Dependency parses for NLU

Christopher Potts

CS 244U: Natural language understanding Jan 24

Syntactic structure: My dog will not go in the lake.

Plan and goals

Goals

- Make the case for Stanford collapsed dependency structures (de Marneffe et al. 2006; de Marneffe and Manning 2008a,b) as useful for NLU.
- Highlight some of the ways that semantic information is passed around inside sentences.
- Engage with previous lectures on WSD and VSMs, and begin looking ahead to others - esp. relation extraction, semantic role labeling, and composition

Plan and goals

Goals

- Make the case for Stanford collapsed dependency structures (de Marneffe et al. 2006; de Marneffe and Manning 2008a,b) as useful for NLU.
- Highlight some of the ways that semantic information is passed around inside sentences.
- Engage with previous lectures on WSD and VSMs, and begin looking ahead to others - esp. relation extraction, semantic role labeling, and composition

Not covered here

The theory of parsing, the theory of semantic dependencies, or the details of mapping from phrase structure trees to dependencies. In short, we're going to be consumers of dependencies, seeking to use them to get ahead in NLU.

Plan and goals

Goals

- Make the case for Stanford collapsed dependency structures (de Marneffe et al. 2006; de Marneffe and Manning 2008a,b) as useful for NLU.
- Highlight some of the ways that semantic information is passed around inside sentences.
- Engage with previous lectures on WSD and VSMs, and begin looking ahead to others - esp. relation extraction, semantic role labeling, and composition

Not covered here

The theory of parsing, the theory of semantic dependencies, or the details of mapping from phrase structure trees to dependencies. In short, we're going to be consumers of dependencies, seeking to use them to get ahead in NLU.

Plan

(1) Get a feel for Stanford dependencies.
(2) Case study: advmod
(3) Case study: capturing the semantic influence of negation.
(4) A return to Lin 1998

Stanford dependencies relationhierarchy

http://nlp.stanford.edu/software/dependencies_manual.pdf

Stanford dependencies relation hierarchy

Stanford dependencies relation hierarchy

Stanford dependencies relation hierarchy

Stanford dependencies relation hierarchy

p.stanford.edu/software/dependencies_manual.pdf

Stanford dependency construction

Ruled-based mapping from phrase structure trees to dependency graphs:

1. Dependency extraction: for each constituent, identify its semantic head and project the head upwards:

Stanford dependency construction

Ruled-based mapping from phrase structure trees to dependency graphs:

1. Dependency extraction: for each constituent, identify its semantic head and project the head upwards:

Stanford dependency construction

Ruled-based mapping from phrase structure trees to dependency graphs:

1. Dependency extraction: for each constituent, identify its semantic head and project the head upwards:

Stanford dependency construction

Ruled-based mapping from phrase structure trees to dependency graphs:

1. Dependency extraction: for each constituent, identify its semantic head and project the head upwards:

2. Dependency typing: label each dependency pair with the most specific appropriate relation in terms of the dependency hierarchy.

- relation: aux
- parent: VP
- Tregex pattern:

```
VP < VP
    < /^(?:TO|MD|VB.*|AUXG?)$/=target
```

Relations determined:

$$
\begin{aligned}
& \text { aux(escaped, might) } \\
& \text { aux(escaped, have) }
\end{aligned}
$$

Rules might also deliver
dep(escaped, might)

Always favor the most specific.

Stanford dependencies: basic and collapsed

Quoting from the javadocs, trees/EnglishGrammaticalRelations.java:

The "collapsed" grammatical relations primarily differ as follows:

- Some multiword conjunctions and prepositions are treated as single words, and then processed as below.
- Prepositions do not appear as words but are turned into new "prep" or "prepc" grammatical relations, one for each preposition.
- Conjunctions do not appear as words but are turned into new "conj" grammatical relations, one for each conjunction.
- The possessive "'s" is deleted, leaving just the relation between the possessor and possessum.
- Agents of passive sentences are recognized and marked as agent and not as prep_by.

Stanford tools

The Stanford parser is distributed with starter Java code for parsing your own data. It also has a flexible command-line interface. Some relevant commands:

Map plain text to dependency structures:
java -mx3000m -cp stanford-parser.jar edu.stanford.nlp.parser.lexparser.LexicalizedParser -outputFormat "typedDependencies" englishPCFG.ser.gz textFile

Map tagged data to dependency structures:

java -mx3000m -cp stanford-parser.jar edu.stanford.nlp.parser.lexparser.LexicalizedParser -outputFormat "typedDependencies" -tokenized -tagSeparator / englishPCFG.ser.gz taggedFile

Map phrase-structure trees to Stanford collapsed dependencies (change -collapsed to -basic for collapsed versions):
java -cp stanford-parser.jar edu.stanford.nlp.trees.EnglishGrammaticalStructure -treeFile treeFile -collapsed

Software/docs: http://nlp.stanford.edu/software/lex-parser.shtml

Graphviz

Graphiviz is free graphing software that makes it easy to visualize dependency structures: http://www.graphviz.org/

```
digraph g {
    /* Nodes */
    "Al-1" [label="Al"];
    "said-2" [label="said"];
    "that-3" [label="that"];
    "it-4" [label="it"];
    "was-5" [label="was"];
    "raining-6" [label="raining"];
    /* Edges */
    "said-2" -> "Al-1" [label="nsubj"];
    "raining-6" -> "that-3" [label="complm"];
    "raining-6" -> "it-4" [label="nsubj"];
    "raining-6" -> "was-5" [label="aux"];
    "said-2" -> "raining-6" [label="ccomp"];
}
```


Argument structure

- This section reviews the way basic constituents are represented in Stanford dependency structures.
- I concentrate on the most heavily used relations.
- To understand the less-used ones, consult the dependencies manual (de Marneffe and Manning 2008a) and play around with examples using the online parser demo:
http://nlp.stanford.edu:8080/parser/index.jsp

Verbal structures

Verbal structures: intransitive and transitive

Intransitive

Transitive

Gerald gave

Sue saw stars.
 puppies awards.

Gerald gave awards to puppies

Verbal structures: sentential complements

Tensed

Al said that it was raining.

Infinitival

Kim wants to win.
Basic Collapsed

Nominals

Nominal structures

Basic

Modified

Prepositional

Relative clause

Modification

Predicative constructions

Adverbs

Coordination — conj and cc

Nominals (here, nsubj)
Ivan and Penny left.

Verb phrases
Nobody sang and danced.

Stanford dependencies and NLU
List some ways in which these representations can help NLU systems:

- Neg deeps easy to grab
- Features for WSD - beyond str. neighbors
- Summary - Select dep
- Matching fur IR /Qs
- India. variation in structure
- beyond Eng.
advmod dependencies
From HW 4
Propose a matrix design that (i) makes use of Stanford dependency structures
(regular or collapsed) and (ii) could be used to provide a data-rich picture of what
the patterns of adverb-adjective modification are like.
- Adv $\times A d j$-counts visdep
adjurders/cluster
- Adj×Adj-\{ Counts via
- Thesaurus Showed ad'
thenblins in other PuS

Gigaword NYT (h/t to Nate Chambers for the parsing!)

Available in list format (tab-separated values):
http://www.stanford.edu/class/cs224u/restricted/data/gigawordnyt-advmod.tsv.zip
Or: /afs/ir/class/cs224u/WWW/restricted/data/gigawordnyt-advmod.tsv.zip
Pairs advmod (X, Y) with counts:

1	end	here	98434
2	well	as	84031
3	longer	no	74486
4	far	so	71853
5	much	so	71460
6	now	right	66373
7	much	too	66264
8	much	how	64794
9	said	also	62588
10	year	earlier	60290
		\vdots	
3211133	scuff	how	1

Gigaword NYT (h/t to Nate Chambers for the parsing!)

dependent \times parent matrix: raw counts

	when	also	just	now	more	so	even	how	where	as
is	17663	21310	10853	46433	2094	8204	8388	14546	22985	2039
have	20657	20156	18757	31288	2162	7508	13003	4184	12573	1572
was	26976	10634	8253	3014	1265	4025	5644	6554	11818	1920
said	19695	62588	3984	4953	923	4933	6198	575	4209	608
much	207	145	4184	474	10079	71460	421	64794	140	46174
are	11546	14212	4929	23470	2418	7591	4779	7952	19832	1214
get	19342	4004	8474	5811	1401	2657	5930	14477	6840	718
do	8299	1550	7908	9899	2733	37339	2915	14474	2376	598
's	7811	9488	8815	13779	1371	3949	4293	1690	6281	1500
had	16854	16247	7039	3128	1512	1703	7930	1735	6936	1742

Dependent \times parent matrix: positive PMI with contextual discounting

	when	also	just	now	more	so	even	how	where
is	0.00	0.04	0.00	1.12	0.00	0.00	0.00	0.16	0.65
have	0.00	0.30	0.48	1.05	0.00	0.00	0.38	0.00	0.36
was	0.23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.40
said	0.00	1.56	0.00	0.00	0.00	0.00	0.00	0.00	0.00
much	0.00	0.00	0.00	0.00	0.11	2.01	0.00	2.09	0.00
are	0.00	0.17	0.00	0.98	0.00	0.00	0.00	0.09	1.04
get	0.32	0.00	0.21	0.00	0.00	0.00	0.12	1.00	0.28
do	0.00	0.00	0.14	0.42	0.00	1.77	0.00	1.00	0.00
's	0.00	0.07	0.25	0.75	0.00	0.00	0.00	0.00	0.20
had	0.22	0.65	0.06	0.00	0.00	0.00	0.45	0.00	0.34

Some neighbors (cosine distance, PPMI+discounting matrix)

Adverbs

absolutely	certainly	never	recently	somewhat	quickly
utterly	definitely	not	subsequently	slightly	swiftly
totally	surely	maybe	ago	considerably	soon
truly	probably	either	since	decidedly	gradually
completely	obviously	ever	later	extremely	rapidly
equally	undoubtedly	yes	shortly	terribly	slowly
quite	necessarily	why	previously	very	eventually
obviously	indeed	would	first	markedly	immediately
really	clearly	simply	when	equally	promptly
whatsoever	therefore	pray	already	more	fast

Adjectives

happy	sad	tall	full	straight	closed
excited	painful	large	empty	largest	closing
pleased	frustrating	wide	tight	straightforward	shut
nice	tragic	steep	complete	twice	sealed
comfortable	depressing	strong	crowded	best	halted
silly	ugly	thin	over	certain	corp.
proud	embarrassing	lucky	solid	steady	suspended
good	beautiful	quick	smooth	ordinary	retired
nervous	dumb	good	dark	decent	canceled
uncomfortable	unfortunate	high	filled	smooth	ending

Latent Semantic Analysis

(1) Apply singular value decomposition to the PPMI+discounting matrix.
(2) Inspect singular values; settle on 25 dimensions:

(3) For rows (dependents): $R[, 1: 25] \times S[1: 25,1: 25]$
(4) For columns (dependents): $S[1: 25,1: 25] \times C[, 1: 25]^{T}$

Latent Semantic Analysis

(1) Apply singular value decomposition to the PPMI+discounting matrix.
(2) Inspect singular values; settle on 25 dimensions:

(3) For rows (dependents): $R[, 1: 25] \times S[1: 25,1: 25]$
(4) For columns (dependents): $S[1: 25,1: 25] \times C[, 1: 25]^{T}$

Some adverb neighbors (cosine distance, PPMI + discounting + LSA)

Adverbs without LSA (repeated from earlier)

absolutely	certainly	never	recently	somewhat	quickly
utterly	definitely	not	subsequently	slightly	swiftly
totally	surely	maybe	ago	considerably	soon
truly	probably	either	since	decidedly	gradually
completely	obviously	ever	later	extremely	rapidly
equally	undoubtedly	yes	shortly	terribly	slowly
quite	necessarily	why	previously	very	eventually
obviously	indeed	would	first	markedly	immediately
really	clearly	simply	when	equally	promptly
whatsoever	therefore	pray	already	more	fast

Adverbs with LSA (25 dimensions)

absolutely	certainly	never	recently	somewhat	quickly
utterly	surely	you	subsequently	palpably	swiftly
truly	definitely	maybe	later	decidedly	soon
totally	probably	just	d.calif	seeming	prematurely
manifestly	doubt	yes	ago	any	instantly
wholly	undoubtedly	ok	r.ohio	slightly	immediately
patently	necessarily	q	shortly	congenitally	speedily
hardly	importantly	pray	first	distinctly	eventually
indisputably	doubtless	hey	d.mo	visibly	gradually
flat.out	secondly	anyway	since	sufficiently	slowly

Some adjective neighbors (cosine distance, PPMI + discounting + LSA)

Adjectives without LSA (repeated from earlier)

happy	sad	tall	full	straight	closed
excited	painful	large	empty	largest	closing
pleased	frustrating	wide	tight	straightforward	shut
nice	tragic	steep	complete	twice	sealed
comfortable	depressing	strong	crowded	best	halted
silly	ugly	thin	over	certain	corp.
proud	embarrassing	lucky	solid	steady	suspended
good	beautiful	quick	smooth	ordinary	retired
nervous	dumb	good	dark	decent	canceled
uncomfortable	unfortunate	high	filled	smooth	ending

Adjectives with LSA (25 dimensions)

happy	sad	tall	full	straight	closed
nice	ugly	thick	light	normal	suspended
terrible	scary	deep	flat	free	shut
strange	weird	loud	calm	flat	retired
cute	strange	bright	dry	natural	halted
scary	tragic	cheap	smooth	certain	replaced
wild	nasty	tight	quiet	conventional	stopped
excited	dumb	fast	cool	routine	cleared
cool	boring	hot	soft	benign	locked
special	odd	quick	steady	reasonable	sealed

t-SNE (van der Maaten and Geoffrey 2008) 2d embedding of the PPMI+discounting matrix: adverbs

t-SNE (van der Maaten and Geoffrey 2008) 2d embedding of the

 PPMI+discounting matrix: adverbs
t-SNE (van der Maaten and Geoffrey 2008) 2d embedding of the PPMI+discounting matrix: adverbs


```
    infrequently
            periodically
                regularly
        wheney frequently
```



```
            sometiemes
            inmerialably
    habitually
    customarily
    ordinarily
            typitaliny
```


t-SNE (van der Maaten and Geoffrey 2008) 2d embedding of the PPMI+discounting matrix: adverbs

t-SNE (van der Maaten and Geoffrey 2008) 2d embedding of the PPMI+discounting matrix: dependents

t-SNE (van der Maaten and Geoffrey 2008) 2d embedding of the

 PPMI+discounting matrix: dependents
t-SNE (van der Maaten and Geoffrey 2008) 2d embedding of the PPMI+discounting matrix: dependents

```
        charged
jomed
    isBlaged
*enigpated
        combiterate ate
        participated
        shared
    granted (
```


t-SNE (van der Maaten and Geoffrey 2008) 2d embedding of the PPMI+discounting matrix: dependents

Adverbial constructions

From a large collection of online product reviews:

Modifiers	Count
much more	4724
even more	4334
not very	2723
far more	2490
not too	2458
just plain	2117
just too	1938
very very	1819
not only	1771
way too	1594
little more	1508
not really	1422
just not very	216
just too damn	89
really not very	82
not only very	79
only slightly less	66
still not very	65
actually not too	58
still pretty darn	49

Negation

- Negation is frequent, systematic, and semantically potent.
- Let's see if we can use dependencies to get a grip on what it means and how it interacts with its fellow constituents.
- The lessons learned should generalize to a wide range of semantic relations and operations, many of which we will study during the unit on semantic composition.

Tracking the influence of negation: semantic scope

I didn't enjoy it.

I never enjoy it.

No one enjoys it.

No one's friend enjoyed it.

I don't think I will enjoy it.

Scope domains

Dependencies. 'rel' should exclude certain non-scope relations.

Negation generalized: downward monotonicity

Definition (Upward monotonicity)

An operator δ is upward monotone iff for all expressions α in the domain of δ :
if $\alpha \subseteq \beta$, then $(\delta \alpha) \subseteq(\delta \beta)$

Definition (Downard monotonicity)

An operator δ is downward monotone iff for all expressions α in the domain of δ :

$$
\text { if } \alpha \subseteq \beta \text {, then }(\delta \beta) \subseteq(\delta \alpha)
$$

Negation generalized: downward monotonicity

Definition (Upward monotonicity)

An operator δ is upward monotone iff for all expressions α in the domain of δ :
if $\alpha \subseteq \beta$, then $(\delta \alpha) \subseteq(\delta \beta)$

Definition (Downard monotonicity)

An operator δ is downward monotone iff for all expressions α in the domain of δ :
if $\alpha \subseteq \beta$, then $(\delta \beta) \subseteq(\delta \alpha)$
A student smoked.
A Swedish student smoked. A student smoked cigars.

Negation generalized: downward monotonicity

Definition (Upward monotonicity)

An operator δ is upward monotone iff for all expressions α in the domain of δ :
if $\alpha \subseteq \beta$, then $(\delta \alpha) \subseteq(\delta \beta)$

Definition (Downard monotonicity)

An operator δ is downward monotone iff for all expressions α in the domain of δ :

$$
\text { if } \alpha \subseteq \beta \text {, then }(\delta \beta) \subseteq(\delta \alpha)
$$

A student smoked.
A Swedish student smoked. A student smoked cigars.

Negation generalized: downward monotonicity

Definition (Upward monotonicity)

An operator δ is upward monotone iff for all expressions α in the domain of δ :

$$
\text { if } \alpha \subseteq \beta \text {, then }(\delta \alpha) \subseteq(\delta \beta)
$$

Definition (Downard monotonicity)

An operator δ is downward monotone iff for all expressions α in the domain of δ :

$$
\text { if } \alpha \subseteq \beta \text {, then }(\delta \beta) \subseteq(\delta \alpha)
$$

A student smoked.

No student smoked.
No Swedish student smoked. No student smoked cigars.

Negation generalized: downward monotonicity

Definition (Upward monotonicity)

An operator δ is upward monotone iff for all expressions α in the domain of δ :

$$
\text { if } \alpha \subseteq \beta \text {, then }(\delta \alpha) \subseteq(\delta \beta)
$$

Definition (Downard monotonicity)

An operator δ is downward monotone iff for all expressions α in the domain of δ :

$$
\text { if } \alpha \subseteq \beta \text {, then }(\delta \beta) \subseteq(\delta \alpha)
$$

A student smoked.
$\nabla \boxtimes$
A Swedish student smoked. A student smoked cigars.
No student smoked.
No Swedish student smoked. No student smoked cigars.

Negation generalized: downward monotonicity

Definition (Upward monotonicity)

An operator δ is upward monotone iff for all expressions α in the domain of δ :

$$
\text { if } \alpha \subseteq \beta \text {, then }(\delta \alpha) \subseteq(\delta \beta)
$$

Definition (Downard monotonicity)

An operator δ is downward monotone iff for all expressions α in the domain of δ :

$$
\text { if } \alpha \subseteq \beta \text {, then }(\delta \beta) \subseteq(\delta \alpha)
$$

A student smoked.
A Swedish student smoked. A student smoked cigars.
No student smoked.
No Swedish student smoked. No student smoked cigars.
Every student smoked.
Every Swedish student smoked. Every student smoked cigars.

Negation generalized: downward monotonicity

Definition (Upward monotonicity)

An operator δ is upward monotone iff for all expressions α in the domain of δ :

$$
\text { if } \alpha \subseteq \beta \text {, then }(\delta \alpha) \subseteq(\delta \beta)
$$

Definition (Downard monotonicity)

An operator δ is downward monotone iff for all expressions α in the domain of δ :

$$
\text { if } \alpha \subseteq \beta \text {, then }(\delta \beta) \subseteq(\delta \alpha)
$$

A student smoked.
A Swedish student smoked. A student smoked cigars.
No student smoked.
No Swedish student smoked. No student smoked cigars.
Every student smoked.
Every Swedish student smoked. Every student smoked cigars.

Negation generalized: downward monotonicity

Definition (Upward monotonicity)

An operator δ is upward monotone iff for all expressions α in the domain of δ :

$$
\text { if } \alpha \subseteq \beta \text {, then }(\delta \alpha) \subseteq(\delta \beta)
$$

Definition (Downard monotonicity)

An operator δ is downward monotone iff for all expressions α in the domain of δ :

$$
\text { if } \alpha \subseteq \beta \text {, then }(\delta \beta) \subseteq(\delta \alpha)
$$

A student smoked.
$\not \approx \mathbb{V}$
A Swedish student smoked. A student smoked cigars.
No student smoked.
No Swedish student smoked. No student smoked cigars.
Every student smoked.
$\pi \geqslant$
Every Swedish student smoked. Every student smoked cigars.
Few students smoked.
Few Swedish students smoked. Few students smoked cigars.

Negation generalized: downward monotonicity

Definition (Upward monotonicity)

An operator δ is upward monotone iff for all expressions α in the domain of δ :

$$
\text { if } \alpha \subseteq \beta \text {, then }(\delta \alpha) \subseteq(\delta \beta)
$$

Definition (Downard monotonicity)

An operator δ is downward monotone iff for all expressions α in the domain of δ :

$$
\text { if } \alpha \subseteq \beta \text {, then }(\delta \beta) \subseteq(\delta \alpha)
$$

A student smoked.
$\not \approx \mathbb{V}$
A Swedish student smoked. A student smoked cigars.
No student smoked.
No Swedish student smoked. No student smoked cigars.
Every student smoked.
$\nabla \Downarrow$
Every Swedish student smoked. Every student smoked cigars.
Few students smoked.
Few Swedish students smoked. Few students smoked cigars.

Marking the scope of negation

the movie was not very good.

at no point did this movie impress me .

i rarely enjoy horror movies.

no good musician would play elevator music .

few people saw this excellent movie.

i do $\mathrm{n}^{\prime} \mathrm{t}$ think that is a good idea.

Applications

What are some problems that would benefit from a stellar theory of negation?

Approximation with tokenized strings

I'd be remiss if I didn't point out that the effects of negation can be nicely approximated by a string-level operation (Das and Chen 2001; Pang et al. 2002).
(1) Tokenize in a way that isolates and preserves clause-level punctuation. Starter Python tokenizer:
http://sentiment.christopherpotts.net/code-data/happyfuntokenizing.py
(2) Append a _NEG suffix to every word appearing between a negation and a clause-level punctuation mark.
(3) A negation is any word matching this regex:

```
(?:
    ^(?:never|no|nothing|nowhere|noone|none|not|
        havent|hasnt|hadnt|cant|couldnt|shouldnt|
        wont|wouldnt|dont|doesnt|didnt|isnt|arent|aint
    )$
)
|
n't
```


Predicting the effects of negation using IMDB user-supplied reviews

Outside the scope of negation

Predicting the effects of negation using IMDB user-supplied reviews

Outside the scope of negation

bad - 254,146 tokens

Category
excellent - 136,404 tokens

terrible - 45,470 tokens

In the scope of negation

Generalizing further still: commitment and perspective

Overview

- Whereas neg (p) entails that p is not factual,
- speech and attitude predicates are semantically consistent with p and its negation,
- though the pragmatics is a lot more complicated; (de Marneffe et al. 2011).

Examples

(1) The dictator claimed that no citizens were injured.
(2) The Red Cross claimed that no citizens were injured.
(3) They said it would be horrible, but they were wrong: I loved it!!!

How might we get a grip on the semantic effects of these predicates?

A return to Lin 1998

amod(romance-3, American-2) prep_in(rates-7, romance-3) advmod(nothing-6, almost-5) nsubj(rates-7, nothing-6) dep(rates-7, higher-8) dobj(called-15, what-10) $\operatorname{det}(m e n-13$, the-11) nn(men-13, movie-12) nsubj(called-15, men-13) aux(called-15, have-14) prepc_than(higher-8, called-15) dep(called-15, meeting-17) dobj(meeting-17, cute-18) nsubj(is-22, that-21) ccomp(adorable-27, is-22) nsubj(adorable-27, boy-meets-girl-24) cop(adorable-27, seems-25) advmod(adorable-27, more-26) parataxis(rates-7, adorable-27)
mark(take-32, if-28)
nsubj(take-32, it-29)
aux(take-32, does-30)
neg(take-32, n't-31)
advcl(adorable-27, take-32)
dobj(take-32, place-33)
det(atmosphere-36, an-35)
prep_in(take-32, atmosphere-36)
amod(boredom-41, correct-38)

Definition (Counts)

$$
\left\|w, r, w^{\prime}\right\|=\text { frequency count of } r\left(w, w^{\prime}\right)
$$

Definition (Mutual information)

$$
\begin{aligned}
I\left(w, r, w^{\prime}\right) & =\log \left(\frac{\left\|w, r, w^{\prime}\right\| \times\|*, r, *\|}{\|w, r, *\| \times\left\|*, r, w^{\prime}\right\|}\right) \\
& =\log \left(\frac{P\left(w, r, w^{\prime}\right)}{P(r) P(w \mid r) P\left(w^{\prime} \mid r\right)}\right)
\end{aligned}
$$

Where $\left\|w, r, w^{\prime}\right\|$ is not directly observed, use

$$
\frac{\|*, r, *\|}{\|*, *, *\|} \times \frac{\|w, r, *\|}{\|*, r, *\|} \times \frac{\left\|*, r, w^{\prime}\right\|}{\|*, r, *\|}
$$

conj_and(correct-38, acute-40) prep_of(atmosphere-36, boredom-41)
advmod(about-2, Just-1)
advmod(example-7, about-2) det(example-7, the-3) advmod(enthralling-5, most-4) amod(example-7, enthralling-5)
http://stanford.edu/class/cs224u/restricted/data/brown-stanfordcollapseddep.txt.zip

References I

Das, Sanjiv and Mike Chen. 2001. Yahoo! for Amazon: Extracting market sentiment from stock message boards. In Proceedings of the 8th Asia Pacific Finance Association Annual Conference.
de Marneffe, Marie-Catherine; Bill MacCartney; and Christopher D. Manning. 2006. Generating typed dependency parses from phrase structure parses. In Proceedings of LREC-06.
Lin, Dekang. 1998. Automatic retrieval and clustering of similar words. In Proceedings of COLING-ACL, 768-774. Montreal: ACI.
van der Maaten, Laurens and Hinton Geoffrey. 2008. Visualizing data using t-SNE. Journal of Machine Learning Research 9:2579-2605.
de Marneffe, Marie-Catherine and Christopher D. Manning. 2008a. Stanford Typed Dependencies Manual. Stanford University.
de Marneffe, Marie-Catherine and Christopher D. Manning. 2008b. The Stanford typed dependencies representation. In Proceedings of the COLING 2008 Workshop on Cross-Framework and Cross-Domain Parser Evaluation, 1-8. ACL.
de Marneffe, Marie-Catherine; Christopher D. Manning; and Christopher Potts. 2011. Veridicality and utterance understanding. In Proceedings of the Fifth IEEE International Conference on Semantic Computing: Workshop on Semantic Annotation for Computational Linguistic Resources. Stanford, CA: IEEE Computer Society Press.
Pang, Bo; Lillian Lee; and Shivakumar Vaithyanathan. 2002. Thumbs up? sentiment classification using machine learning techniques. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), 79-86. Philadelphia: Association for Computational Linguistics.

