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Related materials

• For people starting to implement these models:
• Socher et al. 2012a; Socher and Manning 2013
• Unsupervised Feature Learning and Deep Learning
• Deng and Yu (2014)
• http://www.stanford.edu/class/cs224u/code/

shallow_neuralnet_with_backprop.py

• For people looking for new application domains:
• Baroni et al. (2012)
• Huang et al. (2012)
• Unsupervised Feature Learning and Deep Learning:

Recommended readings
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Goals of semantics (from class meeting 2)

How are distributional vector models doing on our core goals?

1 Word meanings ≈

2 Connotations X

3 Compositionality

4 Syntactic ambiguities

5 Semantic ambiguities ?

6 Entailment and monotonicity ?

7 Question answering

(Items in red seem like reasonable goals for lexical models.)
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Thought experiment: vectors as classifier features

Class Word

0 awful
0 terrible
0 lame
0 worst
0 disappointing
1 nice
1 amazing
1 wonderful
1 good
1 awesome
(a) Training set.

Pr(Class = 1) Word

? w1

? w2

? w3

? w4

(b) Test/prediction set.

Figure: A hopeless supervised set-up.
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Thought experiment: vectors as classifier features

Class Word excellent terrible

0 awful −0.69 1.13
0 terrible −0.13 3.09
0 lame −1.00 0.69
0 worst −0.94 1.04
0 disappointing 0.19 0.09
1 nice 0.08 −0.07
1 amazing 0.71 −0.06
1 wonderful 0.66 −0.76
1 good 0.21 0.11
1 awesome 0.67 0.26

(a) Training set.

Pr(Class=1) Word excellent terrible

≈0 w1 −0.47 0.82
≈0 w2 −0.55 0.84
≈1 w3 0.49 −0.13
≈1 w4 0.41 −0.11

(b) Test/prediction set.

Figure: Values derived from a PMI weighted word × word matrix and
used as features in a logistic regression fit on the training set. The test
examples are, from top to bottom, bad, horrible, great, and best.

4 / 44



Overview Entailment in vector space Shallow neural nets Lexical ambiguity Conclusion Refs.

Distributed and distributional
All the representations we discuss are vectors, matrices, and
perhaps higher-order tensors. They are all ‘distributed’ in a sense.

1 ‘Distributional’ suggests a basis in counts gathered from
co-occurrence statistics (perhaps with reweighting, etc.).

2 ‘Distributed’ connotes deep learning and suggests that the
dimensions (or subsets thereof) capture meaningful aspects
of natural language objects. See also ‘word embedding’.

3 The line will be blurred if we begin with distributional vectors
and derive hidden representations from them.

4 For discussion, see Turian et al. 2010:§3, 4.

5 We can reserve ‘neural’ for representations trained with neural
networks. These are always ‘distributed’ and might or might
not have distributional aspects in the sense of 1 above.

6 (But be careful who you say ‘neural’ to.)
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Applications of distributed representations to date

• Sentiment analysis (Socher et al. 2011b, 2012b, 2013b)

• Morphology (Luong et al. 2013)

• Parsing (Socher et al. 2013a)

• Semantic parsing (Lewis and Steedman 2013)

• Paraphrase (Socher et al. 2011a)

• Analogies (Mikolov et al. 2013)

• Language modeling (Collobert et al. 2011)

• Named entity recognition (Collobert et al. 2011)

• Part of speech tagging (Collobert et al. 2011)

• . . .

(With apologies to everyone in speech, cogsci, vision, . . . )
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Plan and goals for today

Plan
1 Discuss how to capture entailment

2 (Shallow) neural networks as extensions of discriminative
classifier models

3 Unsupervised training of distributed word representations

4 Modeling lexical ambiguity with distributed representations

Goals
• Help you navigate the literature

• Relate this material to things you already know about

• Address the foundational issues of entailment and ambiguity
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Entailment in vector space

Last time, we focused exclusively on the relation VSMs capture
best: similarity (fuzzy synonymy).

What about entailment? Its asymmetric nature poses challenges.

1 poodle⇒ dog⇒ mammal

2 run⇒ move

3 will⇒ might

4 superb⇒ good

5 awful⇒ bad

6 every⇒ most⇒ some

7 probably⇒ possibly

My review is based on Kotlerman et al. 2010.
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Lexical relations in WordNet: many entailment concepts

method adjective noun adverb verb

hypernyms 0 74389 0 13208
instance hypernyms 0 7730 0 0

hyponyms 0 16693 0 3315
instance hyponyms 0 945 0 0
member holonyms 0 12201 0 0

substance holonyms 0 551 0 0
part holonyms 0 7859 0 0

member meronyms 0 5553 0 0
substance meronyms 0 666 0 0

part meronyms 0 3699 0 0
attributes 620 320 0 0

entailments 0 0 0 390
causes 0 0 0 218

also sees 1333 0 0 1
verb groups 0 0 0 1498

similar tos 13205 0 0

total 18156 82115 3621 13767

Table: Synset-level relations. 9 / 44
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Lexical relations in WordNet: many entailment concepts

method adjective noun adverb verb

antonyms 3872 2120 707 1069
derivationally related forms 10531 26758 1 13102

also sees 0 0 0 324
verb groups 0 0 0 2
pertainyms 46650 0 3220 0

topic domains 6 3 0 1
region domains 1 14 0 0
usage domains 1 365 0 2

total 61061 29260 3928 14500

Table: Lemma-level relations.
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Conceptualizing the problem

Which row vectors entail which others?

d1 d2 d3

w1 1 0 0
w2 0 0 10
w3 0 0 20
w4 0 10 10
w5 20 20 20

Possible criteria:

• Subset relationship on environments

• Score sizes

• Similarity of score vectors

• . . .
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Measures: preliminaries

Definition (Feature functions)
Let u be a vector of dimension n. Then Fu is the partial function
from [1, n] such that Fu(i) is defined iff 1 6 i 6 n and ui > 0. Where
defined, Fu(i) = ui .

Definition (Feature function membership)
i ∈ Fu iff i is defined for Fu

Definition (Feature function intersection)
Fu ∩ Fv = {i : i ∈ Fu and i ∈ Fv }

Definition (Feature function cardinality)

|Fu| =
∣∣∣ {i : i ∈ Fu}

∣∣∣
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Measure: WeedsPrec
Definition (Weeds and Weir 2003)

WeedsPrec(u, v)
def
=

∑
i∈Fu∩Fv Fu(i)∑

i∈Fu Fu(i)

d1 d2 d3

w1 1 0 0
w2 0 0 10
w3 0 0 20
w4 0 10 10
w5 20 20 20

(a) Original matrix

w1 w2 w3 w4 w5

w1 1.0 0.0 0.0 0.0 1.0
w2 0.0 1.0 1.0 1.0 1.0
w3 0.0 1.0 1.0 1.0 1.0
w4 0.0 0.5 0.5 1.0 1.0
w5 0.3 0.3 0.3 0.7 1.0

(b) Predictions. Max values highlighted.
Entailment testing from row to column.

Table: WeedsPrec
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Measure: ClarkeDE
Definition (Clarke 2009)

ClarkeDE(u, v)
def
=

∑
i∈Fu∩Fv min

(
Fu(i),Fv(i)

)∑
i∈Fu Fu(i)

d1 d2 d3

w1 1 0 0
w2 0 0 10
w3 0 0 20
w4 0 10 10
w5 20 20 20

(a) Original matrix

w1 w2 w3 w4 w5

w1 1.0 0.0 0.0 0.0 1.0
w2 0.0 1.0 1.0 1.0 1.0
w3 0.0 0.5 1.0 0.5 1.0
w4 0.0 0.5 0.5 1.0 1.0
w5 0.0 0.2 0.3 0.3 1.0

(b) Predictions. Max values highlighted.
Entailment testing from row to column.

Table: ClarkeDE
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Measure: APinc
Definition (Kotlerman et al. 2010)

APinc(u, v)
def
=

∑
i∈Fu P(i)·rel(Fr )

|Fv |

1 rank(i,Fu) = the rank of Fu(i) according to the value of Fu(i)

2 P(i) =

∣∣∣{j∈Fv :rank(j,Fu)6rank(i,Fu)}
∣∣∣

rank(i,Fu)

3 rel(i) =

 1 − rank(i,Fv)
|Fv |+1 if i ∈ Fv

0 if i < Fv

d1 d2 d3

w1 1 0 0
w2 0 0 10
w3 0 0 20
w4 0 10 10
w5 20 20 20
(a) Original matrix

w1 w2 w3 w4 w5

w1 0.5 0.0 0.0 0.0 0.2
w2 0.0 0.5 0.5 0.2 0.1
w3 0.0 0.5 0.5 0.2 0.1
w4 0.0 0.2 0.2 0.5 0.2
w5 0.5 0.2 0.2 0.3 0.5

(b) Predictions. Max values highlighted.
Entailment testing from row to column.

Table: APinc
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Balancing

Definition (Lin 1998)

LIN(u, v)
def
=

∑
i∈Fu∩Fv Fu(i) + Fv(i)∑

i∈Fu Fu(i) +
∑

i∈Fv Fv(i)

Definition (Kotlerman et al. 2010)
If E ∈ {WeedsPrec,ClarkeDE,APinc}, then

balE(u, v)
def
=

√
LIN(u, v) · E(u, v)
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Comparisons
d1 d2 d3

w1 1 0 0
w2 0 0 10
w3 0 0 20
w4 0 10 10
w5 20 20 20

w1 w2 w3 w4 w5

w1 1.0 0.0 0.0 0.0 1.0
w2 0.0 1.0 1.0 1.0 1.0
w3 0.0 1.0 1.0 1.0 1.0
w4 0.0 0.5 0.5 1.0 1.0
w5 0.3 0.3 0.3 0.7 1.0

(a) WeedsPrec

w1 w2 w3 w4 w5

w1 1.0 0.0 0.0 0.0 0.6
w2 0.0 1.0 1.0 0.8 0.7
w3 0.0 1.0 1.0 0.9 0.7
w4 0.0 0.6 0.6 1.0 0.9
w5 0.3 0.4 0.4 0.7 1.0

(b) balWeedsPrec

Table: WeedsPrec with and without balancing.
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Comparisons
d1 d2 d3

w1 1 0 0
w2 0 0 10
w3 0 0 20
w4 0 10 10
w5 20 20 20

w1 w2 w3 w4 w5

w1 1.0 0.0 0.0 0.0 1.0
w2 0.0 1.0 1.0 1.0 1.0
w3 0.0 0.5 1.0 0.5 1.0
w4 0.0 0.5 0.5 1.0 1.0
w5 0.0 0.2 0.3 0.3 1.0

(a) ClarkeDE

w1 w2 w3 w4 w5

w1 1.0 0.0 0.0 0.0 0.6
w2 0.0 1.0 1.0 0.8 0.7
w3 0.0 0.7 1.0 0.6 0.7
w4 0.0 0.6 0.6 1.0 0.9
w5 0.1 0.3 0.4 0.5 1.0

(b) balClarkeDE

Table: ClarkeDE with and without balancing.
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Comparisons
d1 d2 d3

w1 1 0 0
w2 0 0 10
w3 0 0 20
w4 0 10 10
w5 20 20 20

w1 w2 w3 w4 w5

w1 0.5 0.0 0.0 0.0 0.2
w2 0.0 0.5 0.5 0.2 0.1
w3 0.0 0.5 0.5 0.2 0.1
w4 0.0 0.2 0.2 0.5 0.2
w5 0.5 0.2 0.2 0.3 0.5

(a) APinc

w1 w2 w3 w4 w5

w1 0.7 0.0 0.0 0.0 0.3
w2 0.0 0.7 0.7 0.3 0.2
w3 0.0 0.7 0.7 0.4 0.2
w4 0.0 0.4 0.4 0.7 0.4
w5 0.4 0.3 0.3 0.5 0.7

(b) balAPinc

Table: APinc with and without balancing.
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Entailment between nouns (Baroni et al. 2012)

Relationship Size

Positive class A N ⇒ N 1246 pairs
Negative class A N2 6⇒ N1 1246 pairs

Table: Training data. All the data were manually checked after generation,
and all the phrase types have at least 100 tokens in their data.

Positive

• tall student⇒ student

• wooden desk⇒ desk

• skillful linguist⇒ linguist

Negative

• tall student⇒ desk

• wooden desk⇒ linguist

• skillful linguist⇒ criminal

• alleged criminal 6⇒ criminal

• fake gun 6⇒ gun
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Entailment between nouns (Baroni et al. 2012)

Relationship Size

Positive class A N ⇒ N 1246 pairs
Negative class A N2 6⇒ N1 1246 pairs

Table: Training data. All the data were manually checked after generation,
and all the phrase types have at least 100 tokens in their data.

Relationship Size

Positive class N1 ⇒ N2 1385 pairs, from WordNet
hypernym chains

Negative class N1 6⇒ N2 1385 pairs, by inverting
and shuffling the positive
pairs

Table: Test data.
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Unsupervised method (Baroni et al. 2012)

The authors use balAPinc as defined above and find that it beats
their frequency- and similarity-based baselines on the nouns task
but that it performs poorly on their quantifier task. (See page 30 for
details on the performance and the thresholds used to define
entailment categorically.)
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Supervised method (Baroni et al. 2012)

• In the supervised approach, the authors train Support Vector
Machines (SVMs) on concatenation of vector representations,
reduced to 300 each dimensions with SVD/LSA.

• Their SVMs have polynomial kernels that captures feature
interactions (p. 29).

• This method is successful for both the nouns task and the
quantifiers task (Tables 3, 4).

• In the ‘quantifier-out’ set-up, performance ranges from 34%
accuracy (either) to 98% (each).

• In addition, they tried working with just quantifier vectors (no N
complements) and judged the model unsuccessful (p. 30).
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Summary, lessons, and prospects

• Defining entailment a priori in terms of vectors is challenging
conceptually and empirically.

• Training supervised classifiers to learn entailment between
vectors is more promising.

• We’ll now move to more powerful models that might do even
better at this and other semantic tasks.

• (Once we figure out entailment, we should worry about
contradiction.)
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Shallow neural nets

L1 = representation of the data
L2 to L3 ≈ classifier using a hidden representation L2

L3 = Output signal/prediction
21 / 44
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Linear models and discriminative training
1 Feature representations: φ(x, y) ∈ Rd

2 Scoring: Scorew(x, y) = w · φ(x, y) =
∑d

j=1 wjφ(x, y)j

3 Objective function:

min
w∈Rd

∑
(x,y)∈D

max
y′∈Y

[Scorew(x, y′) + c(y, y′)] − Scorew(x, y)

where D is a set of (x, y) training examples and c(y, y′) is the cost
for predicting y′ when the correct output is y.

4 Optimization:
StochasticGradientDescent(D,T , η)

1 Initialize w← 0
2 Repeat T times
3 for each (x, y) ∈ D (in random order)
4 ỹ ← arg maxy′∈Y Scorew(x, y′) + c(y, y′)
5 w← w + η(φ(x, y) − φ(x, ỹ))
6 Return w
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Simple supervised learning example

Feature representations φ(x, y)

(x, y) ‘empty string’ ‘last word’ ‘all words’

Train

(twenty five, O) ε five [twenty, five]
(thirty one, O) ε eight [thirty, one]
(forty nine, O) ε nine [forty, nine]
(fifty two, E) ε two [fifty, two]
(eighty two, E) ε two [eighty, two]
(eighty four, E) ε four [eighty, four]
(eighty six, E) ε six [eighty, six]

Test (eighty five, O) ε → E five→ O [eighty, five]→ E

Table: Tradeoffs in machine learning.
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XOR and related examples (Rumelhart et al. 1986a,b)

p q (p ∨̄ q)

1 1 0
1 0 1
0 1 1
0 0 0

Table: Exclusive ‘or’ (XOR)

p

q

[0,1]

[0,0]

[1,1]

[1,0]

No linear separation into the two desired classes.
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XOR and related examples (Rumelhart et al. 1986a,b)

p q (p ∨ q)

1 1 1
1 0 1
0 1 1
0 0 0

Table: Inclusive ‘or’

p

q

[0,1]

[0,0]

[1,1]

[1,0]

Easy linear separation into the two desired classes.
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XOR and related examples (Rumelhart et al. 1986a,b)

p q (p ↔ q)

1 1 1
1 0 0
0 1 0
0 0 1

Table: Biconditional (IFF)

p

q

[0,1]

[0,0]

[1,1]

[1,0]

No linear separation into the two desired classes.
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A glimpse of hidden representations

Linear classifier Shallow network Hidden reps

From http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
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A shallow XOR network with forward propagation

p

q

1

x

y

h

f

[p, q, 1]

 p1 p2

q1 q2

b1 b2


 = [x, y] f

(
[x, y]

[
x1

y1

])
= h f(x) = 1

1+e−x
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Hidden XOR representations

f(x) =
1

1 + e−x

p

q

[0,1]

[0,0]

[1,1]

[1,0]
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Hidden XOR representations

f(x) =
1

1 + e−x

p

q

[0,1]

[0,0]

[1,1]

[1,0][0,0.01]

[0.02,0.62]

[0.9,1] f

[p, q, 1]

 −6.09 −5.22
−6.05 −5.22

2.22 5.71




Example:

f

[0, 1, 1]
 −6.09 −5.22
−6.05 −5.22

2.22 5.71


=[0.02, 0.62]
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Hidden XOR representations

f(x) =
1

1 + e−x

p

q

[0,1]

[0,0]

[1,1]

[1,0][0.75,0.03]

[1,0.92]

[0.01,0]

f

[p, q, 1]

 5.90 5.57
−5.90 −5.81

1.09 −3.13



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Hidden XOR representations

f(x) =
1

1 + e−x

p

q

[0,1]

[0,0]

[1,1]

[1,0][0.76,0.04]
[0.01,0]

[1,0.92]

f

[p, q, 1]

 −5.97 −5.69
6.04 5.65
1.07 −3.23



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The role of the non-linear activation function

• The activation function bends
the representation dimensions
around to help satisfy the
objective function.

• The more dimensions in the
representation, the more
complex the functions we can
approximate.

• Networks without non-linear
activation functions are
coherent, but they just perform
lots of linear transformations
between dimensions and so
can be reduced to a single layer
model.

Non-linearities: Why they’re needed 
•  For%logisGc%regression:%map%to%probabiliGes%
•  Here:%funcGon%approximaGon,%%

e.g.,%regression%or%classificaGon%
•  Without%nonJlineariGes,%deep%neural%networks%
can’t%do%anything%more%than%a%linear%transform%

•  Extra%layers%could%just%be%compiled%down%into%
a%single%linear%transform%

•  ProbabilisGc%interpretaGon%unnecessary%except%in%
the%Boltzmann%machine/graphical%models%

•  People%o^en%use%other%nonJlineariGes,%such%as%
tanh,%as%we’ll%discuss%in%part%3%

31%

Socher and Manning 2013:31
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Learning with backpropagation
Same framework for feature representation and scoring as in the
classifier model presented earlier link to the slide . The only changes
concern propagating the error signal through the hidden layer:

BackwardPropagationViaStochasticDescent(D,T , η)

1 Initialize input weights W i×h with small, normally distributed values
2 Initialize output weights Hh×1 with small, normally distributed values
3 Repeat T times
4 for each (x, y) ∈ D (in random order)
5 a ← f(x ·W) # forward prop input to hidden
6 z ← f(a · H) # forward prop hidden to output
7 δ2 ← (y − z) · f ′(z) # output errors
8 δ1 ← δ2 · HT · f ′(a) # hidden errors
9 H ← η · aT · δ2 # hidden weights update

10 W ← η · xT · δ1 # input weights update
11 Return W ,H
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Application to sentiment

Word Class

good +1
excellent +1
superior +1
correct +1
bad −1
poor −1
unfortunate −1
wrong −1

Word against age agent ages ago agree

good -0.19 -0.07 -0.12 -0.07 0.03 0.08
excellent -0.14 0.01 -0.10 0.41 0.17 -0.01
superior 0.32 -0.39 -0.18 0.24 -0.41 0.14

correct -0.09 -0.21 0.16 0.58 0.70 0.08
bad -0.26 -0.54 -0.03 -0.48 -0.02 -0.01

poor -0.02 -0.31 0.02 -0.06 -0.26 0.01
unfortunate 0.39 -0.06 0.04 -0.96 -0.09 0.26

wrong -0.11 -0.20 -0.01 -0.18 -0.05 0.16

Code for these experiments: http://www.stanford.edu/class/cs224u/
code/shallow_neuralnet_with_backprop.py and the Python t-SNE
implementation http://homepage.tudelft.nl/19j49/t-SNE.html

All visualizations with t-SNE (van der Maaten and Geoffrey 2008)
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Application to sentiment
Input (left): 200d PMI reps. Output (right): 100d hidden reps.

All visualizations with t-SNE (van der Maaten and Geoffrey 2008)
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Application to sentiment
Input (left): random 100d reps. Output (right): 100d hidden reps.
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Semi-supervised auto-encoders (Socher et al. 2011b)

[link]
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Semi-supervised auto-encoders (Socher et al. 2011b)
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Lexical entailment (Bowman 2014)
1 Learns not only entailment pairs like puppy⇒ animal but also

contradiction pairs like dog | bird.

2 (The set of relations is even richer; MacCartney 2009.)

3 Recursive neural tensor network (Socher et al. 2013b).

4 Hold-one-out evaluation: train on the entire lexical network
except for a pair of words (x, y), and then predict the relation
between x and y.

5 “The results are modestly promising. Of a sample of 69 test
examples [. . . ] 61 (88.4%) were labeled correctly”

6 Optimization with AdaGrad (Duchi et al. 2011)

7 Rectified linear activation function (Maas et al. 2013):
f(x) = max(x, 0) + 0.01 min(x, 0)

8 Full code release: link

9 More on this model later in the term!
32 / 44

https://github.com/sleepinyourhat/vector-entailment/releases/tag/ICLR14-R1


Overview Entailment in vector space Shallow neural nets Lexical ambiguity Conclusion Refs.

Some extensions and modifications

Deeper and higher dimensional networks:

http://deeplearning.stanford.edu/wiki/index.php/Neural_Networks
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Some extensions and modifications

Different activation functions; some examples:

Name Function Derivative

sigmoid f(x) = 1
1+e−x f(x) · (1 − f(x))

softmax exj∑n
k=1 exk f(xj) · (1 − f(xj))

tanh f(x) = ex−e−x

ex+e−x 1 − f(x)2

softplus f(x) = log(1 + ex) 1
1+e−x

The choice of activation function affects the freedom one has for
the output variables and the nature of the error function.
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Some extensions and modifications

Radically different network structures:

Autoencoder [link]
Recurrent [link]
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Lexical ambiguity
Ambiguity is everywhere in language and is the source of most
linguistic humor (e.g., the funniest joke in the world):

1 crane and crane

2 pitch and pitch

3 try and try

4 sanction (permit) and sanction (penalize)

5 flat (tire), flat (note), flat (beer), flat (note)

6 throw (a party), throw (a stone), throw (a fight)

7 into (the tunnel) and into (jazz)

8 still

9 mean

10 . . .

VSMs might seem constitutionally unable to model ambiguity
because of the way they are constructed.
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Scores without supervision

1 s = score(colorless green ideas sleep furiously)
2 sc = score(colorless green ideas sleep might )

3 Objective: minimize
∑

w∈D
1
|D|

max(0, 1 − sw + sc)
(seek to make sw at least +1 of sc )

4 Backpropagation down to the lexical vectors lex

s = UT a •

U ⇑

a = f(Wx) [••••••••]
W ⇑

x [•••• •••• •••• •••• ••••]
⇑

lex [••••] [••••] [••••] [••••] [••••]
⇑

colorless green ideas sleep furiously

(Collobert and Weston 2008; Turian et al. 2010)
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Huang et al. (2012)

Global ContextLocal Context

scorel scoreg
Document

he walks to the bank... ...

sum

score

river

water

shore

global semantic vector
⋮

play

weighted average

Figure 1: An overview of our neural language model. The model makes use of both local and global context to compute
a score that should be large for the actual next word (bank in the example), compared to the score for other words.
When word meaning is still ambiguous given local context, information in global context can help disambiguation.

of words presented in isolation, ignoring meaning
variations in context. Since word interpretation in
context is important especially for homonymous and
polysemous words, we introduce a new dataset with
human judgments on similarity between pairs of
words in sentential context. To capture interesting
word pairs, we sample different senses of words us-
ing WordNet (Miller, 1995). The dataset includes
verbs and adjectives, in addition to nouns. We show
that our multi-prototype model improves upon the
single-prototype version and outperforms other neu-
ral language models and baselines on this dataset.

2 Global Context-Aware Neural Language
Model

In this section, we describe the training objective of
our model, followed by a description of the neural
network architecture, ending with a brief description
of our model’s training method.

2.1 Training Objective

Our model jointly learns word representations while
learning to discriminate the next word given a short
word sequence (local context) and the document
(global context) in which the word sequence occurs.
Because our goal is to learn useful word representa-
tions and not the probability of the next word given
previous words (which prohibits looking ahead), our
model can utilize the entire document to provide

global context.
Given a word sequence s and document d in

which the sequence occurs, our goal is to discrim-
inate the correct last word in s from other random
words. We compute scores g(s, d) and g(sw, d)
where sw is s with the last word replaced by word w,
and g(·, ·) is the scoring function that represents the
neural networks used. We want g(s, d) to be larger
than g(sw, d) by a margin of 1, for any other word
w in the vocabulary, which corresponds to the train-
ing objective of minimizing the ranking loss for each
(s, d) found in the corpus:

Cs,d =
�

w�V

max(0, 1 � g(s, d) + g(sw, d)) (1)

Collobert and Weston (2008) showed that this rank-
ing approach can produce good word embeddings
that are useful in several NLP tasks, and allows
much faster training of the model compared to op-
timizing log-likelihood of the next word.

2.2 Neural Network Architecture
We define two scoring components that contribute
to the final score of a (word sequence, document)
pair. The scoring components are computed by two
neural networks, one capturing local context and the
other global context, as shown in Figure 1. We now
describe how each scoring component is computed.

The score of local context uses the local word se-
quence s. We first represent the word sequence s as

874
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Sense disambiguation via clustering

mantic similarity of both isolated words and words
in context. The approach is completely modular, and
can integrate any clustering method with any tradi-
tional vector-space model.

We present experimental comparisons to human
judgements of semantic similarity for both isolated
words and words in sentential context. The results
demonstrate the superiority of a clustered approach
over both traditional prototype and exemplar-based
vector-space models. For example, given the iso-
lated target word singer our method produces the
most similar word vocalist, while using a single pro-
totype gives musician. Given the word cell in the
context: “The book was published while Piasecki
was still in prison, and a copy was delivered to his
cell.” the standard approach produces protein while
our method yields incarcerated.

The remainder of the paper is organized as fol-
lows: Section 2 gives relevant background on pro-
totype and exemplar methods for lexical semantics,
Section 3 presents our multi-prototype method, Sec-
tion 4 presents our experimental evaluations, Section
5 discusses future work, and Section 6 concludes.

2 Background

Psychological concept models can be roughly di-
vided into two classes:

1. Prototype models represented concepts by an
abstract prototypical instance, similar to a clus-
ter centroid in parametric density estimation.

2. Exemplar models represent concepts by a con-
crete set of observed instances, similar to non-
parametric approaches to density estimation in
statistics (Ashby and Alfonso-Reese, 1995).

Tversky and Gati (1982) famously showed that con-
ceptual similarity violates the triangle inequality,
lending evidence for exemplar-based models in psy-
chology. Exemplar models have been previously
used for lexical semantics problems such as selec-
tional preference (Erk, 2007) and thematic fit (Van-
dekerckhove et al., 2009). Individual exemplars can
be quite noisy and the model can incur high com-
putational overhead at prediction time since naively
computing the similarity between two words using
each occurrence in a textual corpus as an exemplar
requires O(n2) comparisons. Instead, the standard

... chose Zbigniew Brzezinski 
for the position of ...
... thus the symbol s position 
on his clothing was ...
... writes call options against 
the stock position ...
... offered a position with ...
... a position he would hold 
until his retirement in ...
... endanger their position as 
a cultural group...
... on the chart of the vessel s 
current position ...
... not in a position to help...

(cluster#2) 
post
appointme
nt, role, job

(cluster#4) 
lineman, 
tackle, role, 
scorer

(cluster#1) 
location
importance 
bombing

(collect contexts) (cluster)

(cluster#3) 
intensity, 
winds, 
hour, gust

(similarity)

single
prototype

Figure 1: Overview of the multi-prototype approach
to near-synonym discovery for a single target word
independent of context. Occurrences are clustered
and cluster centroids are used as prototype vectors.
Note the “hurricane” sense of position (cluster 3) is
not typically considered appropriate in WSD.

approach is to compute a single prototype vector for
each word from its occurrences.

This paper presents a multi-prototype vector space
model for lexical semantics with a single parame-
ter K (the number of clusters) that generalizes both
prototype (K = 1) and exemplar (K = N , the total
number of instances) methods. Such models have
been widely studied in the Psychology literature
(Griffiths et al., 2007; Love et al., 2004; Rosseel,
2002). By employing multiple prototypes per word,
vector space models can account for homonymy,
polysemy and thematic variation in word usage.
Furthermore, such approaches require only O(K2)
comparisons for computing similarity, yielding po-
tential computational savings over the exemplar ap-
proach when K � N , while reaping many of the
same benefits.

Previous work on lexical semantic relatedness has
focused on two approaches: (1) mining monolin-
gual or bilingual dictionaries or other pre-existing
resources to construct networks of related words
(Agirre and Edmond, 2006; Ramage et al., 2009),
and (2) using the distributional hypothesis to au-
tomatically infer a vector-space prototype of word
meaning from large corpora (Agirre et al., 2009;
Curran, 2004; Harris, 1954). The former approach
tends to have greater precision, but depends on hand-

110

Reisinger and Mooney 2010b

• Cluster the contexts for each
word using a standard centroid
algorithm.

• Label each token with its
cluster’s index.

• Construct word representations
for this new vocabulary.

See also Schütze 1998; Pantel 2003; Reisinger and Mooney 2010a
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Huang et al. (2012) word embeddings
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Word meanings in context

Word 1 Word 2
Located downtown along the east bank of the Des
Moines River ...

This is the basis of all money laundering , a track record
of depositing clean money before slipping through dirty
money ...

Inside the ruins , there are bats and a bowl with Pokeys
that fills with sand over the course of the race , and the
music changes somewhat while inside ...

An aggressive lower order batsman who usually bats at
No. 11 , Muralitharan is known for his tendency to back
away to leg and slog ...

An example of legacy left in the Mideast from these
nobles is the Krak des Chevaliers ’ enlargement by the
Counts of Tripoli and Toulouse ...

... one should not adhere to a particular explanation ,
only in such measure as to be ready to abandon it if it
be proved with certainty to be false ...

... and Andy ’s getting ready to pack his bags and head
up to Los Angeles tomorrow to get ready to fly back
home on Thursday

... she encounters Ben ( Duane Jones ) , who arrives
in a pickup truck and defends the house against another
pack of zombies ...

In practice , there is an unknown phase delay between
the transmitter and receiver that must be compensated
by ” synchronization ” of the receivers local oscillator

... but Gilbert did not believe that she was dedicated
enough , and when she missed a rehearsal , she was
dismissed ...

Table 4: Example pairs from our new dataset. Note that words in a pair can be the same word and have different parts
of speech.

bat flies”, bat has completely different meanings. It
is unclear how this variation in meaning is accounted
for in human judgments of words presented without
context.

One of the main contributions of this paper is the
creation of a new dataset that addresses this issue.
The dataset has three interesting characteristics: 1)
human judgments are on pairs of words presented in
sentential context, 2) word pairs and their contexts
are chosen to reflect interesting variations in mean-
ings of homonymous and polysemous words, and 3)
verbs and adjectives are present in addition to nouns.
We now describe our methodology in constructing
the dataset.

4.3.1 Dataset Construction
Our procedure of constructing the dataset consists

of three steps: 1) select a list a words, 2) for each
word, select another word to form a pair, 3) for each
word in a pair, find a sentential context. We now
describe each step in detail.

In step 1, in order to make sure we select a diverse
list of words, we consider three attributes of a word:
frequency in a corpus, number of parts of speech,
and number of synsets according to WordNet. For
frequency, we divide words into three groups, top
2,000 most frequent, between 2,000 and 5,000, and
between 5,000 to 10,000 based on occurrences in
Wikipedia. For number of parts of speech, we group
words based on their number of possible parts of

speech (noun, verb or adjective), from 1 to 3. We
also group words by their number of synsets: [0,5],
[6,10], [11, 20], and [20, max]. Finally, we sam-
ple at most 15 words from each combination in the
Cartesian product of the above groupings.

In step 2, for each of the words selected in step
1, we want to choose the other word so that the pair
captures an interesting relationship. Similar to Man-
andhar et al. (2010), we use WordNet to first ran-
domly select one synset of the first word, we then
construct a set of words in various relations to the
first word’s chosen synset, including hypernyms, hy-
ponyms, holonyms, meronyms and attributes. We
randomly select a word from this set of words as the
second word in the pair. We try to repeat the above
twice to generate two pairs for each word. In addi-
tion, for words with more than five synsets, we allow
the second word to be the same as the first, but with
different synsets. We end up with pairs of words as
well as the one chosen synset for each word in the
pairs.

In step 3, we aim to extract a sentence from
Wikipedia for each word, which contains the word
and corresponds to a usage of the chosen synset.
We first find all sentences in which the word oc-
curs. We then POS tag2 these sentences and filter out
those that do not match the chosen POS. To find the

2We used the MaxEnt Treebank POS tagger in the python
nltk library.

878

(Huang et al. 2012; the data set)
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Code and tools
• PyBrain: http://pybrain.org

• Google vectors package word2vec:
https://code.google.com/p/word2vec/

• word2vec reimplemented in Python/Gensim:
http://radimrehurek.com/2013/09/

deep-learning-with-word2vec-and-gensim/

• Richard Socher has released code with almost all his recent
papers: http://www.socher.org

• Deeply Moving: Deep Learning for Sentiment Analysis
http://nlp.stanford.edu/sentiment/

• A beautiful t-SNE visualization of Collobert and
Weston’s (2008) representations:
https://www.cs.toronto.edu/˜hinton/turian.png
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Looking ahead

How are distributional vector models doing on our core goals?

1 Word meanings ≈

2 Connotations X

3 Compositionality (May 14)

4 Syntactic ambiguities

5 Semantic ambiguities (progress!)

6 Entailment and monotonicity (progress!)

7 Question answering
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