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Related materials

o For people starting to implement these models:
o Socher et al. 2012a; Socher and Manning 2013
o Unsupervised Feature Learning and Deep Learning
o Deng and Yu (2014)
e http://www.stanford.edu/class/cs224u/code/
shallow_neuralnet_with_backprop.py
e For people looking for new application domains:
» Baroni et al. (2012)
e Huang et al. (2012)
o Unsupervised Feature Learning and Deep Learning:
Recommended readings
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Goals of semantics (from class meeting 2)

How are distributional vector models doing on our core goals?

© Word meanings =
® Connotations v
® Compositionality

@ Syntactic ambiguities

@ Semantic ambiguities ?
0O Entailment and monotonicity ?
@ Question answering

(Items in red seem like reasonable goals for lexical models.)
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Thought experiment: vectors as classifier features

Class Word
0 awful
o ool Pr(Class = 1) Word

ame

0 worst ? Wy
0 disappointing ? Wa
1 nice ? w3
1 amagzing ? Wy
1 wonderful (b) Test/prediction set.
1 good
1 awesome
(a) Training set.

Figure: A hopeless supervised set-up.
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Thought experiment: vectors as classifier features

Class Word excellent terrible
0 awful -0.69 1.13
0 terrible -0.13 3.09
0 lame -1.00 0.69
0 worst -0.94 1.04
0 disappointing 0.19 0.09
1 nice 0.08 -0.07
1 amazing 0.71 -0.06
1 wonderful 0.66 -0.76
1 good 0.21 0.1
1 awesome 0.67 0.26

Pr(Class=1) Word excellent terrible

~0 wy -0.47
~0 Wo -0.55
~1 Wy 0.41

0.82
0.84
-0.13
-0.11

(a) Training set.

(b) Test/prediction set.

Figure: Values derived from a PMI weighted word x word matrix and
used as features in a logistic regression fit on the training set. The test
examples are, from top to bottom, bad, horrible, great, and best.
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Distributed and distributional

All the representations we discuss are vectors, matrices, and
perhaps higher-order tensors. They are all ‘distributed’ in a sense.

© Distributional’ suggests a basis in counts gathered from
co-occurrence statistics (perhaps with reweighting, etc.).

® ‘Distributed’ connotes deep learning and suggests that the
dimensions (or subsets thereof) capture meaningful aspects
of natural language objects. See also ‘word embedding’.

® The line will be blurred if we begin with distributional vectors
and derive hidden representations from them.

O For discussion, see Turian et al. 2010:§3, 4.

@® We can reserve ‘neural’ for representations trained with neural
networks. These are always ‘distributed’ and might or might
not have distributional aspects in the sense of @ above.

O (But be careful who you say ‘neural’ to.)
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Applications of distributed representations to date

e Sentiment analysis (Socher et al. 2011b, 2012b, 2013b)
e Morphology (Luong et al. 2013)
e Parsing (Socher et al. 2013a)
e Semantic parsing (Lewis and Steedman 2013)
e Paraphrase (Socher et al. 2011a)
e Analogies (Mikolov et al. 2013)
e Language modeling (Collobert et al. 2011)
e Named entity recognition (Collobert et al. 2011)
e Part of speech tagging (Collobert et al. 2011)

(With apologies to everyone in speech, cogsci, vision, .. .)
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Plan and goals for today

Plan
© Discuss how to capture entailment

® (Shallow) neural networks as extensions of discriminative
classifier models

® Unsupervised training of distributed word representations
@ Modeling lexical ambiguity with distributed representations

Goals
¢ Help you navigate the literature
¢ Relate this material to things you already know about
o Address the foundational issues of entailment and ambiguity
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Entailment in vector space

Last time, we focused exclusively on the relation VSMs capture
best: similarity (fuzzy synonymy).

What about entailment? Its asymmetric nature poses challenges.

© poodle = dog = mammal
® run = move

® will = might

O superb = good

® awful = bad

® every = most = some

@ probably = possibly

My review is based on Kotlerman et al. 2010.
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Lexical relations in WordNet: many entailment concepts

Conclusion
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method  adjective noun adverb verb

hypernyms 0 74389 0 13208
instance_hypernyms 0 7730 0 0
hyponyms 0 16693 0 3315
instance_hyponyms 0 945 0 0
member_holonyms 0 12201 0 0
substance_holonyms 0 551 0 0
part_holonyms 0 7859 0 0
member_meronyms 0 5553 0 0
substance_meronyms 0 666 0 0
part_.meronyms 0 3699 0 0
attributes 620 320 0 0
entailments 0 0 0 390

causes 0 0 0 218

also_sees 1333 0 0 1
verb_groups 0 0 0 1498
similar_tos 13205 0 0

total 18156 82115 3621 13767

Table: Synset-level relations.
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Lexical relations in WordNet: many entailment concepts

method  adjective noun adverb verb

antonyms 3872 2120 707 1069
derivationally_related_forms 10531 26758 1 13102
also_sees 0 0 0 324

verb_groups 0 0 0 2

pertainyms 46650 0 3220 0

topic_.domains 6 3 0 1
region_domains 1 14 0 0
usage_domains 1 365 0 2

total 61061 29260 3928 14500

Table: Lemma-level relations.
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Conceptualizing the problem

Which row vectors entail which others?

d d ds
W1 1 0 0
w 0 0 10
w3 0 0 20
wgy 0 10 10
ws 20 20 20

Possible criteria:

e Subset relationship on environments
e Score sizes

o Similarity of score vectors
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Measures: preliminaries

Definition (Feature functions)

Let u be a vector of dimension n. Then F, is the partial function
from [1, n] such that F,(i) is defined iff 1 < i< nand u; > 0. Where
defined, F (i) = u;.

Definition (Feature function membership)
i € F,iff i is defined for F,

Definition (Feature function intersection)
FoNnF,={i:ieF,andi€F,}

Definition (Feature function cardinality)
IFul = |{i: i € Fu}|

11/44
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Measure: WeedsPrec
Definition (Weeds and Weir 2003)

def 2icF,nF, Fu(i)

WeedsPrec(u,v) = -

(u-v) Yier, Fu(i)
d1 dg d3 4] Wo W3 Wy Ws
W1 1 0 O wy 1.0 00 00 0.0 1.0
wo 0 0 10 wo 00 10 1.0 1.0 1.0
w3 0 0 20 ws 00 10 1.0 1.0 1.0
wg 0 10 10 wg 00 05 05 1.0 1.0
ws 20 20 20 ws 03 03 03 0.7 1.0

(a) Original matrix (b) Predictions. Max values highlighted.

Entailment testing from row to column.

Table: WeedsPrec
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Measure: ClarkeDE
Definition (Clarke 2009)

der ickunr, Min(Fu(i). Fy (7))

ClarkeDE(u,v) = -

( ) ZieFu Fu(’)
d1 dg d3 4] Wo W3 Wy W5
wy 1 0 o wy 1.0 00 00 0.0 1.0
wo 0 0 10 wo 00 10 1.0 1.0 1.0
ws 0 0 20 w3 00 05 1.0 05 1.0
wg 0 10 10 wg 00 05 05 1.0 1.0
ws 20 20 20 ws 0.0 02 03 03 1.0

(a) Original matrix (b) Predictions. Max values highlighted.

Entailment testing from row to column.

Table: ClarkeDE

13/44



Overview

Entailment in vector space

Shallow neural nets

Lexical ambiguity Conclusion
Measure: APinc
Definition (Kotlerman et al. 2010)
APinc(u, v) %/ 2 B0 e
@ rank(i, F,) = the rank of F,(i) according to the value of F,(i)
o |tieFurank(iFy) <rank(iFu)
12 P(’) = rank(i,F,)
_rank(i,Fy) s
O rel(i) = FT ieFy
0 ifi ¢ F,
d1 d2 d3 2] Wo W3 Wy Ws
Wy 1 0 0 wy 05 00 00 00 0.2
Wo 0 0 10 wo, 00 05 05 02 0.1
W3 0 0 20 w3 00 05 05 02 0.1
Wy 0 10 10 wg 00 02 02 05 02
ws 20 20 20 ws 05 02 02 03 05

(a) Original matrix

(b) Predictions. Max values highlighted.

Entailment testing from row to column.
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Balancing

Definition (Lin 1998)

- Fu(i) + Fu(i
LIN(U, v) def ZIEFUOFV u( ) V( )

- Yier, Fu(i) + Zier, Fv(i)

Conclusion
0o

Definition (Kotlerman et al. 2010)
If E € {WeedsPrec, ClarkeDE, APinc}, then

balE(u, v) % \/LIN(u, v) - E(u,v)

Refs.
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Comparisons —
P di do ds
wy 1 0 O
wo 0 010
w3 0 0 20
wg 0 10 10
ws 20 20 20
Wiy Wo W3 W4 Ws Wy Wo W3 W4 Ws
wy 1.0 0.0 0.0 0.0 1.0 wy 1.0 0.0 0.0 0.0 0.6
w, 00 1.0 1.0 1.0 1.0 wp 0.0 1.0 1.0 0.8 0.7
wz 00 1.0 1.0 1.0 1.0 w3 0.0 1.0 1.0 0.9 0.7
wg 0.0 05 051010 ws 0.0 06 06 1.0 0.9
ws 0.3 0.3 0.3 0.7 1.0 ws 0.3 0.4 04 0.7 1.0

(a) WeedsPrec

(b) balWeedsPrec
Table: WeedsPrec with and without balancing.

Refs.

16/44



Overview Entailment in vector space Shallow neural nets Lexical ambiguity Conclusion Refs.

Comparisons —_—
P di do ds

wy 1 0 O

wo 0 0 10

ws 0 0 20

wy 0 10 10

ws 20 20 20

Wi Wo W3 Wg Ws Wy Wo W3 Wqg Ws

wy 1.0 0.0 0.0 0.0 1.0 wy 1.0 0.0 0.0 0.0 0.6

wr, 0.0 1.0 1.0 1.0 1.0 w, 0.0 1.0 1.0 0.8 0.7

ws 0.0 05 1.0 0.5 1.0 ws 0.0 0.7 1.0 0.6 0.7

wg 00 050510 1.0 wg 0.0 06 0.6 1.0 0.9

ws 0.0 02 03 03 10 ws 0.1 03 04 05 1.0
(a) ClarkeDE (b) balClarkeDE

Table: ClarkeDE with and without balancing.
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Comparisons —_—
P di do ds

wy 1 0 O

wo 0 0 10

ws 0 0 20

wy 0 10 10

ws 20 20 20

Wi Wo W3 Wg Ws Wy Wo W3 Wqg Ws

w; 0.5 0.0 0.0 0.0 0.2 wy 0.7 0.0 0.0 0.0 0.3
w. 0.0 05 05 0.2 0.1 we 0.0 0.7 0.7 0.3 0.2
ws 0.0 05 05 0.2 0.1 ws 0.0 0.7 0.7 04 0.2
wg 0.0 02 0.2 05 02 wy 0.0 04 04 0.7 0.4
ws 0.5 02 0.2 0.3 0.5 ws 04 0.3 0.3 0.5 0.7
(a) APinc (b) balAPinc
Table: APinc with and without balancing.
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Entailment between nouns (Baroni et al. 2012)

Relationship  Size

Positiveclass A N= N 1246 pairs
Negative class A N> & Ny 1246 pairs

Table: Training data. All the data were manually checked after generation,
and all the phrase types have at least 100 tokens in their data.

Positive Negative
e tall student = student e tall student = desk
e wooden desk = desk e wooden desk = linguist
e skKillful linguist = linguist e skillful linguist = criminal

e alleged criminal # criminal
e fake gun # gun

17/44
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Entailment between nouns (Baroni et al. 2012)

Relationship  Size

Positiveclass A N= N 1246 pairs
Negative class A N> & Ny 1246 pairs

Table: Training data. All the data were manually checked after generation,
and all the phrase types have at least 100 tokens in their data.

Relationship  Size

Positive class Ny = N> 1385 pairs, from WordNet
hypernym chains

Negative class Ny & N> 1385 pairs, by inverting
and shuffling the positive
pairs

Table: Test data.
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Unsupervised method (Baroni et al. 2012)

The authors use balAPinc as defined above and find that it beats
their frequency- and similarity-based baselines on the nouns task
but that it performs poorly on their quantifier task. (See page 30 for
details on the performance and the thresholds used to define
entailment categorically.)
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Supervised method (Baroni et al. 2012)

In the supervised approach, the authors train Support Vector
Machines (SVMs) on concatenation of vector representations,
reduced to 300 each dimensions with SVD/LSA.

Their SVMs have polynomial kernels that captures feature
interactions (p. 29).

This method is successful for both the nouns task and the
quantifiers task (Tables 3, 4).

In the ‘quantifier-out’ set-up, performance ranges from 34%
accuracy (either) to 98% (each).

In addition, they tried working with just quantifier vectors (no N
complements) and judged the model unsuccessful (p. 30).

Refs.
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Summary, lessons, and prospects

¢ Defining entailment a priori in terms of vectors is challenging
conceptually and empirically.

o Training supervised classifiers to learn entailment between
vectors is more promising.

e We’ll now move to more powerful models that might do even
better at this and other semantic tasks.

¢ (Once we figure out entailment, we should worry about
contradiction.)

20/44



Overview Entailment in vector space Shallow neural nets Lexical ambiguity Conclusion
000000 000000000000 000000000000 00000 0o

Shallow neural nets

i) T

_/I hyp(x)

Layer Ly

Layer L, LayerL,

L1 = representation of the data
L, to Lz = classifier using a hidden representation Lo
L3 = Output signal/prediction

Refs.
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Linear models and discriminative training
© Feature representations: ¢(x, y) € R?

@ Scoring: Scorew(x,y) = W-¢(x,y) = X, wip(x, y);
® Objective function:

min max [Scorew(x,y’) + c(y, y’)] — Scorew(x,y)
weR? y'ey
(x.y)eD

where D is a set of (x, y) training examples and c(y, y’) is the cost
for predicting y” when the correct output is y.

@ Optimization:
StocHASTICGRADIENTDESCENT(D, T, 17)

1 Initialize w < 0

2 Repeat T times

3 for each (x,y) € D (in random order)

4 y « argmax,cy Scorew(x,y’) + c(y.y’)
5 W —w+n(é(x.y) - d(x. 7))

6 Returnw

22/44
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Feature representations ¢(x, y)

(%, y) ‘empty string’ ‘lastword’”  ‘all words’
(twenty five, 0) € five [twenty, five]
(thirty one, 0) € eight [thirty, one]
(forty nine, 0) € nine [forty, nine]

Train  (fiftytwo, E) € two [fifty, two]
(eighty two, E) € two [eighty, two]
(eighty four, E) € four [eighty, four]
(eighty six, E) € six [eighty, six]

Test (eighty five, 0) e€—E five —» 0 [eighty, five] — E

Table: Tradeoffs in machine learning.

Refs.
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XOR and related examples (Rumelhart et al. 1986a,b)

p a (pVa)
0,1]. (1.1
11 0 [0,1] [1.1]
10 1
0 1 1 q
0 0 0
Table: Exclusive ‘or’ (XOR) [0,0]. «[1.0]
p

No linear separation into the two desired classes.
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XOR and related examples (Rumelhart et al. 1986a,b)

p g (pva)
0,1]. [1,1
11 1 [0,1] [1.1]
10 1
0o 1 1 q
0 O 0
Table: Inclusive ‘or’ [0,0]- -[1,0]
P

Easy linear separation into the two desired classes.

24/44
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XOR and related examples (Rumelhart et al. 1986a,b)

p g (peaq)
1 1 1 [0,1]. <[1,1]
1 0 0
0 1 0 q
00 1
Table: Biconditional (IFF) [0,0]- «[1,0]
p

No linear separation into the two desired classes.

24/44
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A glimpse of hidden representations

|
o=
a i seseses
N \-\ N1 };":’:""‘1“‘
Linear classifier Shallow network Hidden reps

From http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
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A shallow XOR network with forward propagation

(& ~
</
G‘G

P1 P2
f[[p,q,ﬂtm Q2 ]z[x,y] f( ,
by bs

()

Xj _ o 1
Vi )—h f(X)—m
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[0,1]-

[0,0]

«[1.1]

-[1,0]

Refs.
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Hidden XOR representations
1
f =
(x) 1+eX
-6.09 -5.22
[0.1] [1.1] f{[p.q,1]| -6.05 —5.22
222 5.71
q
Example:
-6.09 -5.22
[0,0]#40.0.0m (1.0] f[[0,1,1] -6.05 —5.22 ||=[0.02,0.62]
222 571

Refs.
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Hidden XOR representations

0.1 [,
5.90
q f{[p,q,1]| —5.90
1.09
[0’8101,01 10.75.0.02 *[1,0]
p

Conclusion
0o

5.57
-5.81
-3.13

Refs.
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Hidden XOR representations
1
f =
(x) 1+eX
[0.1] oy
-5.97 -5.69
q f{[p,q,1]| 6.04 5.65
1.07 -3.23
O.Qls5 OLET40]
p

27/44



Overview
000000

Entailment in vector space Shallow neural nets
000000000000 000000800000

Lexical ambiguity Conclusion
00000 0o

The role of the non-linear activation function

e The activation function bends

the representation dimensions
around to help satisfy the
objective function.

The more dimensions in the
representation, the more
complex the functions we can
approximate.

Networks without non-linear
activation functions are
coherent, but they just perform
lots of linear transformations
between dimensions and so
can be reduced to a single layer
model.

0 1

Socher and Manning 2013:31

Refs.
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Learning with backpropagation
Same framework for feature representation and scoring as in the
classifier model presented earlier . The only changes
concern propagating the error signal through the hidden layer:

BackwaRDPRoPAGATIONVIASTOCHASTICDESCENT(D, T, 77)

—_

Initialize input weights W™" with small, normally distributed values

2 Initialize output weights H™ with small, normally distributed values
3 Repeat T times
4 for each (x, y) € D (in random order)
5 a «— f(X- W) # forward prop input to hidden
6 z«f(a-H) # forward prop hidden to output
7 6o — (y—2)-f(2) # output errors
8 81« 6p-HT - f'(a) # hidden errors
9 Hen- a6 # hidden weights update

10 Wen- xT. 01 # input weights update

11 Return W, H

29/44
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Application to sentiment
Word Class Word against age agent ages ago agree
good +1 good -0.19 -0.07 -0.12 -0.07 0.03 0.08
excellent +1 excellent -0.14 0.01 -0.10 0.41 0.17 -0.01
superior +1 superior 0.32 -0.39 -0.18 0.24 -041 0.14
correct +1 correct -0.09 -0.21 0.16 0.58 0.70 0.08
bad -1 bad -0.26 -0.54 -0.03 -0.48 -0.02 -0.01
poor -1 poor -0.02 -0.31 0.02 -0.06 -0.26 0.01
unfortunate -1 unfortunate 0.39 -0.06 0.04 -0.96 -0.09 0.26
wrong -1 wrong -0.11 -0.20 -0.01 -0.18 -0.05 0.16

Code for these experiments: http://www.stanford.edu/class/cs224u/
code/shallow_neuralnet_with_backprop.py and the Python t-SNE
implementation http://homepage.tudelft.nl/19j49/t-SNE.html

Refs.

30/44


http://www.stanford.edu/class/cs224u/code/shallow_neuralnet_with_backprop.py
http://www.stanford.edu/class/cs224u/code/shallow_neuralnet_with_backprop.py
http://homepage.tudelft.nl/19j49/t-SNE.html

Overview Entailment in vector space Shallow neural nets Lexical ambiguity Conclusion Refs.
000000 000000000000 000000008000 00000 oo

Application to sentiment
Input (left): 200d PMI reps. Output (right): 100d hidden reps.

All visualizations with t-SNE (van der Maaten and Geoffrey 2008)
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Application to sentiment
Input (left): 100d PMI+LSA reps. Output (right): 100d hidden reps.
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All visualizations with t-SNE (van der Maaten and Geoffrey 2008)
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Application to sentiment
Input (left): random 100d reps. Output (right): 100d hidden reps.

2 Raw training data Trained; correct 413, incorrect: 87
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All visualizations with t-SNE (van der Maaten and Geoffrey 2008)
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Semi-supervised auto-encoders (Socher et al. 2011Db)

- T - ‘ [link]
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Lexical entailment (Bowman 2014)
© Learns not only entailment pairs like puppy = animal but also
contradiction pairs like dog | bird.
® (The set of relations is even richer; MacCartney 2009.)
® Recursive neural tensor network (Socher et al. 2013b).

@ Hold-one-out evaluation: train on the entire lexical network
except for a pair of words (x, y), and then predict the relation
between x and y.

@® “The results are modestly promising. Of a sample of 69 test
examples [...] 61 (88.4%) were labeled correctly”

0O Optimization with AdaGrad (Duchi et al. 2011)

@ Rectified linear activation function (Maas et al. 2013):
f(x) = max(x,0) + 0.01 min(x, 0)

® Full code release: link

©® More on this model later in the term!
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Some extensions and modifications

Deeper and higher dimensional networks:

LayerL, Layer L,

http://deeplearning.stanford.edu/wiki/index.php/Neural_Networks
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Some extensions and modifications

Different activation functions; some examples:

Name Function Derivative
sigmoid f(x) = = f(x)- (1 -f(x))
softmax ZZ: — f(x) - (1 - f(x))
tanh f(x) = 55 1 - f(x)?

softplus f(x) = log(1 + €¥) =

The choice of activation function affects the freedom one has for
the output variables and the nature of the error function.
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Some extensions and modifications

Radically different network structures:

o o

hw.b()‘)

x|

(&) (

2 |

Layer L, Layer Ly

LayerL, Recurrent [link]
Autoencoder [link]
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Lexical ambiguity
Ambiguity is everywhere in language and is the source of most
linguistic humor (e.g., the funniest joke in the world):
© crane and crane
® pitch and pitch
® try and try
@ sanction (permit) and sanction (penalize)
@ flat (tire), flat (note), flat (beer), flat (note)
0 throw (a party), throw (a stone), throw (a fight)
@ into (the tunnel) and into (jazz)
O still
©® mean
© ...

VSMs might seem constitutionally unable to model ambiguity

because of the way they are constructed.
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Scores without supervision

s=U'a .
)
a = f(Wx) [eeccccce]
w )
X [e000 coce 0000 cooo soos]

i

lex [eeee] [ecee| [e00e] [c0ce| [eeee]

i

colorless green ideas sleep furiously

(Collobert and Weston 2008; Turian et al. 2010)
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Scores without supervision

@ s = score(colorless green ideas sleep furiously)

s=U"a .
)
a = f(Wx) [eeccccce]
w )
X [e00e s000 0000 0000 coeo]

)

lex [oooo] [oooo] [oooo] [oooo] [oooo]
)

colorless green ideas sleep furiously

(Collobert and Weston 2008; Turian et al. 2010)
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Scores without supervision

@ s = score(colorless green ideas sleep furiously)
@ s = score(colorless green ideas sleep | might )

s=UTa .
)
a = f(Wx) [eeccccce]
w )
X [e00e s000 0000 0000 coeo]

)

lex [oooo] [oooo] [oooo] [oooo] [oooo]
)

colorless green ideas sleep furiously

(Collobert and Weston 2008; Turian et al. 2010)
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Scores without supervision
@ s = score(colorless green ideas sleep furiously)
@ s = score(colorless green ideas sleep | might )

© Objective: minimize e 7y Max(0, 1 — sy + S¢)
(seek to make s,, at least +1 of s;)

s=UTa .
)
a = f(Wx) [eeccccce]
w )
X [e00e s000 0000 0000 coeo]

)

lex [oooo] [oooo] [oooo] [onoo] [oooo]
)

colorless green ideas sleep furiously

(Collobert and Weston 2008; Turian et al. 2010)
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Scores without supervision
@ s = score(colorless green ideas sleep furiously)
@ s = score(colorless green ideas sleep | might )

© Objective: minimize e 7y Max(0, 1 — sy + S¢)
(seek to make s,, at least +1 of s;)

@ Backpropagation down to the lexical vectors lex

s=U'a .
u )
a= f(WX) [oooooooo]
w )
X [.... 0000 0000 ....]

)

lex [oooo] [oo-o] [oooo] [oooo]
)

colorless green ideas furiously

(Collobert and Weston 2008; Turian et al. 2010)
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Huang et al. (2012)

Local Context Global Context

Document

@ee®)| river
@e8®| play

@ee® | shore
weighted average :
he walks to the  bank ... global semantic vector @ee® | water

Figure 1: An overview of our neural language model. The model makes use of both local and global context to compute
a score that should be large for the actual next word (bank in the example), compared to the score for other words.
‘When word meaning is still ambiguous given local context, information in global context can help disambiguation.
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Sense disambiguation via clustering

(cluster#1)
location

importance
chose Zbigniew Brzezinski bombing
for the position of

bol s position

(cluster#2)
on his clothing

appointme
nt, role, job

(cluster#3)
intensity,
winds,

a culural group. °

on he chart o he vessel s Lafo o hour, gust
current position °\l o

A0t n & position (0 help. o o

(collect contexts) (cluster) (similarity)

& _single

prototype

Figure 1: Overview of the multi-prototype approach
to near-synonym discovery for a single target word
independent of context. Occurrences are clustered
and cluster centroids are used as prototype vectors.
Note the “hurricane” sense of position (cluster 3) is
not typically considered appropriate in WSD.

Reisinger and Mooney 2010b

Cluster the contexts for each
word using a standard centroid
algorithm.

Label each token with its
cluster’s index.

Construct word representations
for this new vocabulary.

See also Schiitze 1998; Pantel 2003; Reisinger and Mooney 2010a
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Lexical ambiguity
[e]eJoYe] )

Word 1

Word 2

Located downtown along the east bank of the Des
Moines River ...

This is the basis of all money laundering , a track record
of depositing clean money before slipping through dirty
money ...

Inside the ruins , there are bats and a bowl with Pokeys
that fills with sand over the course of the race , and the
music changes somewhat while inside ...

An aggressive lower order batsman who usually bats at
No. 11, Muralitharan is known for his tendency to back
away to leg and slog ...

An example of legacy left in the Mideast from these
nobles is the Krak des Chevaliers > enlargement by the
Counts of Tripoli and Toulouse ...

. one should not adhere to a particular explanation ,
only in such measure as to be ready to abandon it if it
be proved with certainty to be false ...

... and Andy ’s getting ready to pack his bags and head
up to Los Angeles tomorrow to get ready to fly back
home on Thursday

. she encounters Ben ( Duane Jones ) , who arrives
in a pickup truck and defends the house against another
pack of zombies ...

In practice , there is an unknown phase delay between
the transmitter and receiver that must be compensated
by " synchronization ” of the receivers local oscillator

. but Gilbert did not believe that she was dedicated
enough , and when she missed a rehearsal , she was
dismissed ...

Table 4: Example pairs from our new dataset. Note that words in a pair can be the same word and have different parts

of speech.

(Huang et al. 2012; the data set)
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Code and tools

PyBrain: http://pybrain.org

Google vectors package word2vec:
https://code.google.com/p/word2vec/

word2vec reimplemented in Python/Gensim:
http://radimrehurek.com/2013/09/
deep-learning-with-word2vec-and-gensim/

Richard Socher has released code with almost all his recent
papers: http://www.socher.org

Deeply Moving: Deep Learning for Sentiment Analysis
http://nlp.stanford.edu/sentiment/

A beautiful t-SNE visualization of Collobert and
Weston’s (2008) representations:
https://www.cs.toronto.edu/~hinton/turian.png
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Looking ahead

How are distributional vector models doing on our core goals?

© Word meanings x

® Connotations v
® Compositionality (May 14)
@ Syntactic ambiguities

@® Semantic ambiguities (progress!)

0O Entailment and monotonicity  (progress!)
@ Question answering
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