
Bill MacCartney	

CS224U: Natural Language Understanding	

7 February 2012	

Lit review due in one week!	

Time to get cracking!	

•  This course is supposed to be about natural language
understanding, isn’t it?	

•  But how much closer have we gotten to that goal?	

•  With lexical semantic relations? WSD? Semantic role labeling?

Relation extraction? Coreference resolution?	

•  Arguably, all are necessary to NLU … but are they sufficient?	

•  Consider relation extraction	

•  When successful, yields structured representation of meaning	

〈Bill Gates, founder, Microsoft〉	

•  But what kinds of meanings cannot be expressed?	

Six sculptures — C, D, E, F, G, H — are to be exhibited in rooms 1, 2, and 3 of an art
gallery.	

•  Sculptures C and E may not be exhibited in the same room.	

•  Sculptures D and G must be exhibited in the same room.	

•  If sculptures E and F are exhibited in the same room, no other sculpture may be

exhibited in that room.	

•  At least one sculpture must be exhibited in each room, and no more than three

sculptures may be exhibited in any room.	

If sculpture D is exhibited in room 3 and sculptures E and F are exhibited in room 1, which
of the following may be true?	

A.  Sculpture C is exhibited in room 1.	

B.  Sculpture H is exhibited in room 1.	

C.  Sculpture G is exhibited in room 2.	

D.  Sculptures C and H are exhibited in the same room.	

E.  Sculptures G and F are exhibited in the same room.	

Yes, hi, I need to book a flight for myself and my
husband from Boston to SFO, or Oakland would be
OK too. We need to fly out on Friday the 12th, and
then I could fly back on Sunday evening or Monday
morning, but he won’t return until Wednesday the
18th, because he’s staying for business. No flights

with more than one stop, and we don’t want to fly on
United because we hate their guts.

•  We haven’t tried to work out the meanings of complete
sentences	

•  So we can’t do everything we’d like	

•  Not all tasks can ignore detailed sentence structure	

•  Unsuitable if machine must act, rather than relying on user to
interpret the author’s meaning	

•  You get what you pay for:	

•  Cheap, fast, low-level techniques are appropriate in domains

where speed and volume matter more than accuracy	

•  More computationally expensive, higher-level techniques are

appropriate when higher-quality results are required	

•  Developed 1979-82 by Fernando Pereira & David Warren	

•  Proof-of-concept natural language interface to database	

•  Could answer questions about geography	

•  Implemented in Prolog	

•  Hand-built lexicon & grammar	

•  Highly influential NLIDB system	

•  Is there more than one country in each continent?	

•  What countries border Denmark?	

•  What are the countries from which a river flows into the
Black_Sea?	

•  What is the total area of countries south of the Equator
and not in Australasia?	

•  Which country bordering the Mediterranean borders a
country that is bordered by a country whose population
exceeds the population of India?	

•  How far is London from Paris?	

No.	

[romania].	

10228 ksqmiles.	

turkey.	

I don't understand!	

west_germany.	

% Facts about countries.!
% country(Country, Region, Latitude, Longitude,!
% Area(sqmiles), Population, Capital, Currency)!
country(andorra, southern_europe, 42, -1, 179,
25000, andorra_la_villa, franc_peseta).!
country(angola, southern_africa, -12, -18,
481351, 5810000, luanda, ?).!
country(argentina, south_america, -35, 66,
1072067, 23920000, buenos_aires, peso).!

capital(C,Cap) :- country(C,_,_,_,_,_,Cap,_).!

/* Sentences */!
sentence(S) --> declarative(S), terminator(.) .!
sentence(S) --> wh_question(S), terminator(?) .!
sentence(S) --> yn_question(S), terminator(?) .!
sentence(S) --> imperative(S), terminator(!) .!

/* Noun Phrase */!
np(np(Agmt,Pronoun,[]),Agmt,NPCase,def,_,Set,Nil) -->!
 {is_pp(Set)},!
 pers_pron(Pronoun,Agmt,Case),!
 {empty(Nil), role(Case,decl,NPCase)}.!

/* Prepositional Phrase */!
pp(pp(Prep,Arg),Case,Set,Mask) -->!
 prep(Prep),!
 {prep_case(NPCase)},!
 np(Arg,_,NPCase,_,Case,Set,Mask).!

You can run Chat-80 yourself on the corn machines!	

1.  ssh corn!
2.  cd /afs/ir/class/cs224n/src/chat/!
3.  /usr/sweet/bin/sicstus!
4.  [load].!
5.  hi.!
6.  what is the capital of france?!

Sample queries can be found at: ���
/afs/ir/class/cs224n/src/chat/demo	

All the source code is there for your perusal as well	

•  English sentences	

John smokes. Everyone who smokes snores.

•  Syntactic analysis	

(S (NP John) (VP smokes))	

•  Semantic analysis	

smoke(john)	

•  Inference	

∀x.smoke(x) → snore(x), smoke(john)
⇒ snore(john)	

Focus of
computational
semantics	

•  Many possible formal representations of meaning	

•  DB tables, SQL, description logics, FOL, modal logics, …	

•  Blackburn & Bos (& others) argue for using FOL	

•  But Manning focuses on lambda calculus — relationship?	

•  We’ll use lambda expressions for meanings of words & phrases	

•  But for meanings of complete sentences, pure FOL — no lambdas	

John walks walk(john)	

John loves Mary love(john, mary)	

Every man loves Mary ∀x (man(x) → love(x, mary))	

•  FOL symbols	

•  Constants: john, mary	

•  Predicates & relations: man, walks, loves	

•  Variables: x, y	

•  Logical connectives: ∧ ∨ ¬ →	

•  Quantifiers: ∀ ∃	

•  Other punctuation: parens, commas	

“content words”���
(user-defined)	

“function words”	

•  FOL formulae	

•  Atomic formulae: loves(john, mary)	

•  Connective applications: man(john) ∧ loves(john, mary)	

•  Quantified formulae: ∃x (man(x))	

OK, we’ve chosen our target semantic representations	

How do we derive them from raw input sentences?	

1.  Parse sentence to get syntax tree	

2.  Look up semantics of each word in lexicon	

3.  Build the semantics for each constituent	

•  Bottom-up	

•  Syntax-driven: “rule-to-rule translation”	

Principle of compositionality (aka Frege’s Principle)	

The meaning of a whole is determined by the meanings of the parts
and the way in which they are combined.	

John loves Mary

NP	

VP	

S	

NP	

TV	

John loves Mary

NP : john	

VP	

S	

NP : mary	

TV : love(?, ?)	

John loves Mary

NP : john	

VP : love(?, mary)	

NP : mary	

TV : love(?, ?)	

S	

John loves Mary

NP : john	

VP : love(?, mary)	

S : love(john, mary)	

NP : mary	

TV : love(?, ?)	

The meaning of the sentence is constructed from:	

•  the meaning of the words (i.e., the lexicon) ���

	

john, mary, love(?, ?)	

•  paralleling the syntactic construction (i.e., the semantic rules)	

John loves Mary

NP : john	

VP : love(?, mary)	

S : love(john, mary)	

NP : mary	

TV : love(?, ?)	

How do we know how to construct the VP?	

	

 	

love(?, mary) OR love(mary, ?)	

How can we specify in which way the bits & pieces combine?	

John loves Mary

NP : john	

VP : love(?, mary)	

S : love(john, mary)	

NP : mary	

TV : love(?, ?)	

•  How do we want to represents parts of formulae?	

E.g. for the VP loves Mary ?	

	

love(?, mary) 	

bad: not FOL	

	

love(x, mary) 	

bad: no control over free variable	

•  Familiar well-formed formulae (sentences)	

	

∀x (love(x, mary)) 	

 	

Everyone loves Mary
	

∃x (love(mary, x)) 	

 	

Mary loves someone

•  Add a new operator λ to bind free variables	

	

λx.love(x, mary) 	

to love Mary

•  The new meta-logical symbol λ marks missing information
in the object language (λ-)FOL	

•  We abstract over x	

•  Just like in programming languages!	

•  Python: 	

lambda x: x % 2 == 0!
•  Ruby: 	

lambda {|x| x % 2 == 0}!

•  How do we combine these new formulae and terms?	

•  Gluing together formulae/terms with function application	

	

 	

(λx.love(x, mary)) @ john	

	

 	

(λx.love(x, mary))(john)	

•  How do we get back to the familiar love(john, mary) ?	

•  FA triggers a simple operation: beta reduction	

replace the λ-bound variable by the argument throughout the body	

(λx.love(x, mary)) (john)	

1.  Strip off the λ prefix	

(love(x, mary)) (john)	

2.  Remove the argument	

love(x, mary)	

3.  Replace all occurrences of λ-bound variable by argument	

love(john, mary)	

John

VP : (λy.λx.love(x, y)(mary)	

 = λx.love(x, mary)	

S : (λx.love(x, mary))(john)	

= love(john, mary) 	

NP : john	

 NP : mary	

TV : λy.λx.love(x, y)	

loves Mary

Lexicon	

	

John 	

← NP : john	

	

Mary 	

← NP : mary	

	

loves 	

← TV : λy.λx.love(x, y)	

Composition rules	

	

VP : f(a) 	

→ TV : f NP : a	

	

S : f(a) 	

→ NP : a VP : f	

Note the semantic attachments — these are augmented CFG rules	

Note the use of function application to glue things together	

For binary rules, four possibilities for semantics of parent (what?)	

This approach to formal semantics was
pioneered by Richard Montague (1930-1971)	

“… I reject the contention that an important
theoretical difference exists between
formal and natural languages …”

NP : ∃x.man(x) ?

A man loves Mary

TV : λy.λx.loves(x, y)	

 NP : mary	

VP : (λy.λx.loves(x, y))(mary) ���
= λx.loves(x, mary) 	

S : (λx.loves(x, mary))(∃x.man(x)) ���
= loves(∃x.man(x), mary) ? 	

How to handle determiners, as in A man loves Mary?

Maybe interpret “a man” as ∃x.man(x) ?

How do we know this is wrong?

∃x.man(x) just doesn’t mean “a man”.	

If anything it means “there is a man”.	

Our goal is:	

 A man loves Mary → ∃z (man(z) ∧ love(z, mary))	

	

 	

∃z ((λy.man(y))(z) ∧ (λx.love(x, mary))(z))	

What if we allow abstractions over any term?	

	

 	

(λQ.∃z ((λy.man(y))(z) ∧ Q(z))) (λx.love(x, mary))	

	

 	

(λP.λQ.∃z (P(z) ∧ Q(z))) (λx.love(x, mary)) (λy.man(y))	

Add to lexicon:	

 a → DT : λP.λQ.∃z (P(z) ∧ Q(z))	

And similarly: 	

 every → DT : λP.λQ.∀z (P(z) → Q(z))	

 no → DT : λP.λQ.∀z (¬P(z) ∨ ¬Q(z))	

TV : λy.λx.loves(x, y)	

 NP : mary	

VP : (λy.λx.loves(x, y))(mary) ���
= λx.loves(x, mary) 	

A loves Mary man

DT : λP.λQ.∃z (P(z) ∧ Q(z))	

 N : λy.man(y)	

NP : (λP.λQ.∃z (P(z) ∧ Q(z)))(λy.man(y)) ���
 = λQ.∃z ((λy.man(y))(z) ∧ Q(z)) ���

= λQ.∃z (man(z) ∧ Q(z)) 	

S : (λQ.∃z (man(z) ∧ Q(z)))(λx.loves(x, mary)) ���
= ∃z (man(z) ∧ (λx.loves(x, mary))(z)) ���
= ∃z (man(z) ∧ loves(z, mary)) 	

Add to lexicon	

a 	

← 	

DT : λP.λQ.∃z (P(z) ∧ Q(z))	

man 	

← 	

N : λy.man(y)	

Add to grammar	

NP : f(a) 	

← 	

DT : f N : a 	

S : f(a) 	

← 	

NP : f VP : a 	

 different!	

Now how are we going to handle John loves Mary?

 (λx.love(x, mary)) @ (john) 	

 	

not systematic!	

	

 	

(john) @ (λx.love(x, mary)) 	

 	

not reducible!	

	

 	

(λP.P(john)) @ (λx.love(x, mary)) 	

 	

better?
	

 	

= (λx.love(x, mary))(john)	

	

 	

= love(john, mary) 	

 	

 	

yes!	

So revise lexicon:	

	

John 	

← 	

NP : λP.P(john)	

	

Mary 	

← 	

NP : λP.P(mary)	

This is called type-raising:	

	

 	

old type: e 	

new type: (e→t)→t	

The argument becomes the function!���
(cf. callbacks, inversion of control)	

We had this in our lexicon: 	

loves 	

← 	

TV : λy.λx.love(x, y)	

But if we now have: 	

Mary 	

← 	

NP : λP.P(mary)	

then loves Mary will be 	

(λy.λx.love(x, y))(λP.P(mary))	

	

 	

= λx.love(x, λP.P(mary))	

Uh-oh! Solution? 	

	

Type-raising again! 	

loves 	

← 	

TV : λR.λx.R(λy.love(x, y))	

Old type for loves: 	

e→(e→t)	

New types for loves: 	

((e→t)→t)→(e→t)	

Let’s see it in action …	

John loves Mary

NP : λP.P(john)	

 TV : λR.λx.R(λy.love(x, y))	

 NP : λQ.Q(mary)	

VP : (λR.λx.R(λy.love(x, y)))(λQ.Q(mary)) ���
= λx.(λQ.Q(mary))(λy.love(x, y))
= λx.(λy.love(x, y))(mary) 	

= λx.love(x, mary)

S : (λP.P(john))(λx.love(x, mary))	

= (λx.love(x, mary))(john) ���
= loves(john, mary) 	

Our semantic lexicon covers many common syntactic types:	

common nouns 	

 	

man 	

← λx.man(x)	

proper nouns 	

 	

Mary 	

← λP.P(mary)	

intransitive verbs 	

walks 	

← λx.walk(x)	

transitive verbs 	

 	

loves 	

← λR.λx.R(λy.love(x, y))	

determiners 	

 	

a 	

← λP.λQ.∃z(P(z) ∧ Q(z))	

We can handle multiple phenomena in a uniform way!	

Key ideas:	

•  extra λs for NPs	

•  abstraction over (i.e., introducing variables for) predicates	

•  inversion of control: subject NP as function, predicate VP as arg	

How to handle coordination, as in John and Mary walk?

What we’d like to get:	

	

walk(john) ∧ walk(mary)	

Already in our lexicon:	

 John 	

← 	

NP : λP.P(john)
 Mary 	

← 	

NP : λQ.Q(mary)
 walk 	

← 	

IV : λx.walk(x)	

Add to lexicon:	

	

and 	

← 	

CC : λX.λY.λR.(X(R) ∧ Y(R))	

My claim: this will work out just fine. Do you believe me?	

John and Mary

(λX.λY.λR.(X(R) ∧ Y(R)))(λP.P(john))	

= λY.λR.((λP.P(john))(R) ∧ Y(R))	

= λY.λR.(R(john) ∧ Y(R))	

walk

(λY.λR.(R(john) ∧ Y(R)))(λQ.Q(mary))	

= λR.(R(john) ∧ (λQ.Q(mary))(R))	

= λR.(R(john) ∧ R(mary))	

λP.P(john)	

 λX.λY.λR.(X(R) ∧ Y(R))	

 λQ.Q(mary)	

 λx.walk(x)	

(λR.(R(john) ∧ R(mary))(λx.walk(x))	

= (λx.walk(x))(john) ∧ (λx.walk(x))(mary)	

= walk(john) ∧ (λx.walk(x))(mary)	

= walk(john) ∧ walk(mary)	

So great! We can handle coordination of NPs!	

But what about coordination of …	

	

intransitive verbs 	

drinks and smokes
	

transitive verbs 	

washed and folded the laundry
	

prepositions 	

before and after the game
	

determiners 	

more than ten and less than twenty

One solution is to have multiple lexicon entries for and

We’ll let you work out the details … 	

In this country, a woman gives birth every 15 minutes.
Our job is to find that woman and stop her.
— Groucho Marx celebrates quantifier scope ambiguity	

∃w (woman(w) ∧ ∀f (fifteen-minutes(f) → gives-birth-during(w, f)))	

∀f (fifteen-minutes(f) → ∃w (woman(w) ∧ gives-birth-during(w, f)))	

Surprisingly, both readings are available in English!	

Which one is the joke meaning?	

Six sculptures — C, D, E, F, G, H — are to be exhibited in rooms 1, 2, and 3 of an art
gallery.	

•  Sculptures C and E may not be exhibited in the same room.	

•  Sculptures D and G must be exhibited in the same room.	

•  If sculptures E and F are exhibited in the same room, no other sculpture may be

exhibited in that room.	

•  At least one sculpture must be exhibited in each room, and no more than three

sculptures may be exhibited in any room.	

If sculpture D is exhibited in room 3 and sculptures E and F are exhibited in room 1, which
of the following may be true?	

A.  Sculpture C is exhibited in room 1.	

B.  Sculpture H is exhibited in room 1.	

C.  Sculpture G is exhibited in room 2.	

D.  Sculptures C and H are exhibited in the same room.	

E.  Sculptures G and F are exhibited in the same room.	

At least one sculpture must be exhibited in each room.

The same sculpture in each room?	

No more than three sculptures may be exhibited in any room.

Reading 1:	

For every room, there are no more than three sculptures exhibited in it.	

Reading 2:	

At most three sculptures may be exhibited at all, regardless of which room.	

Reading 3:	

The sculptures which can be exhibited in any room number at most three. ���
	

(For the other sculptures, there are restrictions on allowable rooms).	

•  Some readings will be ruled out by being uninformative or by contradicting
other statements	

•  Otherwise we must be content with distributions over scope-resolved
semantic forms	

Every man loves a woman

Reading 1: the women may be different	

	

∀x (man(x) → ∃y (woman(y) ∧ love(x, y)))	

Reading 2: there is one particular woman 	

	

∃y (woman(y) ∧ ∀x (man(x) → love(x, y)))	

What does our system do?	

Every man loves

(λP.λQ.∀z (P(z) → Q(z)))(λy.man(y))	

= λQ.∀z ((λy.man(y))(z) → Q(z))	

= λQ.∀z (man(z) → Q(z))	

some

(λR.λx.R(λy.love(x, y)))(λQ.∃w (woman(w) ∧ Q(w)))	

= λx.(λQ.∃w (woman(w) ∧ Q(w)))(λy.love(x, y))	

= λx.∃w (woman(w) ∧ (λy.love(x, y))(w))	

= λx.∃w (woman(w) ∧ love(x, w))	

woman

λP.λQ.∀z (P(z) → Q(z))	

 λy.man(y)	

 λR.λx.R(λy.love(x, y))	

 λx.woman(x)	

λP.λQ.∃w (P(w) ∧ Q(w))	

(λP.λQ.∃w (P(w) ∧ Q(w)))(λx.woman(x))	

= λQ.∃w ((λx.woman(x))(w) ∧ Q(w))	

= λQ.∃w (woman(w) ∧ Q(w))	

(λQ.∀z (man(z) → Q(z)))(λx.∃w (woman(w) ∧ love(x, w)))	

= ∀z (man(z) → (λx.∃w (woman(w) ∧ love(x, w)))(z))	

= ∀z (man(z) → ∃w (woman(w) ∧ love(z, w)))	

The nltk.sem package contains Python code for:	

•  First-order logic & typed lambda calculus	

•  Theorem proving, model building, & model checking	

•  DRT & DRSs	

•  Cooper storage, hole semantics, glue semantics	

•  Linear logic	

•  A (partial) implementation of Chat-80!	

http://nltk.googlecode.com/svn/trunk/doc/api/nltk.sem-module.html	

>>> import nltk!
>>> from nltk.sem import logic!
>>> logic.demo()!
>>> parser = logic.LogicParser(type_check=True)!

>>> man = parser.parse("\ y.man(y)")!
>>> woman = parser.parse("\ x.woman(x)")!
>>> love = parser.parse("\ R x.R(\ y.love(x,y))")!
>>> every = parser.parse("\ P Q.all x.(P(x) -> Q(x))")!
>>> some = parser.parse("\ P Q.exists x.(P(x) & Q(x))")!

>>> every(man).simplify()!
<LambdaExpression \Q.all x.(man(x) -> Q(x))>!

>>> love(some(woman)).simplify()!
<LambdaExpression \x.exists z.(woman(z) & love(x, z))>!

>>> every(man)(love(some(woman))).simplify()!
<AllExpression all x.(man(x) -> exists z.(woman(z) & love(x, z)))>!

OK, this all seems super duper, but … what’s missing?	

Can we solve these NLU challenges yet?	

Why not?	

Yes, hi, I need to book a flight for myself and my
husband from Boston to San Francisco or Oakland.
We’d like to fly out on the 12th, and then I could fly

back on the evening of the 14th or the morning of the
15th, but he won’t return until the 18th, because he’s
staying for business. My husband doesn’t want any
flights with more than one stop, and we don’t want

to fly on United because we hate their guts.

Six sculptures — C, D, E, F, G, H — are to be exhibited in rooms 1, 2, and 3 of an art
gallery.	

•  Sculptures C and E may not be exhibited in the same room.	

•  Sculptures D and G must be exhibited in the same room.	

•  If sculptures E and F are exhibited in the same room, no other sculpture may be

exhibited in that room.	

•  At least one sculpture must be exhibited in each room, and no more than three

sculptures may be exhibited in any room.	

If sculpture D is exhibited in room 3 and sculptures E and F are exhibited in room 1,
which of the following may be true?	

A.  Sculpture C is exhibited in room 1.	

B.  Sculpture H is exhibited in room 1.	

C.  Sculpture G is exhibited in room 2.	

D.  Sculptures C and H are exhibited in the same room.	

E.  Sculptures G and F are exhibited in the same room.	

Yes, hi, I need to book a flight for myself and my
husband from Boston to SFO, or Oakland would be
OK too. We need to fly out on Friday the 12th, and
then I could fly back on Sunday evening or Monday
morning, but he won’t return until Wednesday the
18th, because he’s staying for business. No flights

with more than one stop, and we don’t want to fly on
United because we hate their guts.

