
Overview Argument structure advmod Negation Lin 1998

Dependency parses for NLU

Christopher Potts

CS 244U: Natural language understanding
Jan 24

1 / 37

Overview Argument structure advmod Negation Lin 1998

Syntactic structure: My dog will not go in the lake.

Treebank-style parsetree Dependencies Collapsed dependencies

ROOT

go

root

My

dog

poss

will not

nsubj aux neg

in

prep

lake

pobj

the

det

ROOT

go

root

My

dog

poss

will not

nsubj aux neg

lake

prep_in

the

det

2 / 37

Overview Argument structure advmod Negation Lin 1998

Plan and goals

Goals
• Make the case for Stanford collapsed dependency structures (de Marneffe

et al. 2006; de Marneffe and Manning 2008a,b) as useful for NLU.
• Highlight some of the ways that semantic information is passed around

inside sentences.
• Engage with previous lectures on WSD and VSMs, and begin looking ahead

to others — esp. relation extraction, semantic role labeling, and composition

Not covered here
The theory of parsing, the theory of semantic dependencies, or the details of
mapping from phrase structure trees to dependencies. In short, we’re going to be
consumers of dependencies, seeking to use them to get ahead in NLU.

Plan
1 Get a feel for Stanford dependencies.
2 Case study: advmod
3 Case study: capturing the semantic influence of negation.
4 A return to Lin 1998

3 / 37

Overview Argument structure advmod Negation Lin 1998

Plan and goals

Goals
• Make the case for Stanford collapsed dependency structures (de Marneffe

et al. 2006; de Marneffe and Manning 2008a,b) as useful for NLU.
• Highlight some of the ways that semantic information is passed around

inside sentences.
• Engage with previous lectures on WSD and VSMs, and begin looking ahead

to others — esp. relation extraction, semantic role labeling, and composition

Not covered here
The theory of parsing, the theory of semantic dependencies, or the details of
mapping from phrase structure trees to dependencies. In short, we’re going to be
consumers of dependencies, seeking to use them to get ahead in NLU.

Plan
1 Get a feel for Stanford dependencies.
2 Case study: advmod
3 Case study: capturing the semantic influence of negation.
4 A return to Lin 1998

3 / 37

Overview Argument structure advmod Negation Lin 1998

Plan and goals

Goals
• Make the case for Stanford collapsed dependency structures (de Marneffe

et al. 2006; de Marneffe and Manning 2008a,b) as useful for NLU.
• Highlight some of the ways that semantic information is passed around

inside sentences.
• Engage with previous lectures on WSD and VSMs, and begin looking ahead

to others — esp. relation extraction, semantic role labeling, and composition

Not covered here
The theory of parsing, the theory of semantic dependencies, or the details of
mapping from phrase structure trees to dependencies. In short, we’re going to be
consumers of dependencies, seeking to use them to get ahead in NLU.

Plan
1 Get a feel for Stanford dependencies.
2 Case study: advmod
3 Case study: capturing the semantic influence of negation.
4 A return to Lin 1998

3 / 37

Overview Argument structure advmod Negation Lin 1998

Stanford dependencies relation hierarchy

dep

aux

conj

cc

arg

ref

expl

mod

sdep

auxpass

cop

subj

comp

agent

nsubj

csubj

nsubjpass

obj

attr

ccomp

xcomp

compl

mark

rel

acomp

dobj

iobj

pobj

advcl

purpcl

tmod

rcmod

amod

infmod

partmod

num

number

appos

nn

abbrev

advmod

poss

possessive

prt

det

prep

neg

http://nlp.stanford.edu/software/dependencies_manual.pdf
4 / 37

http://nlp.stanford.edu/software/dependencies_manual.pdf

Overview Argument structure advmod Negation Lin 1998

Stanford dependencies relation hierarchy

dep

aux

conj

cc

arg

ref

expl

mod

sdep

auxpass

cop

subj

comp

agent

nsubj

csubj

nsubjpass

obj

attr

ccomp

xcomp

compl

mark

rel

acomp

dobj

iobj

pobj

advcl

purpcl

tmod

rcmod

amod

infmod

partmod

num

number

appos

nn

abbrev

advmod

poss

possessive

prt

det

prep

neg

http://nlp.stanford.edu/software/dependencies_manual.pdf

4 / 37

http://nlp.stanford.edu/software/dependencies_manual.pdf

Overview Argument structure advmod Negation Lin 1998

Stanford dependencies relation hierarchy

dep

aux

conj

cc

arg

ref

expl

mod

sdep

auxpass

cop

subj

comp

agent

nsubj

csubj

nsubjpass

obj

attr

ccomp

xcomp

compl

mark

rel

acomp

dobj

iobj

pobj

advcl

purpcl

tmod

rcmod

amod

infmod

partmod

num

number

appos

nn

abbrev

advmod

poss

possessive

prt

det

prep

neg

http://nlp.stanford.edu/software/dependencies_manual.pdf

4 / 37

http://nlp.stanford.edu/software/dependencies_manual.pdf

Overview Argument structure advmod Negation Lin 1998

Stanford dependencies relation hierarchy

dep

aux

conj

cc

arg

ref

expl

mod

sdep

auxpass

cop

subj

comp

agent

nsubj

csubj

nsubjpass

obj

attr

ccomp

xcomp

compl

mark

rel

acomp

dobj

iobj

pobj

advcl

purpcl

tmod

rcmod

amod

infmod

partmod

num

number

appos

nn

abbrev

advmod

poss

possessive

prt

det

prep

neg

http://nlp.stanford.edu/software/dependencies_manual.pdf

4 / 37

http://nlp.stanford.edu/software/dependencies_manual.pdf

Overview Argument structure advmod Negation Lin 1998

Stanford dependencies relation hierarchydep

aux

conj

cc

arg

ref

expl

mod

sdep

auxpass

cop

subj

comp

agent

nsubj

csubj

nsubjpass

obj

attr

ccomp

xcomp

compl

mark

rel

acomp

dobj

iobj

pobj

advcl

purpcl

tmod

rcmod

amod

infmod

partmod

num

number

appos

nn

abbrev

advmod

poss

possessive

prt

det

prep

neg

http://nlp.stanford.edu/software/dependencies_manual.pdf
4 / 37

http://nlp.stanford.edu/software/dependencies_manual.pdf

Overview Argument structure advmod Negation Lin 1998

Stanford dependency construction
Ruled-based mapping from phrase structure trees to dependency graphs:

1. Dependency extraction: for
each constituent, identify its seman-
tic head and project the head up-
wards:

VP

MD

might

VP

VB

have

VP

VBN

escaped

2. Dependency typing: label each
dependency pair with the most spe-
cific appropriate relation in terms of
the dependency hierarchy.

• relation: aux

• parent: VP

• Tregex pattern:
VP < VP

< /ˆ(?:TO|MD|VB.*|AUXG?)$/=target

Relations determined:

aux(escaped, might)

aux(escaped, have)

Rules might also deliver

dep(escaped, might)

Always favor the most specific.

5 / 37

Overview Argument structure advmod Negation Lin 1998

Stanford dependency construction
Ruled-based mapping from phrase structure trees to dependency graphs:

1. Dependency extraction: for
each constituent, identify its seman-
tic head and project the head up-
wards:

VP

MD

might

VP

VB

have

VP

VBN

escaped

2. Dependency typing: label each
dependency pair with the most spe-
cific appropriate relation in terms of
the dependency hierarchy.

• relation: aux

• parent: VP

• Tregex pattern:
VP < VP

< /ˆ(?:TO|MD|VB.*|AUXG?)$/=target

Relations determined:

aux(escaped, might)

aux(escaped, have)

Rules might also deliver

dep(escaped, might)

Always favor the most specific.

5 / 37

Overview Argument structure advmod Negation Lin 1998

Stanford dependency construction
Ruled-based mapping from phrase structure trees to dependency graphs:

1. Dependency extraction: for
each constituent, identify its seman-
tic head and project the head up-
wards:

VP[escaped]

MD[might]

might

VP[escaped]

VB[have]

have

VP[escaped]

VBN[escaped]

escaped

2. Dependency typing: label each
dependency pair with the most spe-
cific appropriate relation in terms of
the dependency hierarchy.

• relation: aux

• parent: VP

• Tregex pattern:
VP < VP

< /ˆ(?:TO|MD|VB.*|AUXG?)$/=target

Relations determined:

aux(escaped, might)

aux(escaped, have)

Rules might also deliver

dep(escaped, might)

Always favor the most specific.

5 / 37

Overview Argument structure advmod Negation Lin 1998

Stanford dependency construction
Ruled-based mapping from phrase structure trees to dependency graphs:

1. Dependency extraction: for
each constituent, identify its seman-
tic head and project the head up-
wards:

VP[escaped]

MD[might]

might

VP[escaped]

VB[have]

have

VP[escaped]

VBN[escaped]

escaped

2. Dependency typing: label each
dependency pair with the most spe-
cific appropriate relation in terms of
the dependency hierarchy.

• relation: aux

• parent: VP

• Tregex pattern:
VP < VP

< /ˆ(?:TO|MD|VB.*|AUXG?)$/=target

Relations determined:

aux(escaped, might)

aux(escaped, have)

Rules might also deliver

dep(escaped, might)

Always favor the most specific.
5 / 37

Overview Argument structure advmod Negation Lin 1998

Stanford dependencies: basic and collapsed

Quoting from the javadocs, trees/EnglishGrammaticalRelations.java:

The “collapsed” grammatical relations primarily differ as follows:

• Some multiword conjunctions and prepositions are treated as single words,
and then processed as below.

• Prepositions do not appear as words but are turned into new “prep” or
“prepc” grammatical relations, one for each preposition.

• Conjunctions do not appear as words but are turned into new “conj”
grammatical relations, one for each conjunction.

• The possessive “’s” is deleted, leaving just the relation between the
possessor and possessum.

• Agents of passive sentences are recognized and marked as agent and not
as prep by.

6 / 37

Overview Argument structure advmod Negation Lin 1998

Stanford tools
The Stanford parser is distributed with starter Java code for parsing your own
data. It also has a flexible command-line interface. Some relevant commands:

Map plain text to dependency structures:

java -mx3000m -cp stanford-parser.jar edu.stanford.nlp.parser.lexparser.LexicalizedParser
-outputFormat "typedDependencies" englishPCFG.ser.gz textFile

Map tagged data to dependency structures:

java -mx3000m -cp stanford-parser.jar edu.stanford.nlp.parser.lexparser.LexicalizedParser
-outputFormat "typedDependencies" -tokenized -tagSeparator / englishPCFG.ser.gz taggedFile

Map phrase-structure trees to Stanford collapsed dependencies (change
-collapsed to -basic for collapsed versions):

java -cp stanford-parser.jar edu.stanford.nlp.trees.EnglishGrammaticalStructure
-treeFile treeFile -collapsed

Software/docs: http://nlp.stanford.edu/software/lex-parser.shtml

7 / 37

http://nlp.stanford.edu/software/lex-parser.shtml

Overview Argument structure advmod Negation Lin 1998

Graphviz

Graphiviz is free graphing software that makes it easy to visualize dependency
structures: http://www.graphviz.org/

Al

said

nsubj

raining

ccomp

that it was

complm nsubj aux

digraph g {
/* Nodes */
"Al-1" [label="Al"];
"said-2" [label="said"];
"that-3" [label="that"];
"it-4" [label="it"];
"was-5" [label="was"];
"raining-6" [label="raining"];
/* Edges */
"said-2" -> "Al-1" [label="nsubj"];
"raining-6" -> "that-3" [label="complm"];
"raining-6" -> "it-4" [label="nsubj"];
"raining-6" -> "was-5" [label="aux"];
"said-2" -> "raining-6" [label="ccomp"];

}

8 / 37

http://www.graphviz.org/

Overview Argument structure advmod Negation Lin 1998

Argument structure

• This section reviews the way basic constituents are represented in Stanford
dependency structures.

• I concentrate on the most heavily used relations.

• To understand the less-used ones, consult the dependencies manual
(de Marneffe and Manning 2008a) and play around with examples using the
online parser demo:

http://nlp.stanford.edu:8080/parser/index.jsp

9 / 37

http://nlp.stanford.edu:8080/parser/index.jsp

Overview Argument structure advmod Negation Lin 1998

Verbal structures

dep

aux

conj

cc

arg

ref

expl

mod

sdep

auxpass

cop

subj

comp

agent

nsubj

csubj

nsubjpass

obj

attr

ccomp

xcomp

compl

mark

rel

acomp

dobj

iobj

pobj

advcl

purpcl

tmod

rcmod

amod

infmod

partmod

num

number

appos

nn

abbrev

advmod

poss

possessive

prt

det

prep

neg

10 / 37

Overview Argument structure advmod Negation Lin 1998

Verbal structures: intransitive and transitive

Intransitive

Al might Al might have
Al escaped. Al might escape. have escaped. been escaping.

Al

escaped

nsubj

Al might

escape

nsubj aux

Al might have

escaped

nsubj aux aux

Transitive

Gerald gave Gerald gave awards to puppies
Sue saw stars. puppies awards. basic collapsed

Sue

saw

nsubj

stars

dobj

Gerald

gave

nsubj

puppies

iobj

awards

dobj

Gerald

gave

nsubj

awards

dobj

to

prep

puppies

pobj

Gerald

gave

nsubj

awards

dobj

puppies

prep_to

11 / 37

Overview Argument structure advmod Negation Lin 1998

Verbal structures: sentential complements

Tensed

Al said that it was raining.

Al

said

nsubj

raining

ccomp

that it was

complm nsubj aux

Infinitival

Kim wants to win.
Basic Collapsed

Kim

wants

nsubj

win

xcomp

to

aux

Kim

wants

nsubj win

xcomp

to

xsubj aux

12 / 37

Overview Argument structure advmod Negation Lin 1998

Nominalsdep

aux

conj

cc

arg

ref

expl

mod

sdep

auxpass

cop

subj

comp

agent

nsubj

csubj

nsubjpass

obj

attr

ccomp

xcomp

compl

mark

rel

acomp

dobj

iobj

pobj

advcl

purpcl

tmod

rcmod

amod

infmod

partmod

num

number

appos

nn

abbrev

advmod

poss

possessive

prt

det

prep

neg

13 / 37

Overview Argument structure advmod Negation Lin 1998

Nominal structures

Basic

Possessive
Proper name Quantifier Determiner basic collapsed

Sam Everyone

the

student

det
Sam

's

possessive

bike

poss

Sam

bike

poss

Modified

Prepositional
Adjective basic collapsed Relative clause

the happy

student

det amod

the happy

student

det amod

of

prep

linguistics

pobj

the happy

student

det amod

linguistics

prep_of

the

student

det

won

rcmod

who

nsubj

14 / 37

Overview Argument structure advmod Negation Lin 1998

Modification

Predicative constructions

Basic Lexical pred Lexical Small clause

Edna is

happy

nsubj cop

Edna seems

happy

nsubj cop

Edna

looked

nsubj

happy

acomp

Edna

considers

nsubj

happy

xcomp

Sam

nsubj

Adverbs

surprisingly not surprisingly
wonderfully happy amazingly happy happy in no way happy

wonderfully

happy

advmod

surprisingly amazingly

happy

advmod advmod

not surprisingly

happy

neg advmod

Edna is

no

way

dep

happy

nsubj cop advmod

15 / 37

Overview Argument structure advmod Negation Lin 1998

Coordination — conj and cc

Nominals (here, nsubj)

Ivan and Penny left.
basic collapsed

Ivan

and

cc

Penny

conj

left

nsubj

Ivan

Penny

conj_and

left

nsubj

nsubj

Verb phrases

Nobody sang and danced.
basic collapsed

Nobody

sang

nsubj

and

cc

danced

conj

Nobody

sang

nsubj danced

conj_and

nsubj

16 / 37

Overview Argument structure advmod Negation Lin 1998

Stanford dependencies and NLU

List some ways in which these representations can help NLU systems:

17 / 37

Overview Argument structure advmod Negation Lin 1998

advmod dependencies

From HW 4
Propose a matrix design that (i) makes use of Stanford dependency structures
(regular or collapsed) and (ii) could be used to provide a data-rich picture of what
the patterns of adverb–adjective modification are like.

18 / 37

Overview Argument structure advmod Negation Lin 1998

Gigaword NYT (h/t to Nate Chambers for the parsing!)

Available in list format (tab-separated values):

http://www.stanford.edu/class/cs224u/restricted/data/gigawordnyt-advmod.tsv.zip
Or: /afs/ir/class/cs224u/WWW/restricted/data/gigawordnyt-advmod.tsv.zip

Pairs advmod(X, Y) with counts:

1 end here 98434
2 well as 84031
3 longer no 74486
4 far so 71853
5 much so 71460
6 now right 66373
7 much too 66264
8 much how 64794
9 said also 62588

10 year earlier 60290
...

3211133 scuff how 1

19 / 37

http://www.stanford.edu/class/cs224u/restricted/data/gigawordnyt-advmod.tsv.zip

Overview Argument structure advmod Negation Lin 1998

Gigaword NYT (h/t to Nate Chambers for the parsing!)
dependent × parent matrix: raw counts

when also just now more so even how where as

is 17663 21310 10853 46433 2094 8204 8388 14546 22985 2039
have 20657 20156 18757 31288 2162 7508 13003 4184 12573 1572
was 26976 10634 8253 3014 1265 4025 5644 6554 11818 1920
said 19695 62588 3984 4953 923 4933 6198 575 4209 608

much 207 145 4184 474 10079 71460 421 64794 140 46174
are 11546 14212 4929 23470 2418 7591 4779 7952 19832 1214
get 19342 4004 8474 5811 1401 2657 5930 14477 6840 718
do 8299 1550 7908 9899 2733 37339 2915 14474 2376 598
’s 7811 9488 8815 13779 1371 3949 4293 1690 6281 1500

had 16854 16247 7039 3128 1512 1703 7930 1735 6936 1742

Dependent × parent matrix: positive PMI with contextual discounting

when also just now more so even how where as

is 0.00 0.04 0.00 1.12 0.00 0.00 0.00 0.16 0.65 0.00
have 0.00 0.30 0.48 1.05 0.00 0.00 0.38 0.00 0.36 0.00
was 0.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.00
said 0.00 1.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

much 0.00 0.00 0.00 0.00 0.11 2.01 0.00 2.09 0.00 1.80
are 0.00 0.17 0.00 0.98 0.00 0.00 0.00 0.09 1.04 0.00
get 0.32 0.00 0.21 0.00 0.00 0.00 0.12 1.00 0.28 0.00
do 0.00 0.00 0.14 0.42 0.00 1.77 0.00 1.00 0.00 0.00
’s 0.00 0.07 0.25 0.75 0.00 0.00 0.00 0.00 0.20 0.00

had 0.22 0.65 0.06 0.00 0.00 0.00 0.45 0.00 0.34 0.00
19 / 37

Overview Argument structure advmod Negation Lin 1998

Some neighbors (cosine distance, PPMI+discounting matrix)

Adverbs

absolutely certainly never recently somewhat quickly

utterly definitely not subsequently slightly swiftly
totally surely maybe ago considerably soon
truly probably either since decidedly gradually
completely obviously ever later extremely rapidly
equally undoubtedly yes shortly terribly slowly
quite necessarily why previously very eventually
obviously indeed would first markedly immediately
really clearly simply when equally promptly
whatsoever therefore pray already more fast

Adjectives

happy sad tall full straight closed

excited painful large empty largest closing
pleased frustrating wide tight straightforward shut
nice tragic steep complete twice sealed
comfortable depressing strong crowded best halted
silly ugly thin over certain corp.
proud embarrassing lucky solid steady suspended
good beautiful quick smooth ordinary retired
nervous dumb good dark decent canceled
uncomfortable unfortunate high filled smooth ending

20 / 37

Overview Argument structure advmod Negation Lin 1998

Latent Semantic Analysis

1 Apply singular value decomposition to the PPMI+discounting matrix.

2 Inspect singular values; settle on 25 dimensions:

1 94 218 357 496 635 774 913 1068 1238 1408 1578 1748 1918 2088 2258 2428 2598 2768 2938

Value

R
an
k

0

50

100

150

200

250

300

3 For rows (dependents): R[, 1 : 25] × S[1 : 25, 1 : 25]

4 For columns (dependents): S[1 : 25, 1 : 25] × C[, 1 : 25]T

21 / 37

Overview Argument structure advmod Negation Lin 1998

Latent Semantic Analysis

1 Apply singular value decomposition to the PPMI+discounting matrix.

2 Inspect singular values; settle on 25 dimensions:

1 5 9 13 18 23 28 33 38 43 48 53 58 63 68 73 78 83 88 93 98 104 110 116 122 128

Value

R
an
k

0

50

100

150

200

250

300

3 For rows (dependents): R[, 1 : 25] × S[1 : 25, 1 : 25]

4 For columns (dependents): S[1 : 25, 1 : 25] × C[, 1 : 25]T

21 / 37

Overview Argument structure advmod Negation Lin 1998

Some adverb neighbors (cosine distance, PPMI + discounting + LSA)

Adverbs without LSA (repeated from earlier)

absolutely certainly never recently somewhat quickly

utterly definitely not subsequently slightly swiftly
totally surely maybe ago considerably soon
truly probably either since decidedly gradually
completely obviously ever later extremely rapidly
equally undoubtedly yes shortly terribly slowly
quite necessarily why previously very eventually
obviously indeed would first markedly immediately
really clearly simply when equally promptly
whatsoever therefore pray already more fast

Adverbs with LSA (25 dimensions)

absolutely certainly never recently somewhat quickly

utterly surely you subsequently palpably swiftly
truly definitely maybe later decidedly soon
totally probably just d.calif seeming prematurely
manifestly doubt yes ago any instantly
wholly undoubtedly ok r.ohio slightly immediately
patently necessarily q shortly congenitally speedily
hardly importantly pray first distinctly eventually
indisputably doubtless hey d.mo visibly gradually
flat.out secondly anyway since sufficiently slowly

22 / 37

Overview Argument structure advmod Negation Lin 1998

Some adjective neighbors (cosine distance, PPMI + discounting + LSA)

Adjectives without LSA (repeated from earlier)

happy sad tall full straight closed

excited painful large empty largest closing
pleased frustrating wide tight straightforward shut
nice tragic steep complete twice sealed
comfortable depressing strong crowded best halted
silly ugly thin over certain corp.
proud embarrassing lucky solid steady suspended
good beautiful quick smooth ordinary retired
nervous dumb good dark decent canceled
uncomfortable unfortunate high filled smooth ending

Adjectives with LSA (25 dimensions)

happy sad tall full straight closed

nice ugly thick light normal suspended
terrible scary deep flat free shut
strange weird loud calm flat retired
cute strange bright dry natural halted
scary tragic cheap smooth certain replaced
wild nasty tight quiet conventional stopped
excited dumb fast cool routine cleared
cool boring hot soft benign locked
special odd quick steady reasonable sealed

23 / 37

Overview Argument structure advmod Negation Lin 1998

t-SNE (van der Maaten and Geoffrey 2008) 2d embedding of the
PPMI+discounting matrix: adverbs

24 / 37

Overview Argument structure advmod Negation Lin 1998

t-SNE (van der Maaten and Geoffrey 2008) 2d embedding of the
PPMI+discounting matrix: adverbs

24 / 37

Overview Argument structure advmod Negation Lin 1998

t-SNE (van der Maaten and Geoffrey 2008) 2d embedding of the
PPMI+discounting matrix: adverbs

24 / 37

Overview Argument structure advmod Negation Lin 1998

t-SNE (van der Maaten and Geoffrey 2008) 2d embedding of the
PPMI+discounting matrix: adverbs

24 / 37

Overview Argument structure advmod Negation Lin 1998

t-SNE (van der Maaten and Geoffrey 2008) 2d embedding of the
PPMI+discounting matrix: dependents

25 / 37

Overview Argument structure advmod Negation Lin 1998

t-SNE (van der Maaten and Geoffrey 2008) 2d embedding of the
PPMI+discounting matrix: dependents

25 / 37

Overview Argument structure advmod Negation Lin 1998

t-SNE (van der Maaten and Geoffrey 2008) 2d embedding of the
PPMI+discounting matrix: dependents

25 / 37

Overview Argument structure advmod Negation Lin 1998

t-SNE (van der Maaten and Geoffrey 2008) 2d embedding of the
PPMI+discounting matrix: dependents

25 / 37

Overview Argument structure advmod Negation Lin 1998

Adverbial constructions
From a large collection of online product reviews:

Modifiers Count

much more 4724
even more 4334
not very 2723
far more 2490
not too 2458
just plain 2117
just too 1938
very very 1819
not only 1771
way too 1594
little more 1508
not really 1422

.

.

.
just not very 216
just too damn 89
really not very 82
not only very 79
only slightly less 66
still not very 65
actually not too 58
still pretty darn 49

not very

happy

neg advmod

only slightly less

happy

advmod advmod advmod

really not too

happy

advmod neg advmod

26 / 37

Overview Argument structure advmod Negation Lin 1998

Negation

• Negation is frequent, systematic, and semantically potent.

• Let’s see if we can use dependencies to get a grip on what it means and
how it interacts with its fellow constituents.

• The lessons learned should generalize to a wide range of semantic relations
and operations, many of which we will study during the unit on semantic
composition.

27 / 37

Overview Argument structure advmod Negation Lin 1998

Tracking the influence of negation: semantic scope

I didn’t enjoy it. I never enjoy it. No one enjoys it.

I did n't

enjoy

nsubj aux neg

it

dobj

I never

enjoy

nsubj neg

it

dobj

No

one

det

enjoys

nsubj

it

dobj

No one’s friend enjoyed it. At no time did we enjoy it. I don’t think I will enjoy it.

No

one

det

friend

poss

enjoyed

nsubj

it

dobj

no

time

det

did we

enjoy

prep_at aux nsubj

it

dobj

I do n't

think

nsubj aux neg

enjoy

ccomp

I will

nsubj aux

it

dobj

28 / 37

Overview Argument structure advmod Negation Lin 1998

Scope domains

Parse trees

Op Scope domain
for Op

NP

Op

Scope domain
for Op

PP

NP

Op

Scope domain
for Op

Dependencies. ‘rel’ should exclude
certain non-scope relations.

Op

{det, amod}

 ...

 ...

 rel

Op ...

rel

29 / 37

Overview Argument structure advmod Negation Lin 1998

Negation generalized: downward monotonicity
Definition (Upward monotonicity)

An operator δ is upward monotone iff for all expressions α in the domain of δ:
if α ⊆ β, then (δα) ⊆ (δβ)

Definition (Downard monotonicity)

An operator δ is downward monotone iff for all expressions α in the domain of δ:
if α ⊆ β, then (δβ) ⊆ (δα)

A student smoked.

t v

A Swedish student smoked. A student smoked cigars.

No student smoked.

w u

No Swedish student smoked. No student smoked cigars.

Every student smoked.

t u

Every Swedish student smoked. Every student smoked cigars.

Few students smoked.

w u

Few Swedish students smoked. Few students smoked cigars.

30 / 37

Overview Argument structure advmod Negation Lin 1998

Negation generalized: downward monotonicity
Definition (Upward monotonicity)

An operator δ is upward monotone iff for all expressions α in the domain of δ:
if α ⊆ β, then (δα) ⊆ (δβ)

Definition (Downard monotonicity)

An operator δ is downward monotone iff for all expressions α in the domain of δ:
if α ⊆ β, then (δβ) ⊆ (δα)

A student smoked.

t v

A Swedish student smoked. A student smoked cigars.

No student smoked.

w u

No Swedish student smoked. No student smoked cigars.

Every student smoked.

t u

Every Swedish student smoked. Every student smoked cigars.

Few students smoked.

w u

Few Swedish students smoked. Few students smoked cigars.

30 / 37

Overview Argument structure advmod Negation Lin 1998

Negation generalized: downward monotonicity
Definition (Upward monotonicity)

An operator δ is upward monotone iff for all expressions α in the domain of δ:
if α ⊆ β, then (δα) ⊆ (δβ)

Definition (Downard monotonicity)

An operator δ is downward monotone iff for all expressions α in the domain of δ:
if α ⊆ β, then (δβ) ⊆ (δα)

A student smoked.
t v

A Swedish student smoked. A student smoked cigars.

No student smoked.

w u

No Swedish student smoked. No student smoked cigars.

Every student smoked.

t u

Every Swedish student smoked. Every student smoked cigars.

Few students smoked.

w u

Few Swedish students smoked. Few students smoked cigars.

30 / 37

Overview Argument structure advmod Negation Lin 1998

Negation generalized: downward monotonicity
Definition (Upward monotonicity)

An operator δ is upward monotone iff for all expressions α in the domain of δ:
if α ⊆ β, then (δα) ⊆ (δβ)

Definition (Downard monotonicity)

An operator δ is downward monotone iff for all expressions α in the domain of δ:
if α ⊆ β, then (δβ) ⊆ (δα)

A student smoked.
t v

A Swedish student smoked. A student smoked cigars.

No student smoked.

w u

No Swedish student smoked. No student smoked cigars.

Every student smoked.

t u

Every Swedish student smoked. Every student smoked cigars.

Few students smoked.

w u

Few Swedish students smoked. Few students smoked cigars.

30 / 37

Overview Argument structure advmod Negation Lin 1998

Negation generalized: downward monotonicity
Definition (Upward monotonicity)

An operator δ is upward monotone iff for all expressions α in the domain of δ:
if α ⊆ β, then (δα) ⊆ (δβ)

Definition (Downard monotonicity)

An operator δ is downward monotone iff for all expressions α in the domain of δ:
if α ⊆ β, then (δβ) ⊆ (δα)

A student smoked.
t v

A Swedish student smoked. A student smoked cigars.

No student smoked.
w u

No Swedish student smoked. No student smoked cigars.

Every student smoked.

t u

Every Swedish student smoked. Every student smoked cigars.

Few students smoked.

w u

Few Swedish students smoked. Few students smoked cigars.

30 / 37

Overview Argument structure advmod Negation Lin 1998

Negation generalized: downward monotonicity
Definition (Upward monotonicity)

An operator δ is upward monotone iff for all expressions α in the domain of δ:
if α ⊆ β, then (δα) ⊆ (δβ)

Definition (Downard monotonicity)

An operator δ is downward monotone iff for all expressions α in the domain of δ:
if α ⊆ β, then (δβ) ⊆ (δα)

A student smoked.
t v

A Swedish student smoked. A student smoked cigars.

No student smoked.
w u

No Swedish student smoked. No student smoked cigars.

Every student smoked.

t u

Every Swedish student smoked. Every student smoked cigars.

Few students smoked.

w u

Few Swedish students smoked. Few students smoked cigars.

30 / 37

Overview Argument structure advmod Negation Lin 1998

Negation generalized: downward monotonicity
Definition (Upward monotonicity)

An operator δ is upward monotone iff for all expressions α in the domain of δ:
if α ⊆ β, then (δα) ⊆ (δβ)

Definition (Downard monotonicity)

An operator δ is downward monotone iff for all expressions α in the domain of δ:
if α ⊆ β, then (δβ) ⊆ (δα)

A student smoked.
t v

A Swedish student smoked. A student smoked cigars.

No student smoked.
w u

No Swedish student smoked. No student smoked cigars.

Every student smoked.
t u

Every Swedish student smoked. Every student smoked cigars.

Few students smoked.

w u

Few Swedish students smoked. Few students smoked cigars.

30 / 37

Overview Argument structure advmod Negation Lin 1998

Negation generalized: downward monotonicity
Definition (Upward monotonicity)

An operator δ is upward monotone iff for all expressions α in the domain of δ:
if α ⊆ β, then (δα) ⊆ (δβ)

Definition (Downard monotonicity)

An operator δ is downward monotone iff for all expressions α in the domain of δ:
if α ⊆ β, then (δβ) ⊆ (δα)

A student smoked.
t v

A Swedish student smoked. A student smoked cigars.

No student smoked.
w u

No Swedish student smoked. No student smoked cigars.

Every student smoked.
t u

Every Swedish student smoked. Every student smoked cigars.

Few students smoked.

w u

Few Swedish students smoked. Few students smoked cigars.

30 / 37

Overview Argument structure advmod Negation Lin 1998

Negation generalized: downward monotonicity
Definition (Upward monotonicity)

An operator δ is upward monotone iff for all expressions α in the domain of δ:
if α ⊆ β, then (δα) ⊆ (δβ)

Definition (Downard monotonicity)

An operator δ is downward monotone iff for all expressions α in the domain of δ:
if α ⊆ β, then (δβ) ⊆ (δα)

A student smoked.
t v

A Swedish student smoked. A student smoked cigars.

No student smoked.
w u

No Swedish student smoked. No student smoked cigars.

Every student smoked.
t u

Every Swedish student smoked. Every student smoked cigars.

Few students smoked.
w u

Few Swedish students smoked. Few students smoked cigars.

30 / 37

Overview Argument structure advmod Negation Lin 1998

Marking the scope of negation

the movie was not very good .

the

movie

det

was not very

good

nsubj cop neg advmod

i rarely enjoy horror movies .

i rarely

enjoy

dep advmod

movies

dobj

horror

nn

few people saw this excellent movie .

few

people

amod

saw

nsubj

movie

dobj

this excellent

det amod

at no point did this movie impress me .

no

point

det

did

this

movie

det

impress

prep_at aux nsubj

me

dobj

no good musician would play elevator music .

no good

musician

det amod

would

play

nsubj aux

music

dobj

elevator

nn

i do n't think that is a good idea .

i do n't

think

nsubj aux neg

idea

ccomp

that is a good

complm cop det amod

31 / 37

Overview Argument structure advmod Negation Lin 1998

Applications

What are some problems that would benefit from a stellar theory of negation?

32 / 37

Overview Argument structure advmod Negation Lin 1998

Approximation with tokenized strings

I’d be remiss if I didn’t point out that the effects of negation can be nicely
approximated by a string-level operation (Das and Chen 2001; Pang et al. 2002).

1 Tokenize in a way that isolates and preserves clause-level punctuation.
Starter Python tokenizer:
http://sentiment.christopherpotts.net/code-data/happyfuntokenizing.py

2 Append a NEG suffix to every word appearing between a negation and a
clause-level punctuation mark.

3 A negation is any word matching this regex:

(?:
ˆ(?:never|no|nothing|nowhere|noone|none|not|

havent|hasnt|hadnt|cant|couldnt|shouldnt|
wont|wouldnt|dont|doesnt|didnt|isnt|arent|aint

)$
)
|
n’t

33 / 37

http://sentiment.christopherpotts.net/code-data/happyfuntokenizing.py

Overview Argument structure advmod Negation Lin 1998

Predicting the effects of negation using IMDB user-supplied reviews
Outside the scope of negation

good – 732,963 tokens

Category

-4
.5

-3
.5

-2
.5

-1
.5

-0
.5 0.
5

1.
5

2.
5

3.
5

4.
5

0.08

0.13

Cat = 0.01 (p = 0.152)
Cat^2 = -0.02 (p < 0.001)

bad – 254,146 tokens

Category

-4
.5

-3
.5

-2
.5

-1
.5

-0
.5 0.
5

1.
5

2.
5

3.
5

4.
5

0.04

0.09

0.14

0.18

0.23

Cat = -0.2 (p < 0.001)
Cat^2 = 0.01 (p < 0.001)

excellent – 136,404 tokens

Category

-4
.5

-3
.5

-2
.5

-1
.5

-0
.5 0.
5

1.
5

2.
5

3.
5

4.
5

0.03

0.07

0.12

0.16

0.21
Cat = 0.22 (p < 0.001)

terrible – 45,470 tokens

Category

-4
.5

-3
.5

-2
.5

-1
.5

-0
.5 0.
5

1.
5

2.
5

3.
5

4.
5

0.03

0.07

0.1

0.15

0.22

0.3
Cat = -0.28 (p < 0.001)

Cat^2 = 0.02 (p < 0.001)

In the scope of negation

neg(good) – 169,772 tokens

Category

-4
.5

-3
.5

-2
.5

-1
.5

-0
.5 0.
5

1.
5

2.
5

3.
5

4.
5

0.07

0.12

Cat = -0.06 (p < 0.001)
Cat^2 = -0.01 (p < 0.001)

neg(bad) – 113,865 tokens

Category

-4
.5

-3
.5

-2
.5

-1
.5

-0
.5 0.
5

1.
5

2.
5

3.
5

4.
5

0.04

0.09

0.14

Cat = -0.14 (p < 0.001)
Cat^2 = -0.02 (p = 0.011)

neg(excellent) – 10,393 tokens

Category

-4
.5

-3
.5

-2
.5

-1
.5

-0
.5 0.
5

1.
5

2.
5

3.
5

4.
5

0.05

0.1

0.17

Cat = 0.15 (p < 0.001)

neg(terrible) – 9,936 tokens

Category

-4
.5

-3
.5

-2
.5

-1
.5

-0
.5 0.
5

1.
5

2.
5

3.
5

4.
5

0.02

0.1

0.14

0.21
Cat = -0.25 (p < 0.001)

34 / 37

Overview Argument structure advmod Negation Lin 1998

Predicting the effects of negation using IMDB user-supplied reviews
Outside the scope of negation

good – 732,963 tokens

Category

-4
.5

-3
.5

-2
.5

-1
.5

-0
.5 0.
5

1.
5

2.
5

3.
5

4.
5

0.08

0.13

Cat = 0.01 (p = 0.152)
Cat^2 = -0.02 (p < 0.001)

bad – 254,146 tokens

Category

-4
.5

-3
.5

-2
.5

-1
.5

-0
.5 0.
5

1.
5

2.
5

3.
5

4.
5

0.04

0.09

0.14

0.18

0.23

Cat = -0.2 (p < 0.001)
Cat^2 = 0.01 (p < 0.001)

excellent – 136,404 tokens

Category

-4
.5

-3
.5

-2
.5

-1
.5

-0
.5 0.
5

1.
5

2.
5

3.
5

4.
5

0.03

0.07

0.12

0.16

0.21
Cat = 0.22 (p < 0.001)

terrible – 45,470 tokens

Category

-4
.5

-3
.5

-2
.5

-1
.5

-0
.5 0.
5

1.
5

2.
5

3.
5

4.
5

0.03

0.07

0.1

0.15

0.22

0.3
Cat = -0.28 (p < 0.001)

Cat^2 = 0.02 (p < 0.001)

In the scope of negation

neg(good) – 169,772 tokens

Category

-4
.5

-3
.5

-2
.5

-1
.5

-0
.5 0.
5

1.
5

2.
5

3.
5

4.
5

0.07

0.12

Cat = -0.06 (p < 0.001)
Cat^2 = -0.01 (p < 0.001)

neg(bad) – 113,865 tokens

Category

-4
.5

-3
.5

-2
.5

-1
.5

-0
.5 0.
5

1.
5

2.
5

3.
5

4.
5

0.04

0.09

0.14

Cat = -0.14 (p < 0.001)
Cat^2 = -0.02 (p = 0.011)

neg(excellent) – 10,393 tokens

Category

-4
.5

-3
.5

-2
.5

-1
.5

-0
.5 0.
5

1.
5

2.
5

3.
5

4.
5

0.05

0.1

0.17

Cat = 0.15 (p < 0.001)

neg(terrible) – 9,936 tokens

Category

-4
.5

-3
.5

-2
.5

-1
.5

-0
.5 0.
5

1.
5

2.
5

3.
5

4.
5

0.02

0.1

0.14

0.21
Cat = -0.25 (p < 0.001)

34 / 37

Overview Argument structure advmod Negation Lin 1998

Generalizing further still: commitment and perspective

Overview
• Whereas neg(p) entails that p is not factual,

• speech and attitude predicates are semantically consistent with p and its
negation,

• though the pragmatics is a lot more complicated; (de Marneffe et al. 2011).

Examples
1 The dictator claimed that no citizens were injured.

2 The Red Cross claimed that no citizens were injured.

3 They said it would be horrible, but they were wrong: I loved it!!!

How might we get a grip on the semantic effects of these predicates?

35 / 37

Overview Argument structure advmod Negation Lin 1998

A return to Lin 1998
amod(romance-3, American-2)
prep in(rates-7, romance-3)
advmod(nothing-6, almost-5)
nsubj(rates-7, nothing-6)
dep(rates-7, higher-8)
dobj(called-15, what-10)
det(men-13, the-11)
nn(men-13, movie-12)
nsubj(called-15, men-13)
aux(called-15, have-14)
prepc than(higher-8, called-15)
dep(called-15, meeting-17)
dobj(meeting-17, cute-18)
nsubj(is-22, that-21)
ccomp(adorable-27, is-22)
nsubj(adorable-27, boy-meets-girl-24)
cop(adorable-27, seems-25)
advmod(adorable-27, more-26)
parataxis(rates-7, adorable-27)
mark(take-32, if-28)
nsubj(take-32, it-29)
aux(take-32, does-30)
neg(take-32, n’t-31)
advcl(adorable-27, take-32)
dobj(take-32, place-33)
det(atmosphere-36, an-35)
prep in(take-32, atmosphere-36)
amod(boredom-41, correct-38)
conj and(correct-38, acute-40)
prep of(atmosphere-36, boredom-41)

advmod(about-2, Just-1)
advmod(example-7, about-2)
det(example-7, the-3)
advmod(enthralling-5, most-4)
amod(example-7, enthralling-5)

Definition (Counts)

‖w, r ,w ′‖ = frequency count of r(w,w ′)

Definition (Mutual information)

I(w, r ,w ′) = log
(
‖w, r ,w ′‖ × ‖∗, r , ∗‖
‖w, r , ∗‖ × ‖∗, r ,w ′‖

)
= log

(
P(w, r ,w ′)

P(r)P(w |r)P(w ′|r)

)
Where ‖w, r ,w ′‖ is not directly observed, use

‖∗,r ,∗‖
‖∗,∗,∗‖

×
‖w,r ,∗‖
‖∗,r ,∗‖ ×

‖∗,r ,w′‖
‖∗,r ,∗‖

http://stanford.edu/class/cs224u/restricted/data/brown-stanfordcollapseddep.txt.zip

36 / 37

http://stanford.edu/class/cs224u/restricted/data/brown-stanfordcollapseddep.txt.zip

Overview Argument structure advmod Negation Lin 1998

References I

Das, Sanjiv and Mike Chen. 2001. Yahoo! for Amazon: Extracting market sentiment from stock message
boards. In Proceedings of the 8th Asia Pacific Finance Association Annual Conference.

de Marneffe, Marie-Catherine; Bill MacCartney; and Christopher D. Manning. 2006. Generating typed
dependency parses from phrase structure parses. In Proceedings of LREC-06.

Lin, Dekang. 1998. Automatic retrieval and clustering of similar words. In Proceedings of COLING-ACL,
768–774. Montreal: ACl.

van der Maaten, Laurens and Hinton Geoffrey. 2008. Visualizing data using t-SNE. Journal of Machine
Learning Research 9:2579–2605.

de Marneffe, Marie-Catherine and Christopher D. Manning. 2008a. Stanford Typed Dependencies
Manual. Stanford University.

de Marneffe, Marie-Catherine and Christopher D. Manning. 2008b. The Stanford typed dependencies
representation. In Proceedings of the COLING 2008 Workshop on Cross-Framework and
Cross-Domain Parser Evaluation, 1–8. ACL.

de Marneffe, Marie-Catherine; Christopher D. Manning; and Christopher Potts. 2011. Veridicality and
utterance understanding. In Proceedings of the Fifth IEEE International Conference on Semantic
Computing: Workshop on Semantic Annotation for Computational Linguistic Resources. Stanford,
CA: IEEE Computer Society Press.

Pang, Bo; Lillian Lee; and Shivakumar Vaithyanathan. 2002. Thumbs up? sentiment classification using
machine learning techniques. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), 79–86. Philadelphia: Association for Computational Linguistics.

37 / 37

	Overview
	Representations
	Plan and goals
	Stanford dependencies relation hierarchy
	Stanford dependency construction
	Stanford dependencies: basic and collapsed
	Stanford tools
	Graphviz

	Argument structure
	Verbal structures
	Verbal structures: intransitive and transitive
	Verbal structures: sentential complements
	Nominals
	Nominal structures
	Modification
	Coordination — conj and cc
	Stanford dependencies and NLU

	advmod dependencies
	Gigaword NYT (h/t to Nate Chambers for the parsing!)
	Some neighbors (cosine distance, PPMI+discounting matrix)
	Latent Semantic Analysis
	Some adverb neighbors (cosine distance, PPMI + discounting + LSA)
	Some adjective neighbors (cosine distance, PPMI + discounting + LSA)
	t-SNE vanderMaaten:Hinton:2008 2d embedding of the PPMI+discounting matrix: adverbs
	t-SNE vanderMaaten:Hinton:2008 2d embedding of the PPMI+discounting matrix: dependents
	Adverbial constructions

	Negation
	Tracking the influence of negation: semantic scope
	Scope domains
	Negation generalized: downward monotonicity
	Marking the scope of negation
	Applications
	Approxmation with tokenized strings
	Predicting the effects of negation using IMDB user-supplied reviews
	Generalizing further still: commitment and perspective

	A return to Lin 1998

