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Discourse segmentation and discourse coherence

1 Discourse segmentation: chunking texts into coherent units. (Also: chunking
separate documents)

2 (Local) discourse coherence: characterizing the meaning relationships
between clauses in text.
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Discourse segmentation examples

(The inverted pyramid design)
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Discourse segmentation examples

(Pubmed highly structured abstract)
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Discourse segmentation examples

(Pubmed less structured abstract)
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Discourse segmentation examples

(5-star Amazon review)
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Discourse segmentation examples

(3-star Amazon review)
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Discourse segmentation applications (complete in class)
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Coherence examples

1 Sam brushed his teeth. He got into bed. He felt a certain ennui.

2 Sue was feeling ill. She decided to stay home from work.

3 Sue likes bananas. Jill does not.

4 The senator introduced a new initiative. He hoped to please undecided
voters.

5 Linguists like quantifiers. In his lectures, Richard talked only about every
and most.

6 In his lectures, Richard talked only about every and most. Linguists like
quantifiers.

7 A: Sue isn’t here.
B: She is feeling ill.

8 A: Where is Bill?
B: In Bytes Café.

9 A: Pass the cake mix. (Stone 2002)
B: Here you go.
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Coherence examples

1 Sam brushed his teeth. then He got into bed. then He felt a certain ennui.

2 Sue was feeling ill. so She decided to stay home from work.

3 Sue likes bananas. but Jill does not.

4 The senator introduced a new initiative. because He hoped to please
undecided voters.

5 Linguists like quantifiers. for example In his lectures, Richard talked only
about every and most.

6 In his lectures, Richard talked only about every and most. in general
Linguists like quantifiers.

7 A: Sue isn’t here.
B: She is feeling ill.

8 A: Where is Bill?
B: In Bytes Café.

9 A: Pass the cake mix. (Stone 2002)
B: Here you go.
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Coherence examples

1 Sam brushed his teeth. then He got into bed. then He felt a certain ennui.

2 Sue was feeling ill. so She decided to stay home from work.

3 Sue likes bananas. but Jill does not.

4 The senator introduced a new initiative. because He hoped to please
undecided voters.

5 Linguists like quantifiers. for example In his lectures, Richard talked only
about every and most.

6 In his lectures, Richard talked only about every and most. in general
Linguists like quantifiers.

7 A: Sue isn’t here.
B: because She is feeling ill.

8 A: Where is Bill?
B: answer In Bytes Café.

9 A: Pass the cake mix. (Stone 2002)
B: fulfillment Here you go.
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Coherence in linguistics

Extremely important sub-area:

• Driving force behind coreference resolution (Kehler et al. 2007).
• Driving force behind the licensing conditions on ellipsis (Kehler 2000, 2002).
• Alternative strand of explanation for the inferences that are often treated as

conversational implicatures in Gricean pragmatics (Hobbs 1979).
• Motivation for viewing meaning as a dynamic, discourse-level phenomenon

(Asher and Lascarides 2003).

For an overview of topics, results, and theories, see Kehler 2004.
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Coherence applications in NLP (complete in class)
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Plan and goals

Plan
• Unsupervised and supervised discourse segmentation
• Discourse coherence theories
• Introduction to the Penn Discourse Treebank 2.0
• Unsupervised discovery of coherence relations

Goals
• Discourse segmentation: practical, easy to implement algorithms that can

improve lots of information extraction tasks.
• Discourse coherence: a deep, important, challenging task that has to be

solved if we are to achieve robust NLU
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Discourse segmentation
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Discourse segmentation
Hearst’s 21-paragraph science news article StargazerHearst TextTiling 
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Judgments of seven readers on the Stargazer text. Internal numbers indicate location of gaps 
between paragraphs; x-axis indicates token-sequence gap number, y-axis indicates judge 
number, a break in a horizontal line indicates a judge-specified segment break. 
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Figure 6 
Results of the block similarity algorithm on the Stargazer text with k set to 10 and the loose 
boundary cutoff limit. Both the smoothed and unsmoothed plot are shown. Internal numbers 
indicate paragraph numbers, x-axis indicates token-sequence gap number, y-axis indicates 
similarity between blocks centered at the corresponding token-sequence gap. Vertical lines 
indicate boundaries chosen by the algorithm; for example, the leftmost vertical line represents 
a boundary after paragraph 3. Note how these align with the boundary gaps of Figure 5 above. 

this one location (in the spirit of a Grosz and Sidner [1986] "pop"  operation). Thus 
it displays low similarity both to itself and to its neighbors. This is an example of a 
b reakdown caused by the assumptions about  the subtopic structure. 

Because of the depth  score cutoff, not all valleys are chosen as boundaries.  Al- 
though there is a dip around paragraph gaps 5 and 6, no boundary  is marked  there. 
From the summary  of the text's contents in Section 1, we know that paragraphs  4 and 
5 discuss the moon 's  chemical composit ion while 6 to 8 discuss how it got its shape; 
these two subtopic discussions are more similar to one another  in content than they 
are to the subtopics on either side of them, thus accounting for the small change in 
similarity. 

55 

TextTiling: Segmenting Text into 
Multi-paragraph Subtopic Passages 

Marti  A. Hearst* 
Xerox PARC 

TextTiling is a technique for subdividing texts into multi-paragraph units that represent passages, 
or subtopics. The discourse cues for identifying major subtopic shifts are patterns of lexical 
co-occurrence and distribution. The algorithm is fully implemented and is shown to produce 
segmentation that corresponds well to human judgments of the subtopic boundaries of 12 texts. 
Multi-paragraph subtopic segmentation should be useful for many text analysis tasks, including 
information retrieval and summarization. 

1. Introduction 

Most work in discourse processing, both theoretical and computational, has focused 
on analysis of interclausal or intersentential phenomena. This level of analysis is im- 
portant for many discourse-processing tasks, such as anaphor resolution and dialogue 
generation. However, important and interesting discourse phenomena also occur at 
the level of the paragraph. This article describes a paragraph-level model of discourse 
structure based on the notion of subtopic shift, and an algorithm for subdividing 
expository texts into multi-paragraph "passages" or subtopic segments. 

In this work, the structure of an expository text is characterized as a sequence of 
subtopical discussions that occur in the context of one or more main topic discussions. 
Consider a 21-paragraph science news article, called Stargazers, whose main topic is the 
existence of life on earth and other planets. Its contents can be described as consisting 
of the following subtopic discussions (numbers indicate paragraphs): 

l m 3  Intro - the search for life in space 
4--5  The moon's chemical composition 
6m8 How early earth-moon proximity shaped the moon 

9--12 How the moon helped life evolve on earth 
13 Improbability of the earth-moon system 

14--16 Binary/trinary star systems make life unlikely 
17--18 The low probability of nonbinary/trinary systems 
19--20 Properties of earth's sun that facilitate life 

21 Summary 

Subtopic structure is sometimes marked in technical texts by headings and sub- 
headings. Brown and Yule (1983, 140) state that this kind of division is one of the most 
basic in discourse. However, many expository texts consist of long sequences of para- 
graphs with very little structural demarcation, and for these a subtopical segmentation 
can be useful. 

* 3333  Coyote Hill Rd, Palo Alto, CA. 94304. E-mail: hearst@parc.xerox.com 

(~) 1997 Association for Computational Linguistics 
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The TextTiling algorithm (Hearst 1994, 1997)
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Dotplotting (Reynar 1994, 1998)
bulldogs bulldogs fight also fight buffalo that buffalo buffalo also buffalo

1 2 3 4 5 6 7 8 9 10 11

Where word w appears in positions x and y in a single document, add points
(x, x), (y, y), (x, y), and (y, x):
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Dotplotting (Reynar 1994, 1998)
bulldogs bulldogs fight also fight buffalo that buffalo buffalo also buffalo

1 2 3 4 5 6 7 8 9 10 11

Definition (Minimize the density of the regions around the sentences)
• n = the length of the concatenated texts
• m = the vocabulary size
• Boundaries initialized as [0]
• Pj = Boundaries + j
• Vector of length m containing the number of times each vocab item occurs

between positions x and y

For a desired number of boundaries B, use dynamic programming to find the B
indices that minimize

|P |X

j=2

VPj�1 ,Pj · VPj ,n

(Pj � Pj�1)(n � Pj)

Examples (Vocab = (also, buffalo, bulldogs, fight, that))

P = [0, 5])
[1, 0, 2, 2, 0] · [1, 4, 0, 0, 1]

(5 � 0)(11 � 5)
= 0.03 P = [0, 6])

[1, 1, 2, 2, 0] · [1, 3, 0, 0, 1]
(6 � 0)(11 � 6)

= 0.13
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Divisive clustering (Choi 2000)

1
Compare all sentences pairwise for cosine similarity, to
create a matrix of similarity values.

is computed using the cosine measure as shown in 
equation 1. This is applied to all sentence pairs to 
generate a similarity matrix. 

E:, f.~., x :~., 
s i m ( x , y )  = ~_~.,  .~., , , ,  f 2 . x E j f 2 .  (1) 

Figure 1 shows an example of a similarity matr ix  ~ . 
High similarity values are represented by bright pix- 
els. The bottom-left  and top-right pixel show the 
self-similarity for the first and last sentence, respec- 
tively. Notice the matr ix  is symmetric and contains 
bright square regions along the diagonal. These re- 
gions represent cohesive text segments. 

Each value in the similarity matr ix  is replaced by 
its rank in the local region. The rank is the num- 
ber of neighbouring elements with a lower similarity 
value. Figure 2 shows an example of image ranking 
using a 3 x 3 rank mask with output  range {0, 8}. 
For segmentation, we used a 11 x 11 rank mask. The 
output  is expressed as a ratio r (equation 2) to cir- 
cumvent normalisation problems (consider the cases 
when the rank mask is not contained in the image). 

Similarity matrix Rank matrix 
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Step 1 
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L T l ~  '6,, ~ 7 , 

Step 2 

12 
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Figure 2: A working example of image ranking. 

Figure 1: An example similarity matrix.  

3.2 R a n k i n g  
For short text segments, the absolute value of 
sire(x, y) is unreliable. An additional occurrence of 
a common word (reflected in the numerator)  causes 
a disproportionate increase in sim(x,y) unless the 
denominator (related to segment length) is large. 
Thus, in the context of text segmentation where a 
segment has typically < 100 informative tokens, one 
can only use the metric to estimate the order of sim- 
ilarity between sentences, e.g. a is more similar to b 
than c. 

Furthermore, language usage varies throughout  a 
document. For instance, the introduction section of 
a document is less cohesive than a section which is 
about  a particular topic. Consequently, it is inap- 
propriate to directly compare the similarity values 
from different regions of the similarity matrix. 

In non-parametr ic  statistical analysis, one com- 
pares the rank of da ta  sets when the qualitative be- 
haviour is similar but the absolute quantities are un- 
reliable. We present a ranking scheme which is an 
adaptat ion of that  described in (O'Neil and Denos, 
1992). 

1The contrast of the image has been adjusted to highlight 
the image features. 

# of elements with a lower value 
r = ( 2 )  

# of elements examined 

To demonstrate  the effect of image ranking, the 
process was applied to the matr ix  shown in figure 1 
to produce figure 32 . Notice the contrast  has been 
improved significantly. Figure 4 illustrates the more 
subtle effects of our ranking scheme, r(x) is the rank 
(1 x 11 mask) of f(x) which is a sine wave with 
decaying mean, ampli tude and frequency (equation 
3). 

Figure 3: The matrix in figure 1 after ranking. 

2The process was applied to the original matrix, prior to 
contra.st enhancement. The output image has not been en- 
hanced. 

:97 27
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For each value s, find the n ⇥ n submatrix Ns with
s at its center and replace s with the value

|{s0 2 Ns : s0 < s}|
n2
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Apply something akin to Reynar’s algorithm to find the
cluster boundaries (which are clearer as a result of the
local smoothing
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Choi (2000) reports substantial accuracy gains over both TextTiling and
dotplotting.
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Supervised

1 Label segment boundaries in training and test set.

2 Extract features in training: generally a superset of the features used by
unsupervised approaches.

3 Fit a classifier model (NaiveBayes, MaxEnt, SVM, . . . ).

4 In testing, apply feature to predict boundaries.

(Manning 1998; Beeferman et al. 1999; Sharp and Chibelushi 2008)

(Slide from Dan Jurafsky.)
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Evaluation: WindowDiff (Pevzner and Hearst 2002)

Definition (WindowDiff)
• b(i, j) = the number of boundaries between text positions i and j
• N = the number of sentences

WindowDiff(ref, hyp) =
1

N � k

N�kX

i=1

✓���b(refi , refi+k ) � b(hypi , hypi+k )
��� , 0
◆

Return values: 0 = all labels correct; 1 = no labels correct

(Jurafsky and Martin 2009:§21)
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Discourse coherence theories

• Halliday and Hasan (1976): Additive, Temporal, Causal, Adversative
• Longacre (1983): Conjoining, Temporal, Implication, Alternation
• Martin (1992): Addition, Temporal, Consequential, Comparison
• Kehler (2002): Result, Explanation, Violated Expectation, Denial of

Preventer, Parallel, Contrast (i), Contrast (ii), Exemplification, Generalization,
Exception (i), Exception (ii), Elaboration, Occasion (i), Occasion (ii)

• Hobbs (1985): Occasion, Cause, Explanation, Evaluation Background,
Exemplification, Elaboration, Parallel, Contrast, Violated Expectation

• Wolf and Gibson (2005): Condition, Violated expectation, Similarity,
Contrast, Elaboration, Example, Elaboration, Generalization, Attribution,
Temporal Sequence, Same

15 / 48



Overview Discourse segmentation Discourse coherence theories Penn Discourse Treebank 2.0 Unsupervised coherence Conclusion

Rhetorical Structure Theory (RST)
Relations hold between adjacent spans of text: the nucleus and the satellite.
Each relation has five fields: constraints on nucleus, constraints on satellite,
constraints on nucleus–satellite combination, effect, and locus of effect.

(Mann and Thompson 1988)
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Coherence structures

From Wolf and Gibson (2005)
1 a. Mr. Baker’s assistant for inter-American affairs,

b. Bernard Aronson

2 while maintaining

3 that the Sandinistas had also broken the cease-fire,

4 acknowledged:

5 “It’s never very clear who starts what.”

Wolf and Gibson Representing Discourse Coherence

Figure 4
Coherence graph for example (23). expv = violated expectation; elab = elaboration; attr = attribution.

Figure 5
Coherence graph for example (23) with discourse segment 1 split into two segments. expv =
violated expectation; elab = elaboration; attr = attribution.

Figure 6
Tree-based RST annotation for example (23) from Carlson, Marcu, and Okurowski (2002). Broken
lines represent the start of asymmetric coherence relations; continuous lines represent the end of
asymmetric coherence relations; symmetric coherence relations have two continuous lines
(cf. section 2.3). attr = attribution; elab = elaboration.

The annotations based on our annotation scheme with the discourse segmentation
based on the segmentation guidelines in Carlson, Marcu, and Okurowski (2002) are
presented in Figure 4, and those with the discourse segmentation based on our
segmentation guidelines from section 2.1 are presented in Figure 5. Figure 6 shows
a tree-based RST annotation for example (23) from Carlson, Marcu, and Okurowski
(2002). The only difference between our approach and that of Carlson, Marcu, and
Okurowski with respect to how example (23) is segmented is that Carlson and her
colleagues assume discourse segment 1 to be one single segment. By contrast, based
on our segmentation guidelines, discourse segment 1 would be segmented into two
segments (because of the comma that does not separate a complex NP or VP), 1a and
1b, as indicated by the brackets in example (24):4

4 Based on our segmentation guidelines, the complementizer that in discourse segment 3 would be part of
discourse segment 2 instead (cf. (15)). However, since this would not make a difference in terms of the
resulting discourse structure, we do not provide alternative analyses with that as part of discourse
segment 2 instead of discourse segment 3.

267
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Features for coherence recognition (complete in class)

• Addition

• Temporal

• Contrast

• Causation
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The Penn Discourse Treebank 2.0 (Webber et al. 2003)

• Large-scale effort to identify the coherence relations that hold between
pieces of information in discourse.

• Available from the Linguistic Data Consortium.
• Annotators identified spans of text as the coherence relations. Where the

relation was implicit, they picked their own lexical items to fill the role.

Example
[Arg1 that hung over parts of the factory ]
even though

[Arg2 exhaust fans ventilated the area ].
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A complex example
[Arg1 Factory orders and construction outlays were largely flat in December ]
while

purchasing agents said
[Arg2 manufacturing shrank further in October ].
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The overall structure of examples

Don’t try to take it all in at once. It’s too big! Figure out what question you want to
address and then focus on the parts of the corpus that matter for it. A brief
run-down:

• Relation-types: Explicit, Implicit, AltLex, EntRel, NoRel
• Connective semantics: hierarchical; lots of levels of granularity to work with,

from four abstract classes down to clusters of phrases and lexical items
• Attribution: tracking who is committed to what
• Structure: Every piece of text is associated with a set of subtrees from the

WSJ portion of the Penn Treebank 3.
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Connectives

PDTB relation Examples

Explicit 18,459
Implicit 16,053
AltLex 624
EntRel 5,210
NoRel 254

Total 40,600
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Explicit connectives

[Arg1 that hung over parts of the factory ]
even though

[Arg2 exhaust fans ventilated the area ].
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Explicit connectives
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Implicit connectives

[Arg1 Some have raised their cash positions to record levels ].
Implicit = BECAUSE

[Arg2 High cash positions help buffer a fund when the market falls ].
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Implicit connectives
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AltLex connectives

[Arg1 Ms. Bartlett’s previous work, which earned her an international reputation in
the non-horticultural art world, often took gardens as its nominal subject ].
[Arg2 Mayhap this metaphorical connection made the BPC Fine Arts Committee
think she had a literal green thumb ].
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AltLex connectives
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Connectives and their semantics

Figure 1: Hierarchy of sense tags

e.g., “Contrast” vs “Concession”. Cases when one anno-
tator picked a class level tag, e.g., “COMPARISON”, and
the other picked a type level tag of the same class, e.g.,
“Contrast”, did not count as disagreement. At the sub-
type level, disagreement was noted when the two annotators
picked different subtypes, e.g., “expectation” vs. “contra-
expectation”. Higher level disagreement was counted as
disagreement at all the levels below. Inter-annotator agree-
ment is shown in Table 3. Percent agreement, computed for
five sections (5092 tokens), is shown for each level. Agree-
ment is high for all levels, ranging from 94% at the class
level to 80% at the subtype level.
Class level disagreementwas adjudicated by a team of three
experts. Disagreement at lower levels was resolved by pro-
viding a sense tag from the immediately higher level. For
example, if one annotator tagged a token with the type
“Concession” and the other, with the type “Contrast”, the
disagreement was resolved by applying the higher level tag
“COMPARISON”. This decision was based on the assump-
tion that both interpretations were possible, making it hard
to determine with confidence which one was intended.

LEVEL % AGREEMENT
CLASS 94%
TYPE 84%
SUBTYPE 80%

Table 3: Inter-annotator agreement

Table 4 shows the distribution of “CLASS” level tags in the
corpus. Each “CLASS” count includes all the annotations
of the specified “CLASS” tag and all its types and subtypes.
The total of Explicit, Implicit and AltLex tokens is shown

in parentheses at the top row. The total of sense tags ap-
plied to these categories is shown at the bottom of the table.
The numbers differ because some tokens may have been
annotated with two senses.
Table 5 shows the top ten most polysemous connectives and
the distribution of their sense tags. The total number of
tokens whose sense tags occurred less than ten times are
shown as other. The connectives after, since and when,
which typically relate non-simultaneous situations, are am-
biguous between “TEMPORAL” and “CONTINGENCY”
senses. The connectives while and meanwhile, which typ-
ically relate simultaneous situations, are ambiguous be-
tween the “TEMPORAL” and “COMPARISON” senses.
The connectives but, however and although are ambigu-
ous between the “Contrast” and “Concession” types and
subtypes of “COMPARISON” but rarely between different
classes of senses. The connective if is ambiguous between
subtypes of “Condition” and some pragmatic uses.

4. Attribution Annotation
Recent work (Wiebe et al., 2005; Prasad et al., 2005) has
shown the importance of attributing beliefs and assertions
expressed in text to the agent(s) holding or making them.
Such attributions are a common feature in the PDTB cor-
pus which belongs to the news domain. Since the discourse
relations in the PDTB are annotated between abstract ob-
jects, with the relations themselves denoting a class of ab-
stract objects (called “relational propositions” (Mann and
Thompson, 1988)), one can distinguish a variety of cases
depending on the attribution of the discourse relation or its
arguments: that is, whether the relation and its arguments
are attributed to the writer (e.g., attribution to the writer in

(from Prasad et al. 2008)
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The relationship between relation-types and connectives

Comparison Contingency Expansion Temporal

AltLex 46 275 217 86
Explicit 5471 3250 6298 3440
Implicit 2441 4185 8601 826
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The distribution of semantic classes
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Connectives by relation type

(a) Explicit. (b) Implicit.

(c) AltLex.

Figure: Wordle representations of the connectives, by relation type.
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EntRel and NoRel

[Arg1 Hale Milgrim, 41 years old, senior vice president, marketing at Elecktra En-
tertainment Inc., was named president of Capitol Records Inc., a unit of this enter-
tainment concern ].
[Arg2 Mr. Milgrim succeeds David Berman, who resigned last month ].
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Arguments
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Attributions

[Arg1 Factory orders and construction outlays were largely flat in December ]
while (Comparison:Contrast:Juxtaposition)

purchasing agents said
[Arg2 manufacturing shrank further in October ].
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Attributions
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Attributions

Attribution strings
researchers said
A Lorillard spokewoman said
A Lorillard spokewoman said
said Darrell Phillips, vice president of human resources for Hollingsworth & Vose
said Darrell Phillips, vice president of human resources for Hollingsworth & Vose
Longer maturities are thought
Shorter maturities are considered
considered by some
said Brenda Malizia Negus, editor of Money Fund Report
the Treasury said
The Treasury said
Newsweek said
said Mr. Spoon
According to Audit Bureau of Circulations
According to Audit Bureau of Circulations
saying that
.
.
.
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Some informal experimental results: experimental set-up

• Training set of 2,400 examples: 600 randomly chosen examples from each
of the four primary PDTB semantic classes: Comparison, Contingency,
Expansion, Temporal.

• Test set of 800 examples: 200 randomly chosen examples from each of the
four primary semantic classes.

• The students in my LSA class ‘Computational Pragmatics’ formed two
teams, and I was a team one one,

and each team specified features, which I implemented using NLTK Python’s
MaxEnt interface.
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Some informal experimental results: Team Potts

Accuracy: 0.41 Feature count: 632,559
Train set accuracy: 1.0

1 Verb pairs: features for verb pairs (V1, V2) where where V1 was drawn from Arg1 and V2 from
Arg2.

2 Inquirer pairs: features for the cross product of the Harvard Inquirer semantic classes for Arg1 and
Arg2 (after Pitler et al. 2009).
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Some informal experimental results: Team Banana Wugs

Accuracy: 0.34 Feature count: 116
Train set accuracy: 0.37

1 Negation: features capturing (sentential and constituent) negation balances and imbalances
across the Args.

2 Sentiment: A separate sentiment score for each Arg.

3 Overlap: the cardinality of the intersection of the Arg1 and Arg2 words divided by their union.

4 Structural complexity: features capturing, for each Arg, whether it has an embedded clause, the
number of embedded clauses, and the height of its largest tree.

5 Complexity ratios: a feature for log of the ratio of the lengths (in words) of the two Args, a feature
for the ratio of the clause-counts for the two Args, and a feature for the ratio of the max heights for
the two Args.

6 Pronominal subjects: a pair-feature capturing whether the subject of the Arg is pronominal (pro) or
non-pronominal (non-pro). The features are pairs from {pro, non-pro} ⇥ {pro, non-pro}.

7 It seems: returns False if the first argument of the second bigram is not it seems.features

8 Tense agreement: a feature for the degree to which the verbal nodes in the two Args have the
same tense.

9 Modals: a pair-feature capturing whether Arg contains a modal (modal) or not (non-modal). The
features are pairs from {modal, non-modal} ⇥ {modal, non-modal}.
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Some informal experimental results: Team Banana Slugs

Accuracy: 0.38 Feature count: 1,824
Train set accuracy: 0.73

1 Negation: for each Arg, a feature for whether it was negated and the number of negation it
contains. Also, a feature capturing negation balance/imbalance across the Args.

2 Main verbs: for each Arg, a feature for its main-verb. Also, a feature returning True of the two Args’
main verbs match, else False.

3 Length ratio: a feature for the ratio of the lengths (in words) of Arg1 and Arg2.

4 WordNet antonyms: the number of words in Arg2 that are antonyms of a word in Arg1.

5 Genre: a feature for the genre of the file containing the example.

6 Modals: for each Arg, the number of modals in it.

7 WordNet hypernym counts: for Arg1, a feature for the number of words in Arg2 that are hypernyms
of a word in Arg1, and ditto for Arg2.

8 N-gram features: for each Arg, a feature for each unigram it contains. (The team suggested going
to 2- or 3-grams, but I called a halt at 1 because the data-set is not that big.)
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Some informal experimental results: Who won?

Accuracy: 0.41 Feature count: 632,559
Train set accuracy: 1.0

Accuracy: 0.34 Feature count: 116
Train set accuracy: 0.37

Accuracy: 0.38 Feature count: 1,824
Train set accuracy: 0.73
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Unsupervised discovery of coherence relations (Marcu and Echihabi 2002)

Marcu and Echihabi (2002) focus on four coherence relations that can be
informally mapped to coherence relations from other theories:

Possible PDTB mapping given in red; might want to use to the supercategories.
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Automatically collected labels

Data
• RAW: 41 million sentences (⇡1 billion words) from a variety of LDC corpora
• BLIPP: 1.8 million Charniak parsed sentences

Labeling method
1 Extract all sentences matching

one of the patterns.

2 Label the connective with the
name of the pattern.

3 Treat everything before the
connective as Arg1 and
everything after it as Arg2.

CONTRAST CAUSE-EXPLANATION-EVIDENCE ELABORATION CONDITION

ANTITHESIS (M&T) EVIDENCE (M&T) ELABORATION (M&T) CONDITION (M&T)
CONCESSION (M&T) VOLITIONAL-CAUSE (M&T) EXPANSION (Ho)
OTHERWISE (M&T) NONVOLITIONAL-CAUSE (M&T) EXEMPLIFICATION (Ho)
CONTRAST (M&T) VOLITIONAL-RESULT (M&T) ELABORATION (A&L)
VIOLATED EXPECTATION (Ho) NONVOLITIONAL-RESULT (M&T)

EXPLANATION (Ho)
( CAUSAL ADDITIVE ) - RESULT (A&L)
( SEMANTIC PRAGMATIC ) - EXPLANATION (A&L)
NEGATIVE (K&S)

CAUSAL -
(SEMANTIC PRAGMATIC ) -
POSITIVE (K&S)

Table 1: Relation definitions as union of definitions proposed by other researchers (M&T – (Mann and
Thompson, 1988); Ho – (Hobbs, 1990); A&L – (Lascarides and Asher, 1993); K&S – (Knott and Sanders,
1998)).

CONTRAST – 3,881,588 examples
[BOS EOS] [BOS But EOS]
[BOS ] [but EOS]
[BOS ] [although EOS]
[BOS Although ,] [ EOS]

CAUSE-EXPLANATION-EVIDENCE— 889,946 examples
[BOS ] [because EOS]
[BOS Because ,] [ EOS]
[BOS EOS] [BOS Thus, EOS]

CONDITION — 1,203,813 examples
[BOS If ,] [ EOS]
[BOS If ] [then EOS]
[BOS ] [if EOS]

ELABORATION— 1,836,227 examples
[BOS EOS] [BOS for example EOS]
[BOS ] [which ,]

NO-RELATION-SAME-TEXT— 1,000,000 examples
Randomly extract two sentences that are more
than 3 sentences apart in a given text.

NO-RELATION-DIFFERENT-TEXTS— 1,000,000 examples
Randomly extract two sentences from two
different documents.

Table 2: Patterns used to automatically construct a
corpus of text span pairs labeled with discourse re-
lations.

CONDITION relations and the number of examples
extracted from the Raw corpus for each type of dis-
course relation. In the patterns in Table 2, the sym-
bols BOS and EOS denote BeginningOfSentence
and EndOfSentence boundaries, the “ ” stand for
occurrences of any words and punctuation marks,
the square brackets stand for text span boundaries,
and the other words and punctuation marks stand for
the cue phrases that we used in order to extract dis-
course relation examples. For example, the pattern
[BOS Although ,] [ EOS] is used in order to

extract examples of CONTRAST relations that hold
between a span of text delimited to the left by the
cue phrase “Although” occurring in the beginning of
a sentence and to the right by the first occurrence of
a comma, and a span of text that contains the rest of
the sentence to which “Although” belongs.
We also extracted automatically 1,000,000 exam-

ples of what we hypothesize to be non-relations, by
randomly selecting non-adjacent sentence pairs that
are at least 3 sentences apart in a given text. We label
such examples NO-RELATION-SAME-TEXT. And
we extracted automatically 1,000,000 examples of
what we hypothesize to be cross-document non-
relations, by randomly selecting two sentences from
distinct documents. As in the case of CONTRAST
and CONDITION, the NO-RELATION examples are
also noisy because long distance relations are com-
mon in well-written texts.

3 Determining discourse relations using
Naive Bayes classifiers

We hypothesize that we can determine that a CON-
TRAST relation holds between the sentences in (3)
even if we cannot semantically interpret the two sen-
tences, simply because our background knowledge
tells us that good and fails are good indicators of
contrastive statements.

John is good in math and sciences.

Paul fails almost every class he takes.

(3)

Similarly, we hypothesize that we can determine that
a CONTRAST relation holds between the sentences
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Naive Bayes model
1 count(wi ,wj , r) = the number of times that word wi occurs in Arg1 and wj

occurs in Arg2 with coherence relation r .
2 W = the full vocabulary
3 R = the set of coherence relations
4 N =

P
(wi ,wj )2W⇥W ,r2R count(wi ,wj , r)

5 P(r) =
P
(wi ,wj )2W⇥W count(wi ,wj ,r)

N

6 Estimate P
⇣
(wi ,wj)|r

⌘
with

count(wi ,wj , r) + 1
P

(wx ,wy )2W⇥W count(wx ,wy , r) + N

7 Maximum likelihood estimates for example with W1 the words in Arg1 and
W2 the words in Arg2:

arg maxr

2
66666664P(r)

Y

(wi ,wj )2W1⇥W2

P
⇣
(wi ,wj)|r

⌘
3
77777775

(Connectives are excluded from these calculations, since they were used to
obtain the labels.)
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Results for pairwise classifiers
CONTRAST CEV COND ELAB NO-REL-SAME-TEXT NO-REL-DIFF-TEXTS

CONTRAST - 87 74 82 64 64
CEV 76 93 75 74
COND 89 69 71
ELAB 76 75
NO-REL-SAME-TEXT 64

Table 3: Performances of classifiers trained on the Raw corpus. The baseline in all cases is 50%.

CONTRAST CEV COND ELAB NO-REL-SAME-TEXT NO-REL-DIFF-TEXTS
CONTRAST - 62 58 78 64 72
CEV 69 82 64 68
COND 78 63 65
ELAB 78 78
NO-REL-SAME-TEXT 66

Table 4: Performances of classifiers trained on the BLIPP corpus. The baseline in all cases is 50%.

a simple program that extracted the nouns, verbs,
and cue phrases in each sentence/clause. We
call these the most representative words of a sen-
tence/discourse unit. For example, the most repre-
sentative words of the sentence in example (4), are
those shown in italics.

Italy’s unadjusted industrial production fell in Jan-
uary 3.4% from a year earlier but rose 0.4% from
December, the government said

(4)

We repeated the experiment we carried out in con-
junction with the Raw corpus on the data derived
from the BLIPP corpus as well. Table 4 summarizes
the results.
Overall, the performance of the systems trained

on the most representative word pairs in the BLIPP
corpus is clearly lower than the performance of the
systems trained on all the word pairs in the Raw
corpus. But a direct comparison between two clas-
sifiers trained on different corpora is not fair be-
cause with just 100,000 examples per relation, the
systems trained on the Raw corpus are much worse
than those trained on the BLIPP data. The learning
curves in Figure 1 are illuminating as they show that
if one uses as features only the most representative
word pairs, one needs only about 100,000 training
examples to achieve the same level of performance
one achieves using 1,000,000 training examples and
features defined over all word pairs. Also, since the
learning curve for the BLIPP corpus is steeper than

Figure 1: Learning curves for the ELABORATION
vs. CAUSE-EXPLANATION-EVIDENCE classifiers,
trained on the Raw and BLIPP corpora.

the learning curve for the Raw corpus, this suggests
that discourse relation classifiers trained on most
representative word pairs and millions of training
examples can achieve higher levels of performance
than classifiers trained on all word pairs (unanno-
tated data).

4 Relevance to RST

The results in Section 3 indicate clearly that massive
amounts of automatically generated data can be used
to distinguish between discourse relations defined
as discussed in Section 2.2. What the experiments

Systems trained on the smaller, higher-
precision BLIPP corpus have lower overall ac-
curacy, but they perform better with less data
than those trained on the RAW corpus.

CONTRAST CEV COND ELAB NO-REL-SAME-TEXT NO-REL-DIFF-TEXTS
CONTRAST - 87 74 82 64 64
CEV 76 93 75 74
COND 89 69 71
ELAB 76 75
NO-REL-SAME-TEXT 64

Table 3: Performances of classifiers trained on the Raw corpus. The baseline in all cases is 50%.

CONTRAST CEV COND ELAB NO-REL-SAME-TEXT NO-REL-DIFF-TEXTS
CONTRAST - 62 58 78 64 72
CEV 69 82 64 68
COND 78 63 65
ELAB 78 78
NO-REL-SAME-TEXT 66

Table 4: Performances of classifiers trained on the BLIPP corpus. The baseline in all cases is 50%.

a simple program that extracted the nouns, verbs,
and cue phrases in each sentence/clause. We
call these the most representative words of a sen-
tence/discourse unit. For example, the most repre-
sentative words of the sentence in example (4), are
those shown in italics.

Italy’s unadjusted industrial production fell in Jan-
uary 3.4% from a year earlier but rose 0.4% from
December, the government said

(4)

We repeated the experiment we carried out in con-
junction with the Raw corpus on the data derived
from the BLIPP corpus as well. Table 4 summarizes
the results.
Overall, the performance of the systems trained

on the most representative word pairs in the BLIPP
corpus is clearly lower than the performance of the
systems trained on all the word pairs in the Raw
corpus. But a direct comparison between two clas-
sifiers trained on different corpora is not fair be-
cause with just 100,000 examples per relation, the
systems trained on the Raw corpus are much worse
than those trained on the BLIPP data. The learning
curves in Figure 1 are illuminating as they show that
if one uses as features only the most representative
word pairs, one needs only about 100,000 training
examples to achieve the same level of performance
one achieves using 1,000,000 training examples and
features defined over all word pairs. Also, since the
learning curve for the BLIPP corpus is steeper than

Figure 1: Learning curves for the ELABORATION
vs. CAUSE-EXPLANATION-EVIDENCE classifiers,
trained on the Raw and BLIPP corpora.

the learning curve for the Raw corpus, this suggests
that discourse relation classifiers trained on most
representative word pairs and millions of training
examples can achieve higher levels of performance
than classifiers trained on all word pairs (unanno-
tated data).

4 Relevance to RST

The results in Section 3 indicate clearly that massive
amounts of automatically generated data can be used
to distinguish between discourse relations defined
as discussed in Section 2.2. What the experiments
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Results for the RST corpus of Carlson et al. 2001

For this experiment, the classifiers were trained
on the RAW corpus, with the connectives in-
cluded as features. Only RST examples involv-
ing (approximations of) the four relations used
above were in the test set.

CONTR CEV COND ELAB
# test cases 238 307 125 1761

CONTR — 63 56 80 65 64 88
CEV 87 71 76 85
COND 87 93

Table 5: Performances of Raw-trained classifiers on
manually labeled RST relations that hold between
elementary discourse units. Performance results are
shown in bold; baselines are shown in normal fonts.

in Section 3 do not show is whether the classifiers
built in this manner can be of any use in conjunction
with some established discourse theory. To test this,
we used the corpus of discourse trees built in the
style of RST by Carlson et al. (2001). We automati-
cally extracted from this manually annotated corpus
all CONTRAST, CAUSE-EXPLANATION-EVIDENCE,
CONDITION and ELABORATION relations that hold
between two adjacent elementary discourse units.
Since RST (Mann and Thompson, 1988) employs
a finer grained taxonomy of relations than we used,
we applied the definitions shown in Table 1. That is,
we considered that a CONTRAST relation held be-
tween two text spans if a human annotator labeled
the relation between those spans as ANTITHESIS,
CONCESSION, OTHERWISE or CONTRAST. We re-
trained then all classifiers on the Raw corpus, but
this time without removing from the corpus the cue
phrases that were used to generate the training ex-
amples. We did this because when trying to deter-
mine whether a CONTRAST relation holds between
two spans of texts separated by the cue phrase “but”,
for example, we want to take advantage of the cue
phrase occurrence as well. We employed our clas-
sifiers on the manually labeled examples extracted
from Carlson et al.’s corpus (2001). Table 5 displays
the performance of our two way classifiers for rela-
tions defined over elementary discourse units. The
table displays in the second row, for each discourse
relation, the number of examples extracted from the
RST corpus. For each binary classifier, the table lists
in bold the accuracy of our classifier and in non-bold
font the majority baseline associated with it.
The results in Table 5 show that the classifiers

learned from automatically generated training data

can be used to distinguish between certain types of
RST relations. For example, the results show that
the classifiers can be used to distinguish between
CONTRAST and CAUSE-EXPLANATION-EVIDENCE
relations, as defined in RST, but not so well between
ELABORATION and any other relation. This result
is consistent with the discourse model proposed by
Knott et al. (2001), who suggest that ELABORATION
relations are too ill-defined to be part of any dis-
course theory.
The analysis above is informative only from a

machine learning perspective. From a linguistic
perspective though, this analysis is not very use-
ful. If no cue phrases are used to signal the re-
lation between two elementary discourse units, an
automatic discourse labeler can at best guess that
an ELABORATION relation holds between the units,
because ELABORATION relations are the most fre-
quently used relations (Carlson et al., 2001). Fortu-
nately, with the classifiers described here, one can
label some of the unmarked discourse relations cor-
rectly.
For example, the RST-annotated corpus of Carl-

son et al. (2001) contains 238 CONTRAST rela-
tions that hold between two adjacent elementary dis-
course units. Of these, only 61 are marked by a cue
phrase, which means that a program trained only
on Carlson et al.’s corpus could identify at most
61/238 of the CONTRAST relations correctly. Be-
cause Carlson et al.’s corpus is small, all unmarked
relations will be likely labeled as ELABORATIONs.
However, when we run our CONTRAST vs. ELAB-
ORATION classifier on these examples, we can la-
bel correctly 60 of the 61 cue-phrase marked re-
lations and, in addition, we can also label 123 of
the 177 relations that are not marked explicitly with
cue phrases. This means that our classifier con-
tributes to an increase in accuracy from

to !!! Similarly, out
of the 307 CAUSE-EXPLANATION-EVIDENCE rela-
tions that hold between two discourse units in Carl-
son et al.’s corpus, only 79 are explicitly marked.
A program trained only on Carlson et al.’s cor-
pus, would, therefore, identify at most 79 of the
307 relations correctly. When we run our CAUSE-
EXPLANATION-EVIDENCE vs. ELABORATION clas-
sifier on these examples, we labeled correctly 73
of the 79 cue-phrase-marked relations and 102 of

Identifying implicit relations
The RAW-trained classifier is able to accurately guess a large number of implicit
examples, essentially because it saw similar examples with an overt connective
(which served as the label).

In sum: an example of the ‘unreasonable effectiveness of data’ (Banko and Brill
2001; Halevy et al. 2009).
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Data and tools

• Penn Discourse Treebank 2.0
• LDC: http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?
catalogId=LDC2008T05

• Project page: http://www.seas.upenn.edu/
˜

pdtb/

• Python tools/code: http://compprag.christopherpotts.net/pdtb.html

• Rhetorical Structure Theory
• LDC: http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?
catalogId=LDC2002T07

• Project page: http://www.sfu.ca/rst/
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Prospects

Text segmentation
Seems to have fallen out of fashion, but obviously important to many kinds of
information extraction — probably awaiting a breakthrough idea.

Discourse coherence
On the rise in linguistics but perhaps not in NLP. Essential to all aspects of NLU,
though, so a breakthrough would probably have widespread influence.
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