| Overview | Matrix designs | Weighting/normalization | Distance measures | Experiments | Dimensionality reduction | Tools | Looking ahead |
|----------|----------------|-------------------------|-------------------|-------------|--------------------------|-------|---------------|
| 0000     | 00000          | 000000000               | 00000000          | 00000000    | 000                      |       |               |

# Vector-space models of meaning

**Christopher Potts** 

CS 244U: Natural language understanding Jan 19



|                                         | Overview | Matrix designs | Weighting/normalization | Distance measures | Experiments | Dimensionality reduction | Tools | Looking ahead |
|-----------------------------------------|----------|----------------|-------------------------|-------------------|-------------|--------------------------|-------|---------------|
| • • • • • • • • • • • • • • • • • • • • | 0000     | 00000          | 0000000000              | 0000000           | 00000000    | 000                      |       |               |

# A corpus in matrix form

Upper left corner of a matrix derived from the training portion of this IMDB data release: http://ai.stanford.edu/~amaas/data/sentiment/.

|       | d1 | d2 | d3 | d4 | d5 | d6 | d7 | d8 | d9 | d10 |
|-------|----|----|----|----|----|----|----|----|----|-----|
| !     | 3  | 0  | 0  | 1  | 0  | 0  | 11 | 0  | 1  | 0   |
| ):    | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0   |
| );    | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
| 1     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 0   |
| 1/10  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
| 1/2   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
| 10    | 2  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
| 10/10 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
| 100   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
| 11    | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   |

# Guiding hypotheses (Turney and Pantel 2010:153)

**Statistical semantics hypothesis:** Statistical patterns of human word usage can be used to figure out what people mean (Weaver, 1955; Furnas et al., 1983). – If units of text have similar vectors in a text frequency matrix,<sup>13</sup> then they tend to have similar meanings. (We take this to be a general hypothesis that subsumes the four more specific hypotheses that follow.)

**Bag of words hypothesis:** The frequencies of words in a document tend to indicate the relevance of the document to a query (Salton et al., 1975). – If documents and pseudodocuments (queries) have similar column vectors in a term–document matrix, then they tend to have similar meanings.

**Distributional hypothesis:** Words that occur in similar contexts tend to have similar meanings (Harris, 1954; Firth, 1957; Deerwester et al., 1990). – If words have similar row vectors in a word–context matrix, then they tend to have similar meanings.

**Extended distributional hypothesis:** Patterns that co-occur with similar pairs tend to have similar meanings (Lin & Pantel, 2001). – If patterns have similar column vectors in a pair–pattern matrix, then they tend to express similar semantic relations.

Latent relation hypothesis: Pairs of words that co-occur in similar patterns tend to have similar semantic relations (Turney et al., 2003). – If word pairs have similar row vectors in a pair-pattern matrix, then they tend to have similar semantic relations.

# Overview: great power, a great many design choices

٠

| Matrix type                                                                                                                                                                                                                      |   | Weighting                                                                                       |   | Dimensionality reduction               |   | Vector<br>comparison                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------------------------------------------------------------------------------------------|---|----------------------------------------|---|--------------------------------------------------------------|
| $\label{eq:starting} \hline \hline word \times document \\ word \times word \\ word \times search proximity \\ adj. \times modified noun \\ word \times dependency rel. \\ verb \times arguments \\ \hline \hline \end{tabular}$ | × | probabilities<br>length normalization<br>TF-IDF<br>PMI<br>Positive PMI<br>PPMI with discounting | × | LSA<br>PLSA<br>LDA<br>PCA<br>IS<br>DCA | × | Euclidean<br>Cosine<br>Dice<br>Jaccard<br>KL<br>KL with skew |

(Nearly the full cross-product to explore; only a handful of the combinations are ruled out mathematically, and the literature contains relatively little guidance.)

| Overview | Matrix designs | Weighting/normalization | Distance measures | Experiments | Dimensionality reduction | Tools | Looking ahead |
|----------|----------------|-------------------------|-------------------|-------------|--------------------------|-------|---------------|
| 0000     | 00000          | 000000000               | 00000000          | 00000000    | 000                      |       |               |

## Overview: great power, a great many design choices

tokenization annotation tagging parsing feature selection

: cluster texts by date/author/discourse context/...

| <br>Matrix type                                                                                                                 |   | Weighting                                                                                       |   | Dimensionality reduction               |   | Vector<br>comparison                                         |
|---------------------------------------------------------------------------------------------------------------------------------|---|-------------------------------------------------------------------------------------------------|---|----------------------------------------|---|--------------------------------------------------------------|
| word × document<br>word × word<br>word × search proximity<br>adj. × modified noun<br>word × dependency rel.<br>verb × arguments | × | probabilities<br>length normalization<br>TF-IDF<br>PMI<br>Positive PMI<br>PPMI with discounting | × | LSA<br>PLSA<br>LDA<br>PCA<br>IS<br>DCA | × | Euclidean<br>Cosine<br>Dice<br>Jaccard<br>KL<br>KL with skew |

:

(Nearly the full cross-product to explore; only a handful of the combinations are ruled out mathematically, and the literature contains relatively little guidance.)

÷

## General questions for vector-space modelers

- How do the rows (words, phrase-types, ...) relate to each other?
- How do the columns (contexts, documents, ...) relate to each other?
- For a given group of documents D, which words epitomize D?
- For a given a group of words W, which documents epitomize W (IR)?

| Overview | Matrix designs | Weighting/normalization | Distance measures | Experiments | Dimensionality reduction | Tools | Looking ahead |
|----------|----------------|-------------------------|-------------------|-------------|--------------------------|-------|---------------|
| 0000     | 00000          | 0000000000              | 0000000           | 00000000    | 000                      |       |               |

# Matrix designs

- I'm going to set aside pre-processing issues like tokenization the best approach there will be tailored to your application.
- I'm going to assume that we would prefer not to do feature selection based on counts, stopword dictionaries, etc. — our VSMs should sort these things out for us!
- For more designs: Turney and Pantel 2010:§2.1-2.5, §6

| Overview | Matrix designs | Weighting/normalization | Distance measures | Experiments | Dimensionality reduction | Tools | Looking ahead |
|----------|----------------|-------------------------|-------------------|-------------|--------------------------|-------|---------------|
| 0000     | 0000           | 000000000               | 0000000           | 00000000    | 000                      |       |               |

# Word $\times$ document

Upper left corner of a matrix derived from the training portion of this IMDB data release: http://ai.stanford.edu/~amaas/data/sentiment/.

|       | d1 | d2 | d3 | d4 | d5 | d6 | d7 | d8 | d9 | d10 |
|-------|----|----|----|----|----|----|----|----|----|-----|
| !     | 3  | 0  | 0  | 1  | 0  | 0  | 11 | 0  | 1  | 0   |
| ):    | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0   |
| );    | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
| 1     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 0   |
| 1/10  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
| 1/2   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
| 10    | 2  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
| 10/10 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
| 100   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
| 11    | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   |

| Overview | Matrix designs | Weighting/normalization | Distance measures | Experiments | Dimensionality reduction | Tools | Looking ahead |
|----------|----------------|-------------------------|-------------------|-------------|--------------------------|-------|---------------|
| 0000     | 0000           | 000000000               | 0000000           | 00000000    | 000                      |       |               |
|          |                |                         |                   |             |                          |       |               |

# $\text{Word}\times\text{word}$

Upper left corner of a matrix derived from the training portion of this IMDB data release: http://ai.stanford.edu/~amaas/data/sentiment/.

|       | !      | ):  | );  | 1    | 1/10 | 1/2 | 10   | 10/10 | 100 | 11  |
|-------|--------|-----|-----|------|------|-----|------|-------|-----|-----|
| !     | 343744 | 225 | 441 | 2582 | 264  | 254 | 3211 | 307   | 683 | 179 |
| ):    | 143    | 218 | 9   | 17   | 4    | 0   | 36   | 5     | 2   | 2   |
| );    | 291    | 5   | 472 | 39   | 2    | 6   | 37   | 4     | 3   | 0   |
| 1     | 1871   | 14  | 30  | 1833 | 17   | 63  | 523  | 20    | 74  | 41  |
| 1/10  | 195    | 2   | 1   | 8    | 107  | 0   | 20   | 10    | 5   | 5   |
| 1/2   | 174    | 0   | 1   | 41   | 0    | 161 | 26   | 3     | 5   | 1   |
| 10    | 2212   | 16  | 29  | 319  | 13   | 18  | 2238 | 27    | 56  | 65  |
| 10/10 | 208    | 4   | 2   | 13   | 5    | 3   | 15   | 166   | 2   | 4   |
| 100   | 482    | 1   | 3   | 52   | 3    | 2   | 38   | 2     | 523 | 11  |
| 11    | 116    | 1   | 0   | 13   | 3    | 1   | 46   | 3     | 9   | 172 |

| Overview | Matrix designs | Weighting/normalization | Distance measures | Experiments | Dimensionality reduction | Tools | Looking ahead |
|----------|----------------|-------------------------|-------------------|-------------|--------------------------|-------|---------------|
| 0000     | 00000          | 000000000               | 00000000          | 00000000    | 000                      |       |               |

## Word $\times$ discourse context

Upper left corner of an interjection  $\times$  dialog-act tag matrix derived from the Switchboard Dialog Act Corpus (Stolcke et al. 2000):

http://compprag.christopherpotts.net/swda-clustering.html

|            | %  | +  | ^2 | ^g | ^h | ^q | aa  |
|------------|----|----|----|----|----|----|-----|
| absolutely | 0  | 2  | 0  | 0  | 0  | 0  | 95  |
| actually   | 17 | 12 | 0  | 0  | 1  | 0  | 4   |
| anyway     | 23 | 14 | 0  | 0  | 0  | 0  | 0   |
| boy        | 5  | 3  | 1  | 0  | 5  | 2  | 1   |
| bye        | 0  | 1  | 0  | 0  | 0  | 0  | 0   |
| bye-bye    | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
| dear       | 0  | 0  | 0  | 0  | 1  | 0  | 0   |
| definitely | 0  | 2  | 0  | 0  | 0  | 0  | 56  |
| exactly    | 2  | 6  | 1  | 0  | 0  | 0  | 294 |
| gee        | 0  | 3  | 0  | 0  | 2  | 1  | 1   |
| goodness   | 1  | 0  | 0  | 0  | 2  | 0  | 0   |

| Overview | Matrix designs | Weighting/normalization | Distance measures | Experiments | Dimensionality reduction | Tools | Looking ahead |
|----------|----------------|-------------------------|-------------------|-------------|--------------------------|-------|---------------|
| 0000     | 00000          | 000000000               | 00000000          | 00000000    | 000                      |       |               |

# Other designs

- word × search query
- word × syntactic context
- pair × pattern (e.g., *mason* : *stone*, *cuts*)
- adj. × modified noun
- word × dependency rel.
- person × product
- word  $\times$  person

:

- word × word × pattern
- verb × subject × object

## Challenge problem: Horoscoped

#### "Do horoscopes really all just say the same thing?"



InformationIsBeautiful.net Research: David McCandless // Design: Malt Hancock // scraping: Thomas Winningham source: 22,000 predictors scraped tom 'Amon horsescopes (strine.yahoo.com) do scrapeling: Multi-Microsopea (strine.yahoo.com)

http://www.informationisbeautiful.net/2011/horoscoped/

| Overview | Matrix designs | Weighting/normalization | Distance measures | Experiments | Dimensionality reduction | Tools | Looking ahead |
|----------|----------------|-------------------------|-------------------|-------------|--------------------------|-------|---------------|
| 0000     | 00000          | 000000000               | 00000000          | 00000000    | 000                      |       |               |
|          |                |                         |                   |             |                          |       |               |

## Challenge problem: Horoscoped

#### "Do horoscopes really all just say the same thing?"

|                         |             | rids from the top 50 of ea<br>m daily predictions, common words |                                                         |
|-------------------------|-------------|-----------------------------------------------------------------|---------------------------------------------------------|
|                         | star sign   | unique words                                                    | our interpretation                                      |
| $\frac{2}{2}$           | aquarius    | special, deal                                                   | bargain hunters?                                        |
| Υ                       | aries       | busy, sit, problem                                              | hard workers                                            |
| 69                      | cancer      | head, home, share, surprised                                    | house cats                                              |
| Ŋ₀                      | capricorn   | willing, instead                                                | up for it?                                              |
| Π                       | gemini      | party, stay, issues,<br>listen certainly                        | emotionally disturbed party<br>animals who never say no |
| ର                       | leo         | charm, looking                                                  | ever seductive                                          |
| <u>പ</u>                | libra       | learn, stars, almost                                            | nerds?                                                  |
| ж                       | pisces      | stop, decision                                                  | just can't make up their minds                          |
| $\overline{\mathbf{x}}$ | sagittarius | thanks, sign, sense<br>play, meet                               | they sound like fun!                                    |
| m,                      | scorpio     | chance, dear, means<br>talking, tough                           | almost a sentence there                                 |
| Я                       | taurus      | nice, open, eyes<br>worrying                                    | naive?                                                  |
| mp                      | virgo       | totally, perfect                                                | hah! can it be true?                                    |

# Horoscoped

David McCandless - InformationIsBeautiful.net - data: bit.ly/horoscoped

http://www.informationisbeautiful.net/2011/horoscoped/

# Challenge problem: Horoscoped

"Do horoscopes really all just say the same thing?"

#### "Ready? Sure?

Whatever the situation or secret moment, enjoy everything a lot. Feel able to absolutely care. Expect nothing else. Keep making love. Family and friends matter. The world is life, fun and energy. Maybe hard. Or easy. Taking exactly enough is best. Help and talk to others. Change your mind and a better mood comes along..."

Meta-horoscope made from most common words in 4,000 star sign predictions

David McCandless - Information]sBeautiful.net - data: bit.ly/horoscoped

http://www.informationisbeautiful.net/2011/horoscoped/

# Challenge problem: Horoscoped

"Do horoscopes really all just say the same thing?"

Get my version of the data (restricted link):

https://stanford.edu/class/cs224u/restricted/data/horoscoped.csv.zip

Or: /afs/ir/class/cs224u/restricted/data/horoscoped.csv.zip

| Sign                        | Texts                   | 80-texts p                          |        | 80-15                    | -                          |                |
|-----------------------------|-------------------------|-------------------------------------|--------|--------------------------|----------------------------|----------------|
| aquarius<br>aries<br>cancer | 2,744<br>2,746<br>2,745 | mean text<br>token cou<br>vocab siz | int    | 54 wo<br>1,768,<br>23,09 |                            | , std: 30)     |
| capricorn<br>gemini         | 2,744<br>2.745          | Туре                                | Texts  | -                        | Category                   | Texts          |
| leo                         | 2,745                   | daily                               | 30,634 | _                        |                            | 5,129          |
| libra                       | 2,745                   | monthly                             | 432    |                          | career<br>extended         | 4.378          |
| pisces                      | 2,746                   | weekly                              | 1,860  |                          | love                       | 768            |
| sagittarius<br>scorpio      | 2,740<br>2,736          | Total                               | 32,926 |                          | love-couples               | 4,375          |
| taurus                      | 2,730                   |                                     |        | -                        | love-flirt<br>love-singles | 4,375<br>4,375 |
| virgo                       | 2,744                   |                                     |        |                          | overview                   | 4,373<br>5,147 |
| Total                       | 32,926                  |                                     |        |                          | teen                       | 4,379          |
|                             |                         |                                     |        |                          | Total                      | 32,926         |

# Weighting and normalization

- This section focusses on methods for adjusting the counts in a matrix to better capture the underlying reationships.
- The examples are given in terms of word × document matrices, focussing on row-wise comparisons in places.
- The methods can also be applied column-wise, and to other kinds of matrices, though some (design, weighting) combos are better than others, as we will see.
- Further reading:
  - Manning and Schütze 1999:§15.2
  - Bullinaria and Levy 2007
  - Turney and Pantel 2010:§4.2

| verview Matrix designs | Weighting/normalization | Distance measures | Experiments | Dimensionality reduction | Tools | Looking ahead |
|------------------------|-------------------------|-------------------|-------------|--------------------------|-------|---------------|
| 0000 0000              | 000000000               | 0000000           | 00000000    | 000                      |       |               |

# **Relative frequencies**

|   | <i>d</i> <sub>1</sub> | d <sub>2</sub> | d <sub>3</sub> | $d_4$ | $d_5$          |                |   | <i>d</i> <sub>1</sub> | d <sub>2</sub> | d <sub>3</sub> | d <sub>4</sub> | C   |
|---|-----------------------|----------------|----------------|-------|----------------|----------------|---|-----------------------|----------------|----------------|----------------|-----|
| Α | 10                    | 15             | 0              | 9     | 10             | Rows to P(d w) | Α | 0.23                  | 0.34           | 0.00           | 0.20           | 0.2 |
| В | 5                     | 8              | 1              | 2     | 5              | $\Rightarrow$  | В | 0.24                  | 0.38           | 0.05           | 0.10           | 0.2 |
| С | 14                    | 11             | 0              | 10    | 9              |                | С | 0.32                  | 0.25           | 0.00           | 0.23           | 0.2 |
| D | 13                    | 14             | 10             | 11    | 12             |                | D | 0.22                  | 0.23           | 0.17           | 0.18           | 0.2 |
|   | Colu                  | umns<br>、      | to P(<br>↓     | w d)  |                |                |   |                       |                |                |                |     |
|   | $d_1$                 | $d_2$          | d <sub>3</sub> | d₄    | d <sub>5</sub> | -              |   |                       |                |                |                |     |

| Α | 0.24 | 0.31 | 0.00 | 0.28 | 0.28 |
|---|------|------|------|------|------|
| В | 0.12 | 0.17 | 0.09 | 0.06 | 0.14 |
| С | 0.33 | 0.23 | 0.00 | 0.31 | 0.25 |
| D | 0.31 | 0.29 | 0.91 | 0.34 | 0.33 |

**Dangers of prob. values**: exaggerated estimates for small counts; comparisons that ignore differences in magnitude

| Overview | Matrix designs | Weighting/normalization | Distance measures | Experiments | Dimensionality reduction | Tools | Looking ahead |
|----------|----------------|-------------------------|-------------------|-------------|--------------------------|-------|---------------|
| 0000     | 00000          | 000000000               | 0000000           | 00000000    | 000                      |       |               |

# Length (L2) normalization

## Definition (L2 normalization)

Given a vector x of dimension n, the normalization of x is a vector  $\hat{x}$  also of dimension n obtained by dividing each element of x by  $\sqrt{\sum_{i=1}^{n} x_i^2}$ .



| Overview<br>0000 | Matrix designs | Weighting/normalization | Distance measures | Experiments<br>00000000 | Dimensionality reduction | Tools | Looking ahead |
|------------------|----------------|-------------------------|-------------------|-------------------------|--------------------------|-------|---------------|
|                  |                |                         |                   |                         |                          |       |               |

# Term Frequency–Inverse Document Frequency (TF-IDF)

## Definition (TF-IDF)

For a corpus of documents D:

- Term frequency (TF): P(w|d)
- Inverse document frequency (IDF):  $\log\left(\frac{|D|}{|[d\in D]|w\in d]}\right)$

| TF-I | DF: T  | F×                    | IDF            |                |                |       |               | .1. |       | ,      |            |       |       |   |
|------|--------|-----------------------|----------------|----------------|----------------|-------|---------------|-----|-------|--------|------------|-------|-------|---|
|      | _      | <i>d</i> <sub>1</sub> | d <sub>2</sub> | d <sub>3</sub> | d <sub>4</sub> |       |               |     | -     |        | 10         | )F    |       |   |
|      | Α      | 10                    | 10             | 10             | 10             |       |               |     |       | A      | 0.0        |       |       |   |
|      | B<br>C | 10<br>10              | 10<br>10       | 10<br>0        | 0<br>0         |       | $\Rightarrow$ |     |       | B<br>C | 0.2<br>0.0 | -     |       |   |
|      | D      | 0                     | 0              | 0              | 1              |       |               |     | -     | D      | 1.:        | 39    |       |   |
|      |        |                       | ₽              |                |                |       |               |     |       |        |            |       |       |   |
|      |        |                       | TF             |                |                |       |               |     |       | TF     | -ID        | F     |       | - |
|      | d      | 1                     | $d_2$          | d              | 3              | $d_4$ |               |     | $d_1$ |        | $d_2$      | $d_3$ | $d_4$ |   |
| Α    | 0.33   | 3 0                   | .33            | 0.50           | ) (            | ).91  |               | Α   | 0.00  | 0.     | 00         | 0.00  | 0.00  | - |
| В    | 0.33   | 3 0                   | .33            | 0.50           | ) (            | 00.0  |               | В   | 0.10  | 0.     | 10         | 0.14  | 0.00  |   |
| С    | 0.33   | 3 0                   | .33            | 0.00           | ) (            | 00.0  |               | С   | 0.23  | 0.2    | 23         | 0.00  | 0.00  |   |
| D    | 0.00   | ) (                   | 00.            | 0.00           | ) (            | 0.09  |               | D   | 0.00  | 0.0    | 00         | 0.00  | 0.13  |   |

(assume log(0) = 0)

| Overview | Matrix designs | Weighting/normalization | Distance measures | Experiments | Dimensionality reduction | Tools | Looking ahead |
|----------|----------------|-------------------------|-------------------|-------------|--------------------------|-------|---------------|
| 0000     | 00000          | 000000000               | 00000000          | 00000000    | 000                      |       |               |

Term Frequency–Inverse Document Frequency (TF-IDF)





# Term Frequency–Inverse Document Frequency (TF-IDF)

#### Selected TF-IDF values



| Overview | Matrix designs | Weighting/normalization | Distance measures | Experiments | Dimensionality reduction | Tools | Looking ahead |
|----------|----------------|-------------------------|-------------------|-------------|--------------------------|-------|---------------|
| 0000     | 00000          | 000000000               | 0000000           | 00000000    | 000                      |       |               |

# Pointwise Mutual Information (PMI)

# Definition (PMI)

| $\log\left(\frac{P(w,d)}{P(w)P(d)}\right)$ | (assume $\log(0) = 0$ ) |
|--------------------------------------------|-------------------------|
|--------------------------------------------|-------------------------|

|   |                       |                |                |       |               |          |      | P(v            | v, d) |       | Р     | (w)  |
|---|-----------------------|----------------|----------------|-------|---------------|----------|------|----------------|-------|-------|-------|------|
|   | <i>d</i> <sub>1</sub> | d <sub>2</sub> | d <sub>3</sub> | $d_4$ |               | Α        | 0.11 | 0.11           | 0.11  | 0.    | 11 (  | ).44 |
| Α | 10                    | 10             | 10             | 10    |               | В        | 0.11 | 0.11           | 0.11  | 0.0   | 00 00 | 0.33 |
| В | 10                    | 10             | 10             | 0     | $\Rightarrow$ | С        | 0.11 | 0.11           | 0.00  | 0.0   | 00 00 | ).22 |
| С | 10                    | 10             | 0              | 0     |               | D        | 0.00 | 0.00           | 0.00  | 0.0   | D1 (  | 0.01 |
| D | 0                     | 0              | 0              | 1     |               | P(d)     | 0.33 | 0.33           | 0.22  | 2 0.1 | 12    |      |
|   |                       |                |                |       |               | PMI<br>↓ |      |                |       |       |       |      |
|   |                       |                |                |       |               |          | C    | l <sub>1</sub> | $d_2$ | $d_3$ | $d_4$ |      |
|   |                       |                |                |       |               | A        | -0.2 | 8 -0           | .28   | 0.13  | 0.73  | _    |
|   |                       |                |                |       |               | В        | 0.0  | 1 0            | .01   | 0.42  | 0.00  |      |
|   |                       |                |                |       |               | C        | 0.4  | 2 0            | .42   | 0.00  | 0.00  |      |
|   |                       |                |                |       |               | D        | 0.0  |                | .00   | 0.00  | 2.11  |      |

| Overview | Matrix designs | Weighting/normalization | Distance measures | Experiments | Dimensionality reduction | Tools | Looking ahead |
|----------|----------------|-------------------------|-------------------|-------------|--------------------------|-------|---------------|
| 0000     | 00000          | 000000000               | 0000000           | 00000000    | 000                      |       |               |

# Pointwise Mutual Information (PMI)

Selected PMI values



# PMI with Lapacian smoothing

# Definition (Lapacian smoothing)

Add a constant amount to all the counts.

|   | $d_1$ | $d_2$ | $d_3$ | $d_4$ |          |   | <i>d</i> <sub>1</sub> | d <sub>2</sub> | d <sub>3</sub> | $d_4$ |
|---|-------|-------|-------|-------|----------|---|-----------------------|----------------|----------------|-------|
| Α | 10    | 10    | 10    | 10    |          | Α | -0.28                 | -0.28          | 0.13           | 0.73  |
| В | 10    | 10    | 10    | 0     | PMI<br>⇒ | В | 0.01                  | 0.01           | 0.42           | 0.00  |
| С | 10    | 10    | 0     | 0     |          | С | 0.42                  | 0.42           | 0.00           | 0.00  |
| D | 0     | 0     | 0     | 1     |          | D | 0.00                  | 0.00           | 0.00           | 2.11  |
|   |       |       |       |       |          |   |                       |                |                |       |

 $\downarrow +4$ 

|   | <i>d</i> <sub>1</sub> | d <sub>2</sub> | d <sub>3</sub> | $d_4$ |               |   | <i>d</i> <sub>1</sub> | d <sub>2</sub> | d <sub>3</sub> | $d_4$ |
|---|-----------------------|----------------|----------------|-------|---------------|---|-----------------------|----------------|----------------|-------|
|   |                       |                |                |       |               |   | -0.17                 |                |                |       |
| В | 14                    | 14             | 14             | 4     | $\Rightarrow$ | В | 0.03                  | 0.03           | 0.03           | -1.23 |
| С | 14                    | 14             | 4              | 4     |               | С | 0.52                  | 0.52           | -0.74          | -0.74 |
| D | 4                     | 4              | 4              | 5     |               | D | 0.30                  | 0.30           | 0.30           | 0.52  |

| Overview Matrix designs | Weighting/normalization | Distance measures | Experiments | Dimensionality reduction | Tools | Looking ahead |
|-------------------------|-------------------------|-------------------|-------------|--------------------------|-------|---------------|
| 00000 00000             | 000000000               | 00000000          | 00000000    | 000                      |       |               |

# PMI with contextual discounting

## Definition (Contextual rescaling)

For a matrix with *m* rows and *n* columns:

|                                                                                                                                                                                                                     |                                                                                                                                         | $\sum_{n=1}^{n} f$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| newpmi <sub>ij</sub> :                                                                                                                                                                                              | $= pmi_{ij} \times \frac{f_{ij}}{f_{ij}+1} \times \frac{min(\sum_{k=1}^{m} f_k)}{min(\sum_{k=1}^{m} f_k)}$                              | $\frac{1}{2}$ $\frac{1}$ |
|                                                                                                                                                                                                                     | $\gamma \gamma $ | y, Δ <sub>k=1</sub> · <sub>ik</sub> y · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Count matrix                                                                                                                                                                                                        | PMI                                                                                                                                     | $f_{ii}/(f_{ii}+1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $d_1$ $d_2$ $d_3$ $d_4$                                                                                                                                                                                             | $d_1$ $d_2$ $d_3$ $d_4$                                                                                                                 | $d_1$ $d_2$ $d_3$ $d_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| A 10 10 10 10                                                                                                                                                                                                       | A -0.28 -0.28 0.13 0.73                                                                                                                 | A 0.91 0.91 0.91 0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| B 10 10 10 0                                                                                                                                                                                                        | B 0.01 0.01 0.42 0.00                                                                                                                   | B 0.91 0.91 0.91 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{array}{cccccc} C & 10 & 10 & 0 & 0 \\ D & 0 & 0 & 0 & 1 \end{array}$                                                                                                                                        | C 0.42 0.42 0.00 0.00<br>D 0.00 0.00 0.00 2.11                                                                                          | C 0.91 0.91 0.00 0.00<br>D 0.00 0.00 0.00 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                     | 0.00 0.00 0.00 2.11                                                                                                                     | D 0.00 0.00 0.00 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\min(\sum_{k=1}^m f_{kj}, \sum_{k=1}^n f_{ik})$                                                                                                                                                                    | )                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\overline{\min(\sum_{k=1}^{m} f_{kj}, \sum_{k=1}^{n} f_{ik})}$                                                                                                                                                     |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $d_1  d_2  d_3$                                                                                                                                                                                                     | d <sub>4</sub> Sum                                                                                                                      | Discounted PMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $ \begin{array}{cccc} A & \frac{30}{30+1} & \frac{30}{30+1} & \frac{20}{20+1} \\ B & \frac{30}{30+1} & \frac{30}{30+1} & \frac{20}{20+1} \\ C & \frac{30}{30+1} & \frac{30}{30+1} & \frac{20}{20+1} \end{array} $   | $\frac{11}{11+1}$ 40<br>$\frac{11}{11}$ 30                                                                                              | $d_1$ $d_2$ $d_3$ $d_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\begin{array}{cccccc} A & & \hline 30+1 & \hline 30+1 & \hline 20+1 \\ B & & \hline 30 \\ C & & \hline 30+1 & \hline 30 \\ \hline 30+1 & 30 \\ \hline 30+1 & \hline 30+1 & \hline 20+1 \\ \hline 20+1 \end{array}$ | $\frac{11}{11+1}$ 30<br>$\frac{11}{11}$ 20                                                                                              | A = -0.24 = -0.24 = 0.11 = 0.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $C = \frac{30}{30+1} \frac{30}{30+1} \frac{20}{20+1}$                                                                                                                                                               | $\frac{11}{11+1}$ 20                                                                                                                    | B 0.01 0.01 0.36 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $D = \frac{1}{1+1} \frac{1}{1+1} \frac{1}{1+1}$                                                                                                                                                                     | $\frac{1}{1+1}$ 1                                                                                                                       | C 0.36 0.36 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sum 30 30 20                                                                                                                                                                                                        | 11                                                                                                                                      | D 0.00 0.00 0.00 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Overview Mat | rix designs W | eighting/normalization | Distance measures | Experiments | Dimensionality reduction | Tools | Looking ahead |
|--------------|---------------|------------------------|-------------------|-------------|--------------------------|-------|---------------|
| 0000 00      | 000 0         | 00000000               | 0000000           | 00000000    | 000                      |       |               |

# PMI with contextual discounting

## Definition (Contextual rescaling)

For a matrix with *m* rows and *n* columns:

| newpmi <sub>ij</sub>                                                                                                                                                                                                            | $newpmi_{ij} = pmi_{ij} \times \frac{f_{ij}}{f_{ij}+1} \times \frac{min(\sum_{k=1}^{m} f_{kj}, \sum_{k=1}^{n} f_{ik})}{min(\sum_{k=1}^{m} f_{kj}, \sum_{k=1}^{n} f_{ik}) + 1}$ |                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Count matrix $d_1  d_2  d_3  d_4$                                                                                                                                                                                               | $\begin{array}{c c} & PMI \\ & d_1 & d_2 & d_3 & d_4 \end{array}$                                                                                                              |                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                          | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                         | A       0.91       0.91       0.91       0.91         B       0.91       0.91       0.91       0.00         C       0.91       0.91       0.00       0.00         D       0.00       0.00       0.00       0.50 |  |  |  |  |  |  |  |  |  |
| $\begin{array}{c} \begin{array}{c} d_1 & d_2 & d_3 \\ \hline d_1 & d_2 & 0.97 \\ \hline A & 0.97 & 0.97 & 0.95 \\ B & 0.97 & 0.97 & 0.95 \\ C & 0.95 & 0.95 & 0.95 \\ D & 0.50 & 0.50 & 0.50 \\ Sum & 30 & 30 & 20 \end{array}$ | d₄         Sum           0.92         40           0.92         30           0.92         20           0.50         1                                                          | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                          |  |  |  |  |  |  |  |  |  |

| Overview | Matrix designs | Weighting/normalization | Distance measures | Experiments | Dimensionality reduction | Tools | Looking ahead |
|----------|----------------|-------------------------|-------------------|-------------|--------------------------|-------|---------------|
| 0000     | 00000          | 00000000000             | 00000000          | 00000000    | 000                      |       |               |

# Expected and observed/expected values

## Definition (Expected values)

$$expected_{ij} = \sum_{r} observed_{ir} \times \left( \frac{\sum_{k} observed_{kj}}{\sum_{kr} observed_{kr}} \right)$$

|     |       | Obse  | ervec | 1     |     | - |     |       | Expec          | ted   |       |     |
|-----|-------|-------|-------|-------|-----|---|-----|-------|----------------|-------|-------|-----|
|     | $d_1$ | $d_2$ | $d_3$ | $d_4$ | Sum |   |     | $d_1$ | d <sub>2</sub> | $d_3$ | $d_4$ | Sum |
| Α   | 10    | 10    | 10    | 10    | 40  | _ | Α   | 13.19 | 13.19          | 8.79  | 4.84  | 40  |
| В   | 10    | 10    | 10    | 0     | 30  |   | В   | 9.89  | 9.89           | 6.59  | 3.63  | 30  |
| С   | 10    | 10    | 0     | 0     | 20  |   | С   | 6.59  | 6.59           | 4.40  | 2.42  | 20  |
| D   | 0     | 0     | 0     | 1     | 1   |   | D   | 0.33  | 0.33           | 0.22  | 0.12  | 1   |
| Sum | 30    | 30    | 20    | 11    | 91  |   | Sum | 30    | 30             | 20    | 11    | 91  |

|   | Observed/Expected |       |       |       |  |  |  |  |  |
|---|-------------------|-------|-------|-------|--|--|--|--|--|
|   | $d_1$             | $d_2$ | $d_3$ | $d_4$ |  |  |  |  |  |
| Α | 0.76              | 0.76  | 1.14  | 2.07  |  |  |  |  |  |
| В | 1.01              | 1.01  | 1.52  | 0.00  |  |  |  |  |  |

0.00

0.00

0.00

0.00

8.27

1.52 1.52

С

D 0.00

| Overview | Matrix designs | Weighting/normalization | Distance measures | Experiments | Dimensionality reduction | Tools | Looking ahead |
|----------|----------------|-------------------------|-------------------|-------------|--------------------------|-------|---------------|
| 0000     | 00000          | 0000000000              | 00000000          | 00000000    | 000                      |       |               |

## Other weighting/normalization schemes

- t-test:  $\frac{p(w,d)-p(w)p(d)}{\sqrt{p(w)p(d)}}$
- Positive PMI: set all PMI values < 0 to 0
- TF-IDF variants that seek to be sensitive to the empirical distribution of words (Church and Gale 1995; Manning and Schütze 1999:553; Baayen 2001)

# Relationships and generalizations

- Many weighting schemes end up favoring rare events that may not be trustworthy. Discounting procedures seek to combat this.
- The magnitude of counts can be important; [1, 10] and [1000, 10000] might represent very different situations; creating probability distributions or length normalizing will obscure this.
- TF-IDF severely punishes words that appear in many documents it fails for dense matrices, which can include word  $\times$  word matrices

 Overview
 Matrix designs
 Weighting/normalization
 Distance measures
 Experiments
 Dimensionality reduction
 Tools
 Looking ahead

 0000
 000000
 00000000
 00000000
 00000000
 0000
 000

## Back to the Horoscoped challenge problem

Get my version of the data (restricted link):

https://stanford.edu/class/cs224u/restricted/data/horoscoped.csv.zip

Or: /afs/ir/class/cs224u/restricted/data/horoscoped.csv.zip

| Sign            | Texts          | 80-texts p |        | 80-156          |                       |           |  |
|-----------------|----------------|------------|--------|-----------------|-----------------------|-----------|--|
| aquarius        | 2,744          | mean text  | 0      | 54 wo<br>1,768, | rds (median 43<br>010 | , std: 30 |  |
| aries<br>cancer | 2,746<br>2.745 | vocab siz  | е      | 23,09           | 1                     |           |  |
| capricorn       | 2,743          |            |        | _               |                       |           |  |
| gemini          | 2,745          | Туре       | Texts  |                 | Category              | Texts     |  |
| leo             | 2,745          | daily      | 30.634 | _               | career                | 5,129     |  |
| libra           | 2,745          | monthly    | 432    |                 | extended              | 4,378     |  |
| pisces          | 2,746          | weekly     | 1,860  |                 | love                  | 768       |  |
| sagittarius     | 2,740          | Total      | 32,926 |                 | love-couples          | 4,375     |  |
| scorpio         | 2,736          |            | ,      | _               | love-flirt            | 4,375     |  |
| taurus          | 2,746          |            |        |                 | love-singles          | 4,375     |  |
| virgo           | 2,744          |            |        |                 | overview              | 5,147     |  |
| Total           | 32,926         |            |        |                 | teen                  | 4,379     |  |
|                 |                |            |        |                 | Total                 | 32,926    |  |

| Overview | Matrix designs | Weighting/normalization | Distance measures | Experiments | Dimensionality reduction | Tools | Looking ahead |
|----------|----------------|-------------------------|-------------------|-------------|--------------------------|-------|---------------|
| 0000     | 00000          | 000000000               | 00000000          | 00000000    | 000                      |       |               |

## Vector distance measures

- All the definitions are in terms of *distance* measures. They can be turned into similarity measures by subtracting appropriate constants.
- Examples focus on row vectors; the definitions and assessments hold for column-wise comparisons as well.
- Further reading:
  - van Rijsbergen 1979:§3
  - Manning and Schütze 1999:§8.5
  - Lee 1999
  - Bullinaria and Levy 2007
  - Turney and Pantel 2010:§4.4-4.5

| Overview | Matrix designs | Weighting/normalization | Distance measures | Experiments | Dimensionality reduction | Tools | Looking ahead |
|----------|----------------|-------------------------|-------------------|-------------|--------------------------|-------|---------------|
| 0000     | 00000          | 000000000               | ●0000000          | 00000000    | 000                      |       |               |

## Definition (Euclidean distance)

$$\begin{array}{c|ccc} d_x & d_y \\ \hline A & 2 & 4 \\ B & 10 & 15 \\ C & 14 & 10 \\ \end{array}$$

| Overview | Matrix designs | Weighting/normalization | Distance measures | Experiments | Dimensionality reduction | Tools | Looking ahead |
|----------|----------------|-------------------------|-------------------|-------------|--------------------------|-------|---------------|
| 0000     | 00000          | 000000000               | ●0000000          | 00000000    | 000                      |       |               |

## Definition (Euclidean distance)



| Overview | Matrix designs | Weighting/normalization | Distance measures | Experiments | Dimensionality reduction | Tools | Looking ahead |
|----------|----------------|-------------------------|-------------------|-------------|--------------------------|-------|---------------|
| 0000     | 00000          | 000000000               | ●0000000          | 00000000    | 000                      |       |               |

## Definition (Euclidean distance)



| Overview | Matrix designs | Weighting/normalization | Distance measures | Experiments | Dimensionality reduction | Tools | Looking ahead |
|----------|----------------|-------------------------|-------------------|-------------|--------------------------|-------|---------------|
| 0000     | 00000          | 000000000               | ●0000000          | 00000000    | 000                      |       |               |

## Definition (Euclidean distance)



| Overview Matrix | designs Weighting/normaliz              | ation Distance measu | res Experiments | Dimensionality reduction | n Tools | Looking ahead |
|-----------------|-----------------------------------------|----------------------|-----------------|--------------------------|---------|---------------|
| 0000 0000       | 000000000000000000000000000000000000000 | 0000000              | 0000000         | 000 0                    |         |               |

## Definition (Euclidean distance)



| Overview Matrix desig | ns Weighting/normalization | Distance measures | Experiments | Dimensionality reduction | Tools | Looking ahead |
|-----------------------|----------------------------|-------------------|-------------|--------------------------|-------|---------------|
| 00000 00000           | 000000000                  | ●0000000          | 00000000    | 000                      |       |               |

#### Euclidean distance

#### Definition (Euclidean distance)

Between vectors x and y of dimension n:  $\sqrt{\sum_{i=1}^{n} |x_i - y_i|^2}$ 



| Overview | Matrix designs | Weighting/normalization | Distance measures | Experiments | Dimensionality reduction | Tools | Looking ahead |
|----------|----------------|-------------------------|-------------------|-------------|--------------------------|-------|---------------|
| 0000     | 00000          | 0000000000              | 0000000           | 00000000    | 000                      |       |               |

### Cosine distance

#### Definition (Cosine distance)

Between vectors x and y of dimension n:  $1 - \frac{\sum_{i=1}^{n} x_i \times y_i}{\|x\| \times \|y\|}$ 



| Overview | Matrix designs | Weighting/normalization | Distance measures | Experiments | Dimensionality reduction | Tools | Looking ahead |
|----------|----------------|-------------------------|-------------------|-------------|--------------------------|-------|---------------|
| 0000     | 00000          | 0000000000              | 0000000           | 00000000    | 000                      |       |               |

### Cosine distance

#### Definition (Cosine distance)

Between vectors x and y of dimension n:  $1 - \frac{\sum_{i=1}^{n} x_i \times y_i}{\|x\| \times \|y\|}$ 



| Overview | Matrix designs | Weighting/normalization | Distance measures | Experiments | Dimensionality reduction | Tools | Looking ahead |
|----------|----------------|-------------------------|-------------------|-------------|--------------------------|-------|---------------|
| 0000     | 00000          | 0000000000              | 0000000           | 00000000    | 000                      |       |               |

### Cosine distance

### Definition (Cosine distance)

Between vectors x and y of dimension n:  $1 - \frac{\sum_{i=1}^{n} x_i \times y_i}{\|x\| \times \|y\|}$ 

|                                                                                                                       | A<br>B<br>C                 | <i>d<sub>x</sub></i><br>2<br>10<br>14 | <i>d</i> <sub>y</sub><br>4<br>15<br>10 | L2 norm has no effect $\Rightarrow$                                                          | A<br>B<br>C | <i>d</i> <sub>x</sub><br>0.45<br>0.55<br>0.81 | <i>d<sub>y</sub></i><br>0.89<br>0.83<br>0.58 |                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------|-------------|-----------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c} 15\\14\\12\\12\\10\\6\\8\\7\\6\\3\\2\\1\\0\end{array}\right) - (2,4)\\(2,4)\\3\\2\\1\\0\end{array}$ | (4×15)<br>  10, 15  <br>4 5 | /<br>                                 |                                        | 0,15)<br>(14,10)<br>(14,10)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0.0 0.1     |                                               |                                              | $\begin{array}{c} (0.89 \times 0.83) \\     \times   0.55, 0.83   \\ \bullet \\ (0.81, 0.58) \\    \times   0.83 \times 0.58) \\    \times   0.81, 0.58   \\ \bullet \\ 0.95, 0.9, 1.0 \end{array} = 0.065$ |

| Overview | Matrix designs | Weighting/normalization | Distance measures | Experiments | Dimensionality reduction | Tools | Looking ahead |
|----------|----------------|-------------------------|-------------------|-------------|--------------------------|-------|---------------|
| 0000     | 00000          | 000000000               | 00000000          | 00000000    | 000                      |       |               |

### Dice and Jaccard distances

#### Definition (Dice distance; Dice 1945)

Between vectors *x* and *y* of dimension *n*:

 $1 - \frac{2 \times \sum_{i=1}^{n} \min(x_i, y_i)}{\sum_{i=1}^{n} x_i + y_i}$ 

Alternatively, define a mapping  $S_n$  from vectors to sets such that  $S_n(v) = \{v_i > n\}$  for  $n \ge 0$ , and use  $1 - \frac{2 \times |S_n(x) \cap S_n(y)|}{|S_n(x)| + |S_n(y)|}$ 

#### Definition (Jaccard distance)

Between vectors x and y of dimension n:

$$\frac{\sum_{i=1}^{n}\min(x_i, y_i)}{\sum_{i=1}^{n}\max(x_i, y_i)}$$

Alternatively, with  $S_n$  from above, use  $\frac{|S_n(x) \cap S_n(y)|}{|S_n(x) \cup S_n(y)|}$ 

- Jaccard and Dice give different numerical values, with Jaccard penalizing large numerical differences more, but the two deliver identical rankings (van Rijsbergen 1979:§3; Lee 1999).
- Cosine distance penalizes large numerical differences less than both (Manning and Schütze 1999:299).
- Dice is not a true distance metric: it fails the triangle inequality.

| Overview Matrix designs W | Veighting/normalization | Distance measures | Experiments | Dimensionality reduction | Tools | Looking ahead |
|---------------------------|-------------------------|-------------------|-------------|--------------------------|-------|---------------|
| 0000 00000 0              | 000000000               | 0000000           | 00000000    | 000                      |       |               |

# KL divergence

# Definition (KL divergence)

Between probability distributions *p* and *q*:

$$D(p||q) = \sum_{i=1}^{n} p_i \log(\frac{p_i}{q_i})$$

#### p is the reference distribution.

Before calculation, map all 0s to  $\epsilon$ .

|        | <i>d</i> <sub>1</sub> | $d_2$   | d <sub>3</sub> | $d_4$   | $d_5$  |        | $d_1$        | d <sub>2</sub>               | d <sub>3</sub> | $d_4$        | $d_5$        |
|--------|-----------------------|---------|----------------|---------|--------|--------|--------------|------------------------------|----------------|--------------|--------------|
| B<br>C | 10<br>5<br>14<br>13   | 8<br>11 | 1<br>0         | 2<br>10 | 5<br>9 | B<br>C | 0.24<br>0.32 | 0.34<br>0.38<br>0.25<br>0.23 | 0.05<br>0.00   | 0.10<br>0.23 | 0.24<br>0.20 |



| Word | KL distance from A | Rank |
|------|--------------------|------|
| Α    | 0.00               | 1    |
| С    | 0.03               | 2    |
| В    | 0.10               | 3    |
| D    | 0.19               | 4    |

| Overview | Matrix designs | Weighting/normalization | Distance measures | Experiments | Dimensionality reduction | Tools | Looking ahead |
|----------|----------------|-------------------------|-------------------|-------------|--------------------------|-------|---------------|
| 0000     | 00000          | 000000000               | 00000000          | 00000000    | 000                      |       |               |

### KL divergence with skew

#### Definition ( $\alpha$ skew; Lee 1999)

Between probability distributions *p* and *q*:

$$\mathsf{Skew}_{lpha}(p,q) = \mathsf{D}(p \| lpha q + (1-lpha)p)$$

p = [0.1, 0.2, 0.7] q = [0.7, 0.2, 0.1] D(p||q) = 1.17







## Relationships and generalizations

- Euclidean, Jaccard, and Dice with raw count vectors will tend to favor raw frequency over distributional patterns.
- 2 Euclidean with L2-normed vectors is equivalent to cosine w.r.t. ranking (Manning and Schütze 1999:301).
- 3 Jaccard and Dice are equivalent w.r.t. ranking.
- Obt L2-norms and probability distributions can obscure differences in the amount/strength of evidence, which can in turn have an effect on the reliability of cosine, normed-euclidean, and KL divergence. These shortcoming might be addressed through weighting schemes.
- Skew is KL but with a preliminary step that gives special credence to the reference distribution.

| Overview Matrix | designs Weighting | g/normalization Distanc | e measures Expe | periments D | Dimensionality reduction | Tools | Looking ahead |
|-----------------|-------------------|-------------------------|-----------------|-------------|--------------------------|-------|---------------|
| 0000 000        | 00000             | 00000 0000              | 00000 0000      | 000000 0    | 000                      |       |               |

#### Other vector distance measures

#### For vectors x and y of dimension n

Let  $X = S_n(x)$  and  $Y = S_n(y)$ , where  $S_n(v) = \{v_i > n\}$  for  $n \ge 0$ .

- Matching coefficient (counts): ∑<sub>i=1</sub><sup>n</sup> min(x<sub>i</sub>, y<sub>i</sub>)
- Matching coefficient (binary):  $|X \cap Y|$

• Overlap (counts): 
$$\frac{\sum_{i=1}^{n} \min(x_i, y_i)}{\min\left(\sum_{i=1}^{n} x_i, \sum_{i=1}^{n} y_i\right)}$$

• Overlap (binary): 
$$\frac{|x_{\cap Y}|}{\min(|x|, |Y|)}$$

• Manhattan distance:  $\sum_{i=1}^{n} |x_i - y_y|$ 

# For probability distributions p and q

- Symmetric KL: D(p||q) + D(q||p)
- Jensen-Shannon:  $\frac{1}{2}D(p||\frac{p+q}{2}) + \frac{1}{2}D(q||\frac{p+q}{2})$

### Back to the Horoscoped challenge problem

Get my version of the data (restricted link):

https://stanford.edu/class/cs224u/restricted/data/horoscoped.csv.zip

Or: /afs/ir/class/cs224u/restricted/data/horoscoped.csv.zip

| Sign              | Texts          | 80-texts p                      |        | 80-156                                     | -            |        |  |
|-------------------|----------------|---------------------------------|--------|--------------------------------------------|--------------|--------|--|
| aquarius<br>aries | 2,744<br>2,746 | mean text length<br>token count |        | 54 words (median 43, std: 30)<br>1,768,010 |              |        |  |
| cancer            | 2,745          | vocab siz                       | e      | 23,09                                      | 1            |        |  |
| capricorn         | 2,744          | Turne                           | Tayta  | -                                          | Catagory     | Tayta  |  |
| gemini            | 2,745          | Туре                            | Texts  | _                                          | Category     | Texts  |  |
| leo               | 2,745          | daily                           | 30,634 |                                            | career       | 5,129  |  |
| libra             | 2,745          | monthly                         | 432    |                                            | extended     | 4,378  |  |
| pisces            | 2,746          | weekly                          | 1,860  |                                            | love         | 768    |  |
| sagittarius       | 2,740          | Total                           | 32,926 |                                            | love-couples | 4,375  |  |
| scorpio           | 2,736          |                                 | 0_,0_0 | _                                          | love-flirt   | 4,375  |  |
| taurus            | 2,746          |                                 |        |                                            | love-singles | 4,375  |  |
| virgo             | 2,744          |                                 |        |                                            | overview     | 5,147  |  |
| Total             | 32,926         |                                 |        |                                            | teen         | 4,379  |  |
|                   |                |                                 |        |                                            | Total        | 32,926 |  |

### Some experimental comparisons

- Matrices derived from the training portion of this IMDB data release: http://ai.stanford.edu/~amaas/data/sentiment/:
  - word × document matrices: 3000 × 3456
  - word  $\times$  word matrices: 3000  $\times$  3000
- For word × document, all the reviews for each movie were pooled into a single document. (These matrices are sparse but not absurdly so.)
- For word × word, two words co-occur if they appear in the same document as defined above. (This gives really dense matrices.)
- For the sake of computational efficiency, the matrices contain only the top 3,000 words ordered by frequency. I did no additional filtering.
- Available:
  - http://www.stanford.edu/class/cs224u/data/imdb-worddoc.csv.zip (From your Stanford account: /afs/ir/class/cs224u/WWW/data/imdb-worddoc.csv.zip)
  - http://www.stanford.edu/class/cs224u/data/imdb-wordword.csv.zip (From your Stanford account: /afs/ir/class/cs224u/WWW/data/imdb-wordword.csv.zip)

| Overview | Matrix designs | Weighting/normalization | Distance measures | Experiments | Dimensionality reduction | Tools | Looking ahead |
|----------|----------------|-------------------------|-------------------|-------------|--------------------------|-------|---------------|
| 0000     | 00000          | 000000000               | 00000000          | 0000000     | 000                      |       |               |

# outstanding (417 tokens): raw counts

### word $\times$ document

| Euclidean     | Cosine      | Jaccard/Dice | KL          | Skew95      | Skew80       |
|---------------|-------------|--------------|-------------|-------------|--------------|
| outstanding   | outstanding | outstanding  | outstanding | outstanding | outstanding  |
| delight       | and         | superb       | and         | great       | excellent    |
| successfully  | as          | supporting   | as          | as          | performances |
| extraordinary | in          | powerful     | in          | and         | performances |
| fortunately   | of          | moving       | is          | best        | wonderful    |
| nonetheless   | great       | today        | of          | in          | great        |
| nowadays      | who         | perfectly    | the         | well        | best         |
| poignant      | is          | emotional    | a           | of          | perfect      |
| viewed        | the         | roles        | to          | very        | as           |
| marvelous     | performance | tells        | this        | is          | well         |

| Euclidean   | Cosine         | Jaccard/Dice | KL           | Skew95       | Skew80       |
|-------------|----------------|--------------|--------------|--------------|--------------|
| outstanding | outstanding    | outstanding  | outstanding  | outstanding  | outstanding  |
| intense     | performances   | stunning     | performances | performances | performances |
| stunning    | excellent      | recommended  | performance  | excellent    | excellent    |
| lovely      | superb         | intense      | excellent    | best         | best         |
| thoroughly  | beautifully    | lovely       | best         | performance  | performance  |
| delivers    | brilliant      | delivers     | brilliant    | as           | as           |
| fascinating | cinematography | fascinating  | wonderful    | brilliant    | brilliant    |
| tragic      | strong         | thoroughly   | as           | wonderful    | wonderful    |
| fresh       | memorable      | fresh        | role         | great        | story        |
| recommended | and            | includes     | great        | role         | great        |

| Overview | Matrix designs | Weighting/normalization | Distance measures | Experiments | Dimensionality reduction | Tools | Looking ahead |
|----------|----------------|-------------------------|-------------------|-------------|--------------------------|-------|---------------|
| 0000     | 00000          | 000000000               | 00000000          | 0000000     | 000                      |       |               |

# good (14,841 tokens): raw counts

# word $\times$ document

| Euclidean                                                                   | Cosine                                                          | Jaccard/Dice                                                              | KL                                                            | Skew95                                                         | Skew80                                                         |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|
| good<br>really<br>some<br>very<br>can<br>when<br>time<br>up<br>more<br>only | good<br>a<br>but<br>and<br>the<br>it<br>this<br>is<br>to<br>for | good<br>some<br>if<br>has<br>out<br>just<br>there<br>very<br>like<br>when | good<br>a<br>the<br>and<br>of<br>to<br>this<br>is<br>in<br>it | good<br>a<br>the<br>and<br>it<br>this<br>but<br>is<br>to<br>of | good<br>a<br>the<br>and<br>but<br>it<br>is<br>this<br>to<br>of |

| Euclidean | Cosine    | Jaccard/Dice | KL     | Skew95 | Skew80 |
|-----------|-----------|--------------|--------|--------|--------|
| good      | good      | good         | good   | good   | good   |
| very      | pretty    | even         | but    | but    | but    |
| even      | better    | very         | it     | it     | it     |
| no        | but       | it's         | this   | this   | this   |
| it's      | acting    | no           | really | really | really |
| up        | worth     | up           | some   | some   | some   |
| only      | actually  | only         | like   | like   | like   |
| time      | basically | which        | better | better | all    |
| which     | like      | can          | not    | not    | not    |
| can       | decent    | time         | all    | all    | better |

| Overview N | Vatrix designs | Weighting/normalization | Distance measures | Experiments | Dimensionality reduction | Tools | Looking ahead |
|------------|----------------|-------------------------|-------------------|-------------|--------------------------|-------|---------------|
| 0000       | 00000          | 000000000               | 0000000           | 000000      | 000                      |       |               |

# outstanding (417 tokens): TF-IDF

# $\text{word} \times \text{document}$

| Euclidean                                                                    | Cosine                                                                                                | Jaccard/Dice                                                                                                      | KL                                                                   | Skew95                                                                                 | Skew80                                                                                                                   |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| outstanding<br>a<br>of<br>the<br>and<br>to<br>this<br>in<br>viewed<br>remain | outstanding<br>viewed<br>remain<br>kim<br>superb<br>aware<br>remarkable<br>adds<br>existence<br>color | outstanding<br>superb<br>excellent<br>supporting<br>wonderfully<br>wonderful<br>performances<br>powerful<br>today | outstanding<br>and<br>as<br>is<br>of<br>in<br>the<br>a<br>this<br>to | outstanding<br>great<br>as<br>excellent<br>very<br>and<br>time<br>best<br>has<br>story | outstanding<br>superb<br>excellent<br>wonderful<br>performance<br>great<br>best<br>perfect<br>performances<br>supporting |

| Euclidean   | Cosine       | Jaccard/Dice | KL           | Skew95       | Skew80       |
|-------------|--------------|--------------|--------------|--------------|--------------|
| outstanding | outstanding  | outstanding  | outstanding  | outstanding  | outstanding  |
| it's        | performances | beautifully  | performances | performances | performances |
| mother      | excellent    | stunning     | excellent    | excellent    | excellent    |
| complex     | although     | finest       | wonderful    | wonderful    | wonderful    |
| portrayal   | wonderful    | fascinating  | brilliant    | brilliant    | brilliant    |
| fantastic   | gives        | tragic       | perfect      | !            | !            |
| innocent    | actor        | provides     | roles        | 10           | 10           |
| convincing  | perfect      | surprising   | although     | ?            | ?            |
| superb      | brilliant    | terrific     | !            | a            | a            |
| minor       | it's         | physical     | 10           | able         | able         |

| Overview | Matrix designs | Weighting/normalization | Distance measures | Experiments | Dimensionality reduction | Tools | Looking ahead |
|----------|----------------|-------------------------|-------------------|-------------|--------------------------|-------|---------------|
| 0000     | 00000          | 0000000000              | 00000000          | 00000000    | 000                      |       |               |

# good (14,841 tokens): TF-IDF

#### word $\times$ document

| Euclidean | Cosine | Jaccard/Dice | KL   | Skew95 | Skew80 |
|-----------|--------|--------------|------|--------|--------|
| good      | good   | good         | good | good   | good   |
| but       | а      | i            | the  | а      | а      |
| is        | the    | but          | а    | the    | the    |
| it        | is     | not          | of   | and    | and    |
| that      | and    | as           | and  | of     | is     |
| for       | of     | was          | this | is     | of     |
| in        | this   | are          | to   | this   | to     |
| with      | to     | for          | is   | to     | but    |
| i         | but    | movie        | in   | it     | this   |
| not       | in     | with         | it   | in     | it     |

#### $\text{word}\times\text{word}$

Fail! good co-occurs with every other word (document-level)!

| Overview | Matrix designs | Weighting/normalization | Distance measures | Experiments | Dimensionality reduction | Tools | Looking ahead |
|----------|----------------|-------------------------|-------------------|-------------|--------------------------|-------|---------------|
| 0000     | 00000          | 000000000               | 00000000          | 000000000   | 000                      |       |               |

# outstanding (417 tokens): PPMI

# word $\times$ document

| Euclidean                                                            | Cosine                                                                                                                       | Jaccard/Dice                                                                                                          | KL                                                                  | Skew95                                                                                                                        | Skew80                                                                                                                      |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| outstanding<br>and<br>the<br>of<br>in<br>a<br>to<br>is<br>as<br>that | outstanding<br>superb<br>excellent<br>wonderful<br>performance<br>performances<br>supporting<br>finest<br>emotional<br>10/10 | outstanding<br>superb<br>terrific<br>date<br>10/10<br>emotional<br>incredible<br>powerful<br>compelling<br>supporting | outstanding<br>and<br>of<br>great<br>as<br>an<br>in<br>well<br>film | outstanding<br>superb<br>excellent<br>wonderful<br>performances<br>performance<br>perfect<br>great<br>supporting<br>brilliant | outstanding<br>superb<br>wonderful<br>excellent<br>powerful<br>emotional<br>terrific<br>performances<br>10/10<br>supporting |

| Euclidean                                                                                                        | Cosine                                                                                                             | Jaccard/Dice                                                                                                                  | KL                                                                                 | Skew95                                                                                                      | Skew80                                                                                                             |
|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| outstanding<br>performances<br>performance<br>excellent<br>best<br>wonderful<br>brilliant<br>role<br>great<br>as | outstanding<br>performances<br>performance<br>excellent<br>wonderful<br>finest<br>brilliant<br>superb<br>as<br>and | outstanding<br>performances<br>finest<br>performance<br>superb<br>portrayal<br>excellent<br>wonderful<br>terrific<br>stunning | outstanding<br>as<br>and<br>of<br>by<br>performances<br>in<br>youth<br>performance | outstanding<br>performances<br>as<br>and<br>performance<br>wonderful<br>excellent<br>finest<br>an<br>superb | outstanding<br>performances<br>performance<br>wonderful<br>excellent<br>as<br>and<br>finest<br>superb<br>brilliant |

| Overview | Matrix designs | Weighting/normalization | Distance measures | Experiments | Dimensionality reduction | Tools | Looking ahead |
|----------|----------------|-------------------------|-------------------|-------------|--------------------------|-------|---------------|
| 0000     | 00000          | 000000000               | 00000000          | 000000000   | 000                      |       |               |

# good (14,841 tokens): PPMI

# word $\times$ document

| Euclidean                                                      | Cosine                                                                   | Jaccard/Dice                                                                | KL                                                               | Skew95                                                                   | Skew80                                                                   |
|----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|
| good<br>a<br>is<br>the<br>but<br>and<br>of<br>this<br>to<br>in | good<br>movie<br>bad<br>acting<br>but<br>very<br>not<br>this<br>was<br>i | good<br>movie<br>acting<br>very<br>not<br>bad<br>really<br>i<br>like<br>was | good<br>movie<br>this<br>a<br>but<br>was<br>i<br>is<br>it<br>not | good<br>movie<br>this<br>but<br>bad<br>acting<br>not<br>i<br>was<br>like | good<br>movie<br>bad<br>acting<br>but<br>not<br>this<br>very<br>i<br>was |

| Euclidean | Cosine | Jaccard/Dice | KL           | Skew95 | Skew80 |
|-----------|--------|--------------|--------------|--------|--------|
| good      | good   | good         | good         | good   | good   |
| it        | really | really       | better       | really | really |
| but       | pretty | better       | really       | better | better |
| really    | movie  | movie        | pretty       | pretty | pretty |
| this      | better | lot          | acting       | acting | movie  |
| like      | acting | acting       | entertaining | movie  | acting |
| some      | ok     | pretty       | lot          | lot    | lot    |
| all       | liked  | like         | some         | ok     | ok     |
| so        | watch  | some         | decent       | watch  | watch  |
| have      | it     | watch        | average      | liked  | liked  |

| Overview | Matrix designs | Weighting/normalization | Distance measures | Experiments | Dimensionality reduction | Tools | Looking ahead |
|----------|----------------|-------------------------|-------------------|-------------|--------------------------|-------|---------------|
| 0000     | 00000          | 000000000               | 0000000           | 000000000   | 000                      |       |               |

# outstanding (417 tokens): PPMI with discounting

### word $\times$ document

| Euclidean   | Cosine       | Jaccard/Dice | KL          | Skew95       | Skew80       |
|-------------|--------------|--------------|-------------|--------------|--------------|
| outstanding | outstanding  | outstanding  | outstanding | outstanding  | outstanding  |
| the         | superb       | superb       | and         | performances | superb       |
| and         | performances | performances | of          | excellent    | wonderful    |
| of          | excellent    | wonderful    | great       | wonderful    | performances |
| in          | wonderful    | terrific     | is          | superb       | excellent    |
| to          | performance  | excellent    | as          | performance  | performance  |
| a           | great        | supporting   | well        | great        | brilliant    |
| is          | actor        | 10/10        | in          | perfect      | emotional    |
| that        | supporting   | date         | an          | brilliant    | supporting   |
| victoria    | perfect      | performance  | film        | supporting   | perfect      |

#### $\mathsf{word} \times \mathsf{word}$

| Euclidean                                                                                                         | Cosine                                                                                                             | Jaccard/Dice                                                                                                                   | KL                                                                                 | Skew95                                                                                                      | Skew80                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| outstanding<br>performances<br>performance<br>excellent<br>best<br>as<br>great<br>wonderful<br>story<br>brilliant | outstanding<br>performances<br>performance<br>excellent<br>wonderful<br>finest<br>brilliant<br>superb<br>as<br>and | outstanding<br>performances<br>performance<br>finest<br>excellent<br>superb<br>wonderful<br>portrayal<br>terrific<br>brilliant | outstanding<br>as<br>and<br>performances<br>of<br>by<br>in<br>youth<br>performance | outstanding<br>performances<br>as<br>performance<br>and<br>wonderful<br>excellent<br>finest<br>an<br>superb | outstanding<br>performances<br>performance<br>wonderful<br>excellent<br>as<br>and<br>finest<br>superb<br>brilliant |

| Overview Matrix | designs Weightin | g/normalization Distanc | e measures Experiment | ts Dimensionality | reduction To | ols L | ooking ahead |
|-----------------|------------------|-------------------------|-----------------------|-------------------|--------------|-------|--------------|
| 0000 000        | 00000            | 0000 0000               | 00000 000000          | 000 000           |              |       |              |

# good (14,841 tokens): PPMI with discounting

### word $\times$ document

| Euclidean                                                      | Cosine                                                                       | Jaccard/Dice                                                               | KL                                                                    | Skew95                                                                | Skew80                                                                      |
|----------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------|
| good<br>a<br>the<br>is<br>and<br>but<br>to<br>of<br>in<br>that | good<br>movie<br>acting<br>bad<br>but<br>very<br>not<br>this<br>pretty<br>is | good<br>movie<br>acting<br>very<br>not<br>but<br>i<br>really<br>bad<br>was | good<br>movie<br>this<br>a<br>but<br>was<br>is<br>it<br>i<br>i<br>not | good<br>movie<br>this<br>but<br>acting<br>bad<br>i<br>not<br>was<br>a | good<br>movie<br>acting<br>bad<br>but<br>very<br>not<br>this<br>i<br>really |

| Euclidean | Cosine | Jaccard/Dice | KL           | Skew95 | Skew80 |
|-----------|--------|--------------|--------------|--------|--------|
| good      | good   | good         | good         | good   | good   |
| it        | really | really       | better       | really | really |
| but       | pretty | better       | really       | better | better |
| really    | movie  | movie        | pretty       | pretty | pretty |
| this      | better | lot          | acting       | acting | movie  |
| like      | acting | acting       | entertaining | movie  | acting |
| some      | ok     | pretty       | lot          | lot    | lot    |
| all       | liked  | like         | some         | ok     | ok     |
| so        | watch  | some         | decent       | watch  | watch  |
| have      | it     | watch        | average      | liked  | liked  |

| Overview | Matrix designs | Weighting/normalization | Distance measures | Experiments | Dimensionality reduction | Tools | Looking ahead |
|----------|----------------|-------------------------|-------------------|-------------|--------------------------|-------|---------------|
| 0000     | 00000          | 0000000000              | 00000000          | 00000000    | 000                      |       |               |
|          |                |                         |                   |             |                          |       |               |

### **Dimensionality reduction**

- The goal of dimensionality reduction is eliminate rows/columns that are highly correlated while bringing similar things together and pushing dissimilar things apart.
- This section looks briefly at Latent Semantic Analysis (Deerwester et al. 1990), which seeks not only to find a reduced-sized matrix but also to capture similaries that come not just from direct co-occurrence, but also from second-order co-occurrence.
- Latent Semantic Analysis is an application of truncated singular value decomposition (SVD). SVD is a central matrix operation; 'truncation' here means looking only at submatrices of the full decomposition.
- For more:
  - Turney and Pantel 2010:§4.3
  - Manning and Schütze 1999:§15.4
  - Manning et al. 2009:§18

# Latent Semantic Analysis (truncated singular value decomposition)

- I won't try to give a complete exposition of SVD. Instead, I'll try to convey the intuition in 2d and then work through an example.
- For the 2d case, SVD is closely related to fitting a least-squares regression, where the idea is to find a line that minimizes the errors (equivalently, whose vector of errors is orthogonal to the fitted line):



- The least-squares regression reduces the matrix to a line.
- Trunctated SVD, as applied in LSA, is the process of reducing a rectangular m × n matrix to an i × n matrix where i ≪ m or a m × j matrix where j ≪ n.
- In the reduced dimension matrices, once-correlated variables are orthogonal and only the dimensions of greatest variation remain.

| Overview | Matrix designs | Weighting/normalization | Distance measures | Experiments | Dimensionality reduction | Tools | Looking ahea |
|----------|----------------|-------------------------|-------------------|-------------|--------------------------|-------|--------------|
| 0000     | 00000          | 000000000               | 00000000          | 00000000    | 000                      |       |              |
|          |                |                         |                   |             |                          |       |              |

# Example: toy dialect difference (gnarly for LA; wicked for Boston)

|          | d1 | d2 | d3 | d4 | d5 | d6 |  |  |
|----------|----|----|----|----|----|----|--|--|
| gnarly   | 1  |    | 1  | 0  | 0  | 0  |  |  |
| wicked   | 0  | 1  | 0  | 1  | 0  | 0  |  |  |
| awesome  | 1  | 1  | 1  | 1  | 0  | 0  |  |  |
| lame     | 0  | 0  | 0  | 0  | 1  | 1  |  |  |
| terrible | 0  | 0  | 0  | 0  | 0  | 1  |  |  |
| <br>↓↑   |    |    |    |    |    |    |  |  |

Distance from gnarly

1. gnarly

2. awesome

3. terrible

4. wicked

5. lame

| Overview | Matrix designs | Weighting/normalization | Distance measures | Experiments | Dimensionality reduction | Tools | Looking ahead |
|----------|----------------|-------------------------|-------------------|-------------|--------------------------|-------|---------------|
| 0000     | 00000          | 000000000               | 0000000           | 00000000    | 000                      |       |               |

#### Example: toy dialect difference (gnarly for LA; wicked for Boston)



#### Example: toy dialect difference (gnarly for LA; wicked for Boston)



| Overview | Matrix designs | Weighting/normalization | Distance measures | Experiments | Dimensionality reduction | Tools | Looking ahead |
|----------|----------------|-------------------------|-------------------|-------------|--------------------------|-------|---------------|
| 0000     | 00000          | 0000000000              | 00000000          | 00000000    | 000                      |       |               |

### Other dimensionality reduction techniques

- Probabilistic LSA (PLSA; Hofmann 1999)
- Latent Dirichlet Allocation (LDA; Blei et al. 2003; Steyvers and Griffiths 2006)
- t-Distributed Stochastic Neighbor Embedding (t-SNE; van der Maaten and Geoffrey 2008)
- For even more: Turney and Pantel 2010:160

| Overview | Matrix designs | Weighting/normalization | Distance measures | Experiments | Dimensionality reduction | Tools | Looking ahead |
|----------|----------------|-------------------------|-------------------|-------------|--------------------------|-------|---------------|
| 0000     | 00000          | 0000000000              | 0000000           | 00000000    | 000                      |       |               |

# Tools

#### VSMs

- See Turney and Pantel 2010:§5 for lots of open-source projects
- Python NLTK's text and cluster: http://www.nltk.org/
- R's topicmodels package (mostly for LDA)

#### Visualization

- t-SNE implementations for dimensionality reduction and 2d visualization: http://homepage.tudelft.nl/19j49/t-SNE.html
- Gephi: http://gephi.org/

| Overview | Matrix designs | Weighting/normalization | Distance measures | Experiments | Dimensionality reduction | Tools | Looking ahead |
|----------|----------------|-------------------------|-------------------|-------------|--------------------------|-------|---------------|
| 0000     | 00000          | 000000000               | 00000000          | 00000000    | 000                      |       |               |

### Looking ahead in the course

- VSMs and semantic composition (Socher et al. 2011)
- VSMs and sentiment analysis (Turney and Littman 2003)
- VSMS and relation extraction (see Turney and Pantel 2010:§2.3-2.4, §5.3)

| Overview | Matrix designs | Weighting/normalization | Distance measures | Experiments | Dimensionality reduction | Tools | Looking ahead |
|----------|----------------|-------------------------|-------------------|-------------|--------------------------|-------|---------------|
| 0000     | 00000          | 000000000               | 00000000          | 00000000    | 000                      |       |               |

### References I

Baayen, R. Harald. 2001. Word Frequency Distributions. Dordrecht: Kluwer Academic Publishers. Blei, David M.; Andrew Y. Ng; and Michael I. Jordan. 2003. Latent dirichlet allocation. Journal of Machine Learning Research 3:993–1022.

Bullinaria, John A. and Joseph P. Levy. 2007. Extracting semantic representations from word co-occurrence statistics: A computational study. *Behavior Research Methods* 39(3):510–526.

- Church, Kenneth Ward and William Gale. 1995. Inverse dcument frequency (IDF): A measure of deviations from Poisson. In David Yarowsky and Kenneth Church, eds., *Proceedings of the Third ACL Workshop on Very Large Corpora*, 121–130. The Association for Computational Linguistics.
- Deerwester, S.; S. T. Dumais; G. W. Furnas; T. K. Landauer; and R. Harshman. 1990. Indexing by latent semantic analysis. *Journal of the American Society for Information Science* 41(6):391–407. doi:\bibinfo{doi}{10.1002/(SICI)1097-4571(199009)41:6(391::AID-ASII)3.0.CO;2-9}.
- Dice, Lee R. 1945. Measures of the amount of ecologic association between species. *Ecology* 26(3):267–302.
- Hofmann, Thomas. 1999. Probabilistic latent semantic indexing. In Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 50–57. New York: ACM. doi:\bibinfo{doi}{http://doi.acm.org/10.1145/312624.312649}. URL http://doi.acm.org/10.1145/312624.312649.
- Lee, Lillian. 1999. Measures of distributional similarity. In Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics, 25–32. College Park, Maryland, USA: Association for Computational Linguistics. doi:\bibinfo{doi}{10.3115/1034678.1034693}. URL http://www.aclweb.org/anthology/P99-1004.
- van der Maaten, Laurens and Hinton Geoffrey. 2008. Visualizing data using t-SNE. Journal of Machine Learning Research 9:2579–2605.
- Manning, Christopher D.; Prabhakar Raghavan; and Hinrich Schütze. 2009. An Introduction to Information Retrieval. Cambridge University Press.

| Overview | Matrix designs | Weighting/normalization | Distance measures | Experiments | Dimensionality reduction | Tools | Looking ahead |
|----------|----------------|-------------------------|-------------------|-------------|--------------------------|-------|---------------|
| 0000     | 00000          | 0000000000              | 0000000           | 00000000    | 000                      |       |               |

#### **References II**

- Manning, Christopher D. and Hinrich Schütze. 1999. Foundations of Statistical Natural Language Processing. Cambridge, MA: MIT Press.
- van Rijsbergen, Cornelis Joost. 1979. Information Retrieval. London: Buttersworth.
- Socher, Richard; Jeffrey Pennington; Eric H. Huang; Andrew Y. Ng; and Christopher D. Manning. 2011. Semi-supervised recursive autoencoders for predicting sentiment distributions. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, 151–161. Edinburgh, Scotland, UK.: Association for Computational Linguistics. URL

http://www.aclweb.org/anthology/D11-1014.

- Steyvers, Mark and Tom Griffiths. 2006. Probabilistic topic models. In Thomas K. Landauer; D McNamara; S Dennis; and W Kintsch, eds., *Latent Semantic Analysis: A Road to Meaning*. Lawrence Erlbaum Associates.
- Stolcke, Andreas; Klaus Ries; Noah Coccaro; Elizabeth Shriberg; Rebecca Bates; Daniel Jurafsky; Paul Taylor; Rachel Martin; Marie Meteer; and Carol Van Ess-Dykema. 2000. Dialogue act modeling for automatic tagging and recognition of conversational speech. *Computational Linguistics* 26(3):339–371.
- Turney, Peter D. and Michael L. Littman. 2003. Measuring praise and criticism: Inference of semantic orientation from association. ACM Transactions on Information Systems (TOIS) 21:315–346. doi:bibinfo{doi}{http://doi.acm.org/10.1145/944012.944013}. URL http://doi.acm.org/10.1145/944012.944013.
- Turney, Peter D. and Patrick Pantel. 2010. From frequency to meaning: Vector space models of semantics. Journal of Artificial Intelligence Research 37:141–188.