} \cdot \exists \mathrm{z}(\mathrm{P}(\mathrm{z}) \wedge \mathrm{Q}(\mathrm{z}))$

We can handle multiple phenomena in a uniform way!
Key ideas:

- extra $\lambda \mathrm{s}$ for NPs
- abstraction over (i.e., introducing variables for) predicates
- inversion of control: subject NP as function, predicate VP as arg

Coordination

How to handle coordination, as in John and Mary walk?
What we'd like to get:

$$
\text { walk(john) } \wedge \text { walk(mary) }
$$

Already in our lexicon:

$$
\begin{array}{ll}
\text { John } & \leftarrow \text { NP: } \lambda P \cdot P(j o h n) \\
\text { Mary } & \leftarrow \text { NP: } \mathrm{Q} \cdot \mathrm{Q}(\text { mary }) \\
\text { walk } & \leftarrow \text { IV: } \mathrm{xx} . \text { walk(x) }
\end{array}
$$

Add to lexicon:

$$
\text { and } \quad \leftarrow C C: \lambda X . \lambda Y . \lambda R .(X(R) \wedge Y(R))
$$

My claim: this will work out just fine. Do you believe me?

Coordination in action

($\lambda \mathrm{R} .(\mathrm{R}($ john $) \wedge \mathrm{R}($ mary $))(\lambda x$. walk(x) $)$
$=(\lambda x . w a l k(x))($ john $) \wedge(\lambda x . w a l k(x))(m a r y)$
$=$ walk(john) $\wedge(\lambda x . w a l k(x))($ mary $)$
$=$ walk(john) \wedge walk(mary)
$(\lambda Y . \lambda R .(R($ john $) \wedge Y(R)))(\lambda Q . Q(m a r y))$
$=\lambda R .(R(j o h n) \wedge(\lambda Q . Q($ mary $))(R))$
$=\lambda R .(R($ john $) \wedge R($ mary $))$
$(\lambda X . \lambda Y . \lambda R .(X(R) \wedge Y(R)))(\lambda P . P(j o h n))$
$=\lambda Y . \lambda R .((\lambda P . P(j o h n))(R) \wedge Y(R))$
$=\lambda Y . \lambda R .(R(j o h n) \wedge Y(R))$

Other kinds of coordination

So great! We can handle coordination of NPs!
But what about coordination of ...

intransitive verbs	drinks and smokes
transitive verbs	washed and folded the laundry
prepositions	before and after the game
determiners	more than ten and less than twenty

One solution is to have multiple lexicon entries for and
We'll let you work out the details ...

Quantifier scope ambiguity

In this country, a woman gives birth every 15 minutes. Our job is to find that woman and stop her.

- Groucho Marx celebrates quantifier scope ambiguity
$\exists \mathrm{w}($ woman $(\mathrm{w}) \wedge \forall \mathrm{f}($ fifteen-minutes(f) \rightarrow gives-birth-during(w, f))) $\forall \mathrm{f}(\mathrm{fifteen}$-minutes $(\mathrm{f}) \rightarrow \exists \mathrm{w}($ woman $(\mathrm{w}) \wedge$ gives-birth-during $(\mathrm{w}, \mathrm{f})))$

Surprisingly, both readings are available in English!
Which one is the joke meaning?

Where scope ambiguity matters

Six sculptures - C, D, E, F, G, H - are to be exhibited in rooms 1, 2, and 3 of an art gallery.

- Sculptures C and E may not be exhibited in the same room.
- Sculptures D and G must be exhibited in the same room.
- If sculptures E and F are exhibited in the same room, no other sculpture may be exhibited in that room.
- At least one sculpture must be exhibited in each room, and no more than three sculptures may be exhibited in any room.

If sculpture D is exhibited in room 3 and sculptures E and F are exhibited in room 1, which of the following may be true?
A. Sculpture C is exhibited in room 1.
B. Sculpture H is exhibited in room 1.
C. Sculpture G is exhibited in room 2.
D. Sculptures C and H are exhibited in the same room.
E. Sculptures G and F are exhibited in the same room.

Scope need to be resolved!

At least one sculpture must be exhibited in each room.
The same sculpture in each room?
No more than three sculptures may be exhibited in any room.
Reading 1: For every room, there are no more than three sculptures exhibited in it.
Reading 2: At most three sculptures may be exhibited at all, regardless of which room.
Reading 3: The sculptures which can be exhibited in any room number at most three. (For the other sculptures, there are restrictions on allowable rooms).

- Some readings will be ruled out by being uninformative or by contradicting other statements
- Otherwise we must be content with distributions over scope-resolved semantic forms

Classic example

Every man loves a woman

Reading 1: the women may be different $\forall x(\operatorname{man}(x) \rightarrow \exists y(\operatorname{woman}(\mathrm{y}) \wedge$ love $(\mathrm{x}, \mathrm{y})))$

Reading 2: there is one particular woman
$\exists y(\operatorname{woman}(y) \wedge \forall x(\operatorname{man}(x) \rightarrow \operatorname{love}(x, y)))$
What does our system do?

Scope ambiguity in action

$(\lambda \mathrm{Q} . \forall \mathrm{z}(\operatorname{man}(\mathrm{z}) \rightarrow \mathrm{Q}(\mathrm{z})))(\lambda \mathrm{x} . \exists \mathrm{w}(\operatorname{woman}(\mathrm{w}) \wedge \operatorname{love}(\mathrm{x}, \mathrm{w})))$
$=\forall \mathrm{z}(\operatorname{man}(\mathrm{z}) \rightarrow(\lambda \mathrm{x} . \exists \mathrm{w}(\operatorname{woman}(\mathrm{w}) \wedge \operatorname{love}(\mathrm{x}, \mathrm{w})))(\mathrm{z}))$
$=\forall \mathrm{z}(\operatorname{man}(\mathrm{z}) \rightarrow \exists \mathrm{w}(\operatorname{woman}(\mathrm{w}) \wedge \operatorname{love}(\mathrm{z}, \mathrm{w})))$

$$
=\lambda x . \exists w(w o m a n(w) \wedge \operatorname{love}(x, w))
$$

$\lambda P . \lambda \mathrm{Q} . \forall \mathrm{z}(\mathrm{P}(\mathrm{z}) \rightarrow \mathrm{Q}(\mathrm{z})) \lambda \mathrm{y} . \mathrm{man}(\mathrm{y}) \quad \lambda \mathrm{R} . \lambda \mathrm{x} . \mathrm{R}(\lambda y . \operatorname{love}(\mathrm{x}, \mathrm{y})) \lambda \mathrm{P} . \lambda \mathrm{Q} . \exists \mathrm{w}(\mathrm{P}(\mathrm{w}) \wedge \mathrm{Q}(\mathrm{w})) \lambda x . w o m a \mathrm{n}(\mathrm{x})$

nltk.sem [Garrette \& Klein 2008]

The nltk.sem package contains Python code for:

- First-order logic \& typed lambda calculus
- Theorem proving, model building, \& model checking
- DRT \& DRSs
- Cooper storage, hole semantics, glue semantics
- Linear logic
- A (partial) implementation of Chat-80!
http://nltk.googlecode.com/svn/trunk/doc/api/nltk.sem-module.html

nltk.sem.logic

```
>>> import nltk
>>> from nltk.sem import logic
>>> logic.demo()
>>> parser = logic.LogicParser(type_check=True)
>>> man = parser.parse("\ y.man(y)")
>>> woman = parser.parse("\ x.woman(x)")
>>> love = parser.parse("\ R x.R(\ Y.love(x,y))")
>>> every = parser.parse("\ P Q.all x.(P(x) -> Q(x))")
>>> some = parser.parse("\ P Q.exists x.(P(x) & Q(x))")
>>> every(man).simplify()
<LambdaExpression \Q.all x.(man(x) -> Q(x))>
>>> love(some(woman)).simplify()
<LambdaExpression \x.exists z.(woman(z) & love(x, z))>
>>> every(man) (love(some(woman))).simplify()
<AllExpression all x.(man(x) -> exists z.(woman(z) & love(x, z)))>
```


What's missing?

OK, this all seems super duper, but ... what's missing?

Can we solve these NLU challenges yet?

Why not?

Six sculptures - C, D, E, F, G, H - are to be exhibited in rooms 1, 2, and 3 of an

 art gallery.- Sculptures C and E may not be exhibited in the same room
- Sculptures D and G must be exhibited in the same room.
- If sculptures E and F are exhibited in the same room, no other sculpture may be exhibited in that room.
- At least one sculpture must be exhibited in each room, and no more than three sculptures may be exhibited in any room.

If sculpture D is exhibited in room 3 and sculptures E and F are exhibited in room 1 , which of the following may be true?
A. Sculpture C is exhibited in room 1.
B. Sculpture H is exhibited in room 1
C. Sculpture G is exhibited in room 2.
D. Sculptures C and H are exhibited in the same room
E. Sculptures G and F are exhibited in the same room.

Yes, hi, I need to book a flight for myself and my husband from Boston to SFO, or Oakland would be OK too. We need to fly out on Friday the $12^{\text {th }}$, and then I could fly back on Sunday evening or Monday morning, but he won't return until Wednesday the $18^{\text {th }}$, because he's staying for business. No flights with more than one stop, and we don't want to fly on United because we hate their guts.

