Relation Extraction

Bill MacCartney CS224U 26 January 2012

A mish-mash of slides from many people, including Dan Jurafsky, Rion Snow, Jim Martin, Chris Manning, William Cohen, and others

Goal: "Machine Reading"

Background: Information Extraction

- IE = extracting information from text
- Sometimes called text analytics commercially
- Extract entities
 - (the people, organizations, locations, times, dates, genes, diseases, medicines, etc. in a text)
- Extract the relations between entities
- Figure out the larger events that are taking place

As a task:

Filling slots in a database from sub-segments of text.

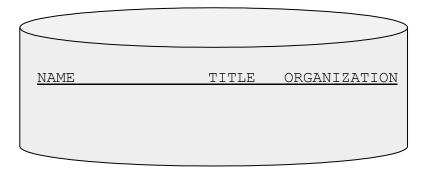
October 14, 2002, 4:00 a.m. PT

For years, Microsoft Corporation CEO Bill Gates railed against the economic philosophy of open-source software with Orwellian fervor, denouncing its communal licensing as a "cancer" that stifled technological innovation.

Today, Microsoft claims to "love" the open-source concept, by which software code is made public to encourage improvement and development by outside programmers. Gates himself says Microsoft will gladly disclose its crown jewels--the coveted code behind the Windows operating system--to select customers.

"We can be open source. We love the concept of shared source," said Bill Veghte, a Microsoft VP. "That's a super-important shift for us in terms of code access."

Richard Stallman, founder of the Free Software Foundation, countered saying...



As a task:

Filling slots in a database from sub-segments of text.

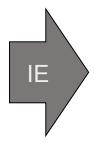
October 14, 2002, 4:00 a.m. PT

For years, Microsoft Corporation CEO Bill Gates railed against the economic philosophy of open-source software with Orwellian fervor, denouncing its communal licensing as a "cancer" that stifled technological innovation.

Today, Microsoft claims to "love" the open-source concept, by which software code is made public to encourage improvement and development by outside programmers. Gates himself says Microsoft will gladly disclose its crown jewels--the coveted code behind the Windows operating system--to select customers.

"We can be open source. We love the concept of shared source," said <u>Bill Veghte</u>, a <u>Microsoft VP</u>. "That's a super-important shift for us in terms of code access."

<u>Richard Stallman</u>, <u>founder</u> of the <u>Free Software</u> <u>Foundation</u>, countered saying...



NAME	TITLE	ORGANIZATION
Bill Gates	CEO	Microsoft
Bill Veghte	VP	Microsoft
Richard Stallman	founder	Free Soft

As a family of techniques:

Information Extraction =

segmentation + classification + association + clustering

October 14, 2002, 4:00 a.m. PT

For years, <u>Microsoft Corporation CEO Bill Gates</u> railed against the economic philosophy of open-source software with Orwellian fervor, denouncing its communal licensing as a "cancer" that stifled technological innovation.

Today, <u>Microsoft</u> claims to "love" the open-source concept, by which software code is made public to encourage improvement and development by outside programmers. <u>Gates</u> himself says <u>Microsoft</u> will gladly disclose its crown jewels--the coveted code behind the Windows operating system--to select customers.

"We can be open source. We love the concept of shared source," said <u>Bill Veghte</u>, a <u>Microsoft VP</u>. "That's a super-important shift for us in terms of code access."

<u>Richard Stallman</u>, <u>founder</u> of the <u>Free Software</u> <u>Foundation</u>, countered saying...

Microsoft Corporation

CEO

Bill Gates

Microsoft

Gates

"named entity extraction"

Microsoft

Bill Veghte

Microsoft

VP

Richard Stallman

founder

Free Software Foundation

As a family of techniques:

Information Extraction = segmentation + classification + association + clustering

October 14, 2002, 4:00 a.m. PT

For years, <u>Microsoft Corporation CEO Bill Gates</u> railed against the economic philosophy of open-source software with Orwellian fervor, denouncing its communal licensing as a "cancer" that stifled technological innovation.

Today, Microsoft claims to "love" the open-source concept, by which software code is made public to encourage improvement and development by outside programmers. Gates himself says Microsoft will gladly disclose its crown jewels--the coveted code behind the Windows operating system--to select customers.

"We can be open source. We love the concept of shared source," said <u>Bill Veghte</u>, a <u>Microsoft VP</u>. "That's a super-important shift for us in terms of code access."

<u>Richard Stallman</u>, <u>founder</u> of the <u>Free Software</u> <u>Foundation</u>, countered saying...

Microsoft Corporation

CEO

Bill Gates

Microsoft

Gates

Microsoft

Bill Veghte

Microsoft

VP

Richard Stallman

founder

Free Software Foundation

As a family of techniques:

Information Extraction = segmentation + classification + association + clustering

October 14, 2002, 4:00 a.m. PT

For years, <u>Microsoft Corporation CEO Bill Gates</u> railed against the economic philosophy of open-source software with Orwellian fervor, denouncing its communal licensing as a "cancer" that stifled technological innovation.

Today, Microsoft claims to "love" the open-source concept, by which software code is made public to encourage improvement and development by outside programmers. Gates himself says Microsoft will gladly disclose its crown jewels--the coveted code behind the Windows operating system--to select customers.

"We can be open source. We love the concept of shared source," said <u>Bill Veghte</u>, a <u>Microsoft VP</u>. "That's a super-important shift for us in terms of code access."

<u>Richard Stallman</u>, <u>founder</u> of the <u>Free Software</u> <u>Foundation</u>, countered saying...

Microsoft Corporation

CEO

Bill Gates

Microsoft

Gates

Microsoft

Bill Veghte

Microsoft

VP

Richard Stallman

founder

Free Software Foundation

As a family of techniques:

Information Extraction = segmentation + classification + association + clustering

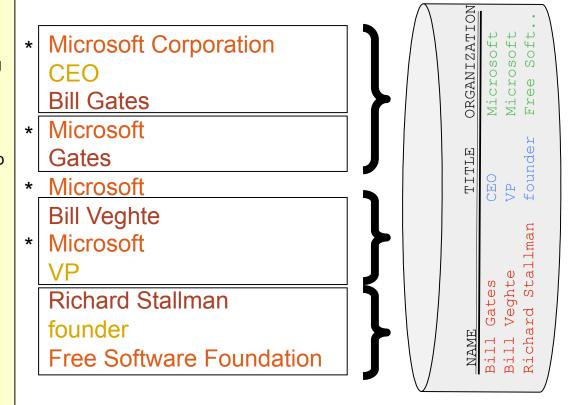
October 14, 2002, 4:00 a.m. PT

For years, <u>Microsoft Corporation CEO Bill Gates</u> railed against the economic philosophy of open-source software with Orwellian fervor, denouncing its communal licensing as a "cancer" that stifled technological innovation.

Today, Microsoft claims to "love" the open-source concept, by which software code is made public to encourage improvement and development by outside programmers. Gates himself says Microsoft will gladly disclose its crown jewels--the coveted code behind the Windows operating system--to select customers.

"We can be open source. We love the concept of shared source," said <u>Bill Veghte</u>, a <u>Microsoft VP</u>. "That's a super-important shift for us in terms of code access."

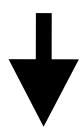
<u>Richard Stallman</u>, <u>founder</u> of the <u>Free Software</u> <u>Foundation</u>, countered saying...



Extracting Structured Knowledge

Each article can contain hundreds or thousands of items of knowledge...

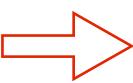
"The Lawrence Livermore National Laboratory (LLNL) in Livermore, California is a scientific research laboratory founded by the University of California in 1952."



```
LLNL EQ Lawrence Livermore National Laboratory
LLNL LOC-IN California
Livermore LOC-IN California
LLNL IS-A scientific research laboratory
LLNL FOUNDED-BY University of California
LLNL FOUNDED-IN 1952
```

Goal: Machine-readable summaries

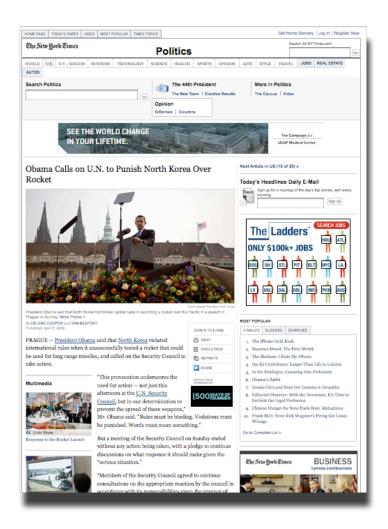
Involvement of Tumor Necrosis Factor Receptor-associated Protein 1 (TRAP1) in Apoptosis Induced by \$-Hydroxyisovalerylshikonin*



Subject	Relation	Object
p53	is_a	protein
Bax	is_a	protein
p53	has_function	apoptosis
Bax	has_function	induction
apoptosis	involved_in	cell_death
Bax	is_in	mitochondrial outer membrane
Bax	is_in	cytoplasm
apoptosis	related_to	caspase activation
•••		•••

Textual abstract: Summary for human Structured knowledge extraction: Summary for machine

Unstructured Text



News articles...

Unstructured Text

Blog posts....

Unstructured Text

Involvement of Tumor Necrosis Factor Receptor-associated Protein 1 (TRAP1) in Apoptosis Induced by β-Hydroxyisovalerylshikonin*

Received for publication, April 16, 2004, and in revised form, July 15, 2004 Published, JBC Papers in Press, July 26, 2004, DOI 10.1074/jbc.Mi04058200

Yutaka Masudat, Genryu Shima, Tsahihiru Aiuchi, Masayu Horie, Kouichi Illori, Shigeo Nakaje, Sashiko Kajimoto, Tsahiko Shibayama-Imaru, and Kasuyawa Nakayu

From the Laboratory of Biological Chemistry, Robust of Pharmacoustical Sciences, House University, Takes 140 8000, Japan

pHydrexylavulerylabilismin (#HEVE), a compound that until anticance drugs enable to date are STECS obstacle from the traditional oriental medicinal barb. (Glorve), which is used in the treatment of potients with Lithouserman cudio, is an ATP non-competitive inhibitor of protein tyronise kinases, such as v-five and ELFR, and it induces apoptosis in vertices lines of busines to mor cells. However, the way in which p-HEVE induces mor colds. However, the way in which p.H2VN induces apoption remains to be darfilled, in this risth, we performed of MAA array analysis and formed that p.H1VN rep-pressed the expression of the gone for boson excessing factor recognize-associated proteins (TERAT), which is a massless of the bast-sheets family of proteins. When the analysis of the bast-sheets family of proteins. When the DMUH colds were terroled with p.HEVA, the amount of TRAPI is mitschondria decreased in a time-dependent TRAP1 is indictionable decreased in a time-dependent manner during apoptonic. A similar reduction in the level of TRAP1 was also shoreved upon exposure of cells to VP16. Treatment of E000114 cells with TRAP1-specific siRNA sensitized the cells to piRFVS induced apoptosis. Shorover, the reduction in the level of expression of TRAP1 by TRAP1-specific siRNA enhanced the release of cytochrome c from mitochondria when DMS114 cells were treated with either #HIVS or VP16. The supports sion of the level of TEAP's by either p-HEVS or VF18 was blocked by N-acetyl-cycleins, indicating the involvemounted by N-acceptopersons, indicating the intervenient GDS in the regulation of the expression of TRAP1. These results suggest that suppression of the expression of the expression and TRAP1 is mistechnoshris might piley an important rule in the induction of apprehens conserved via formation of BDS.

Protein-tyronine himses (PTEs) play important roles in a variety of signal transluction pathways that are involved in rell growth, differentiation, rell death, and carcinopenous Cldelects in normal PTKs are closely associated with carcinopenmin, increasing numbers of inhibitors of PTKs have been dereliqued as potential anticancer drugs (2-8). Examples of the

chronic merchantic leukemia (4, 9), and ID 1809 Grenza), which iture of PTKs, such as 857(416 and PD071074, suppress angiogrants and are until for the distriction of the variables that is needed for the growth and problemation of tumor cells in con (5), 12). Most of the PTK inhibitors reported to date including STRUL, 220809, SUMM, and PDITOUS, hore chemical structures that resemble the structure of ATF and compete with ATP for binding to the ATP binding site in the cutalytic domain of the PTEs, with resultant inhibition of ousymptic activities. By contrast to those ATP competitive inhib itors of PTK, the shikonin derivative ji hydrospinovaloyishiko min (p.HEVS), induted from the plant further premium radio inhibits the activity of v.Sev in an ATP-non-competitive man nor (13). This feature of J. HTVN is very useful for the inhabition of PTK activity is vive because \$18795 does not need to com-prix with ATF in the intracellular environment. In a previous study, we demonstrated that apoptosis is induced via supprsion of the kinose netwity of prin-like kinose 1 (PLK) after inhibition of PTK netwity by β -BNN (14). Polo-like kinose 1 and its homologe are involved in neveral aspects of mitmis, including activation of the anophase-promoting complex (15) maturation of the centrosome (26) and formation of hipolo-spindies (17, 18). In the present study, we continued our small pair of gener involved in J-BFFS induced apoptosis using a DNA array and found that expression of a gene for tumor necrosis factor receptor associated protein 1 (TEAPI) was sigmilicantly suppressed upon treatment of human leukomia HLSO cells with ASTVS. TEAP1 was initially identified as a two-legical servening, which is an efficient method for studying interactions among proteins (19, 20). An analysis of the cDNA sequence revealed that human TRAPI is identical to heatshock protein 75 (HSPTS), which is a member of the HSP family protein during mitoric and ofter heat shock (II). TRAPI is substantially homologous to members of the 90 kDa family of host shock proteins (20070) and is expressed both in transformed cells and in a wide variety of normal tissues (19). HSP90 is an important molecular chaperons for proteins that are involved in numerous cellular processes (22-28). A number of cell signaling malecules, such as steroid hormone receptors and protein kinsars, require HSF90 for maintenance in an active state within the cell (27, 28). The importance of HSF90 is also supported by its abundance in all species, with evolutomary conservation of its amino and sequence from pro-largeties to manuscale (29, 20). The 200790 family of molecular chaperones gained a member upon the discovery of TRAPU

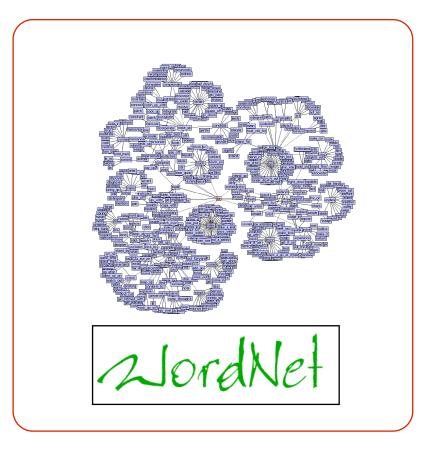
Scientific journal articles...

Unstructured Text

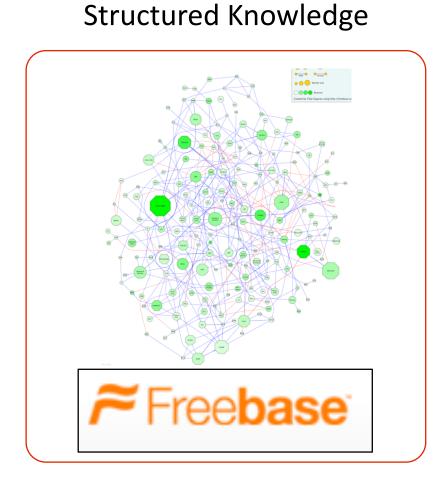
Tweets, instant messages, chat logs...

Unstructured Text

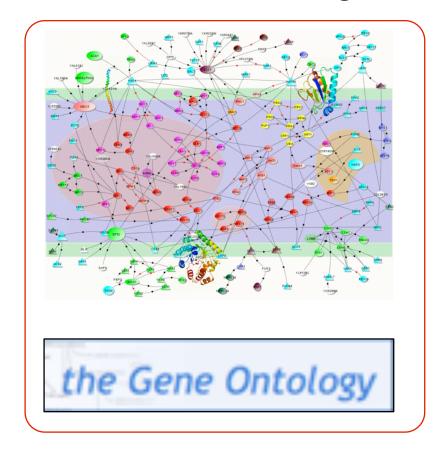
Unstructured Text



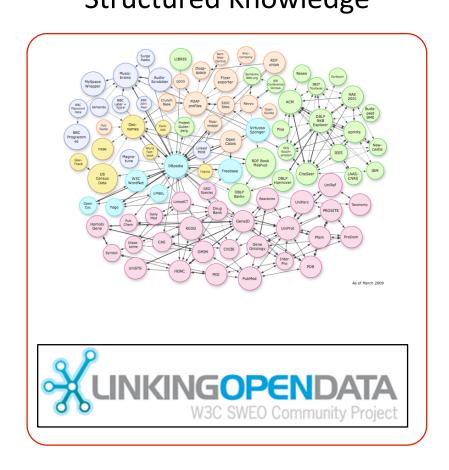
From Unstructured Text to Structured Knowledge Unstructured Text Structured Knowledge



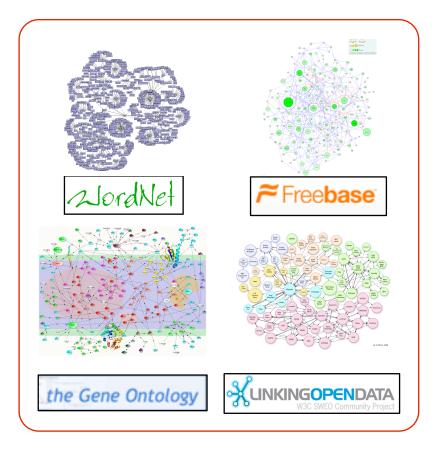
Unstructured Text



From Unstructured Text to Structured Knowledge Unstructured Text Structured Knowledge

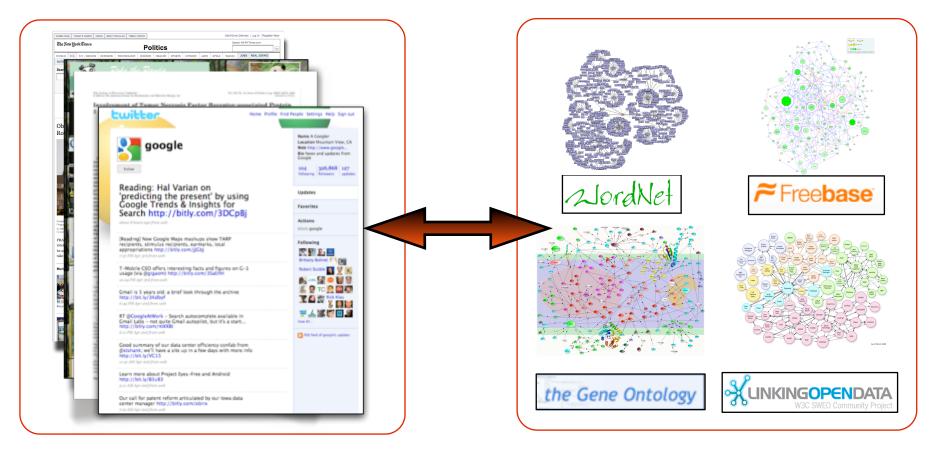


Unstructured Text



Unstructured Text

Structured Knowledge



More applications of IE?

More applications of IE

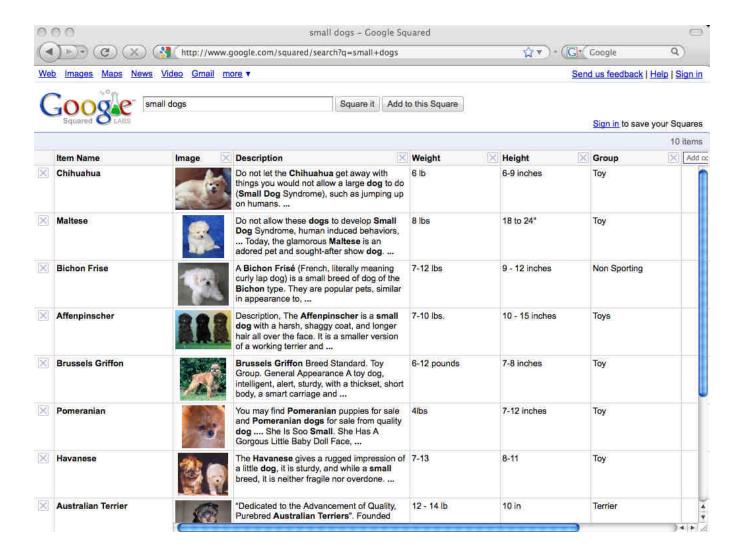
- Building & extending knowledge bases and ontologies
- Scholarly literature databases: Google Scholar, CiteSeerX
- People directories: Rapleaf, Spoke, Naymz
- Shopping engines & product search
- Bioinformatics: clinical outcomes, gene interactions, ...
- Patent analysis
- Stock analysis: deals, acquisitions, earnings, hirings & firings
- SEC filings
- Intelligence analysis for business & government

Google Squared

Web Images Video Maps Ne	ws Shopping Gr	mail more ▼		Sen	d us feedback Help Sign
Google squared	roller coasters	Square it	Add to this Square		Sign in to save your Square
roller coasters					7 iten
Item Name	Image X	Description	Capacity	Height X	Speed X Ad
Millennium Force		Millennium Force is a high-speed giga roller coaster. Guests must be in good health to ride this ride. Guests with disabilities are mainstreamed through the	1,600 riders per hour	310 ft	93 mph
▼ Texas Giant		At more than 14 stories tall, the Texas Giant is one of the tallest, fastest wooden roller coasters to be found anywhere. The Giant was named the #1 roller	1600 riders per hour	143 ft	62-MPH
Cyclone		For other roller coasters named Cyclone , see Cyclone (disambiguation) The Coney Island Cyclone is an ACE Coaster Classic and Coaster Landmark;	1200 riders per hour	85 feet	60-MPH
		The Mean Streak is a high-speed wooden roller coaster. The lap bar and seatbelt must be fastened and tightened securely. Special access is via the exit ramp	1,600 riders per hour	161 ft	65 mph
SuperMan The Escape		Superman: The Escape is a launched shuttle roller coaster located in the Samurai Summit area of Six Flags Magic Mountain in Valencia, California that opened	1050 riders per hour	415 feet	100 mph
		This article is about the Six Flags Magic Mountain roller coaster. For the episode of The Batman, see Riddler's Revenge (The Batman)	No value found	156'	65 mph
	AR	Alpengeist is the tallest and one of the fastest full circuit inverted roller coasters in the world. Alpengeist opened in 1997 at Busch Gardens Williamsburg	1820 riders per hour	195 ft	67 mph
Add items Ad	or Add next 10	items .			

Not finding the right items? Start with an empty Square.

Google Squared



Named Entity Recognition

- Labeling names of things in web pages:
 - An entity is a discrete thing like "IBM Corporation"
 - But often extended in practice to things like dates, instances of products and chemical/biological substances that aren't really entities...
 - "Named" means called "IBM" or "Big Blue" not "it"
- E.g.,
 - Many web pages tag various entities
 - "Smart Tags" (Microsoft) inside documents
 - Reuters' OpenCalais

Named Entity Extraction

The task: find and classify names in text, for example:

```
The European Commission [ORG] said on Thursday it disagreed with German [MISC] advice.

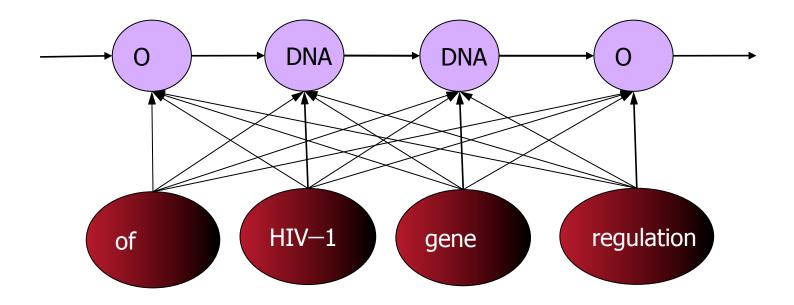
Only France [LOC] and Britain [LOC] backed Fischler [PER] 's proposal .

"What we have to be extremely careful of is how other countries are going to take Germany 's lead", Welsh National Farmers 'Union [ORG] (NFU [ORG] ) chairman John Lloyd Jones [PER] said on BBC [ORG] radio .
```

The purpose:

- ... a lot of information is really associations between named entities.
- ... for question answering, answers are usually named entities.
- ... the same techniques apply to other slot-filling classifications.

Maximum Entropy Markov Model



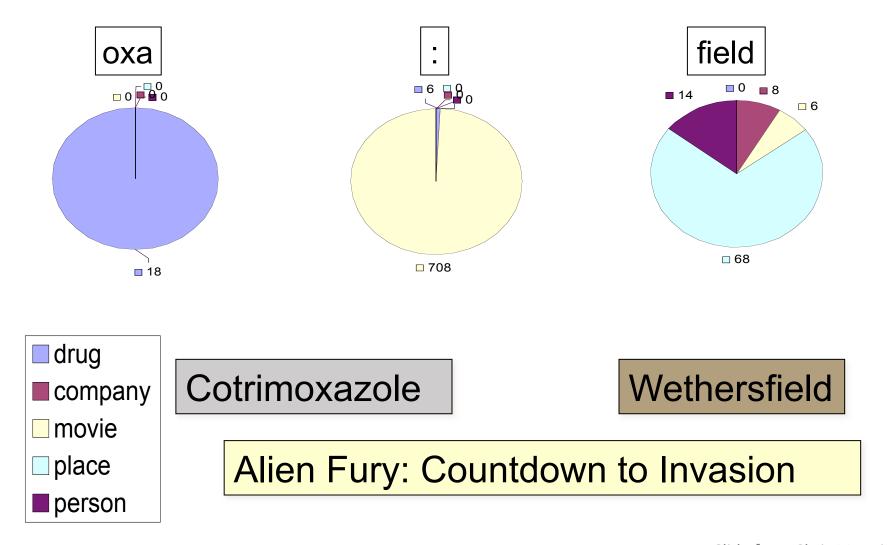
$$P(t \mid h) = \frac{\exp(\sum_{j=1}^{m} f_j(h, t)\lambda_j)}{\sum_{k=1}^{K} \exp(\sum_{j=1}^{m} f_j(h, t_k)\lambda_j)}$$

Interesting Features

- Words
- Word shapes
- Part-of-speech tags
- Parsing information
- Searching the web for the word in a given context
 - X gene, X mutation, X antagonist
- Gazetteer
 - list words whose classification is known
- Abbreviation extraction (Schwartz and Hearst, 2003)
 - Identify short and long forms when occurring together in text

... Zn finger homeodomain 2 (Zfh 2) ...

Orthographic (letter *n*-gram) features: what's in a name?



Named entity recognition results

- NER is commonly thought of as a solved problem
- Accuracies of >90% are typical
 - (But very genre-dependent: BioMed NER is much harder)
- NER isn't usually considered part of NLU
- Reminiscent of "The AI Effect":
 "Every time we figure out a piece of it, it stops being magical; we say, Oh, that's just a computation." —Rodney Brooks

Relation extraction example

CHICAGO (AP) — Citing high fuel prices, United Airlines said Friday it has increased fares by \$6 per round trip on flights to some cities also served by lower-cost carriers. American Airlines, a unit AMR, immediately matched the move, spokesman Tim Wagner said. United, a unit of UAL, said the increase took effect Thursday night and applies to most routes where it competes against discount carriers, such as Chicago to Dallas and Atlanta and Denver to San Francisco, Los Angeles and New York.

Relation types

For generic news texts...

Relations		Examples	Types
Affiliations			
	Personal	married to, mother of	$\mathtt{PER} \to \mathtt{PER}$
	Organizational	spokesman for, president of	$\mathtt{PER} o \mathtt{ORG}$
	Artifactual	owns, invented, produces	$(PER \mid ORG) \rightarrow ART$
Geospatial			·
	Proximity	near, on outskirts	$LOC \to LOC$
	Directional	southeast of	$LOC \to LOC$
Part-Of			
	Organizational	a unit of, parent of	$ORG \to ORG$
	Political	annexed, acquired	$\mathtt{GPE} \to \mathtt{GPE}$

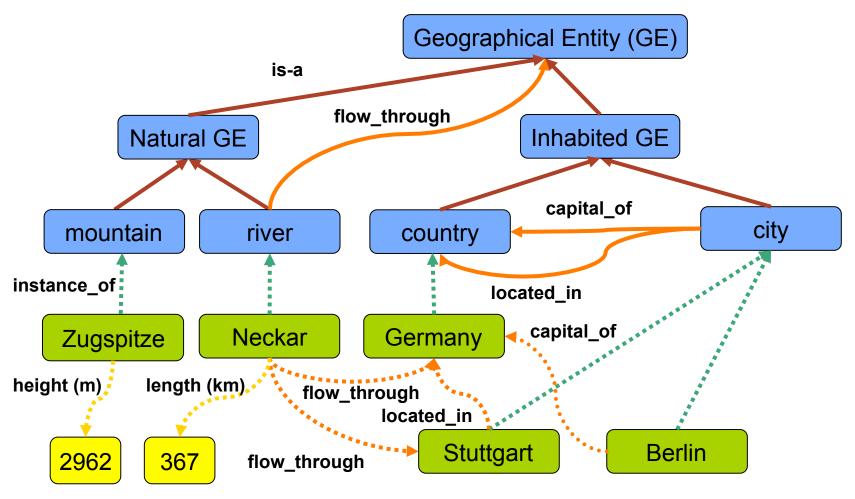
Types of ACE Relations, 2003

- ROLE relates a person to an organization or a geopolitical entity
 - Subtypes: member, owner, affiliate, client, citizen
- PART generalized containment
 - Subtypes: subsidiary, physical part-of, set membership
- AT permanent and transient locations
 - Subtypes: located, based-in, residence
- SOCIAL- social relations among persons
 - Subtypes: parent, sibling, spouse, grandparent, associate

Frequent Freebase Relations

Relation name	Size	Example
/people/person/nationality	281,107	John Dugard, South Africa
/location/location/contains	253,223	Belgium, Nijlen
/people/person/profession	208,888	Dusa McDuff, Mathematician
/people/person/place_of_birth	105,799	Edwin Hubble, Marshfield
/dining/restaurant/cuisine	86,213	MacAyo's Mexican Kitchen, Mexican
/business/business_chain/location	66,529	Apple Inc., Apple Inc., South Park, NC
/biology/organism_classification_rank	42,806	Scorpaeniformes, Order
/film/film/genre	40,658	Where the Sidewalk Ends, Film noir
/film/film/language	31,103	Enter the Phoenix, Cantonese
/biology/organism_higher_classification	30,052	Calopteryx, Calopterygidae
/film/film/country	27,217	Turtle Diary, United States
/film/writer/film	23,856	Irving Shulman, Rebel Without a Cause
/film/director/film	23,539	Michael Mann, Collateral
/film/producer/film	22,079	Diane Eskenazi, Aladdin
/people/deceased_person/place_of_death	18,814	John W. Kern, Asheville
/music/artist/origin	18,619	The Octopus Project, Austin
/people/person/religion	17,582	Joseph Chartrand, Catholicism
/book/author/works_written	17,278	Paul Auster, Travels in the Scriptorium
/soccer/football_position/players	17,244	Midfielder, Chen Tao
/people/deceased_person/cause_of_death	16,709	Richard Daintree, Tuberculosis
/book/book/genre	16,431	Pony Soldiers, Science fiction
/film/film/music	14,070	Stavisky, Stephen Sondheim
/business/company/industry	13,805	ATS Medical, Health care

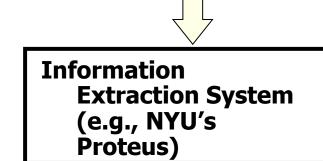
Relations in ontologies: geographical



Design: Philipp Cimiano

Other relations: disease outbreaks

May 19 1995 Atlanta -- The Centers for Disease Control and Prevention, which is in the front line of the world's response to the deadly **Ebola** epidemic in **Zaire**, is finding itself hard pressed to cope with the crisis...



Disease Outbreaks in The New York Times

Date	Disease Name	Location
Jan. 1995	Malaria	Ethiopia
July 1995	Mad Cow Disease	U.K.
Feb. 1995	Pneumonia	U.S.

Other relations: protein interactions

"We show that CBF-A and CBF-C interact with each other to form a CBF-A-CBF-C complex and that CBF-B does not interact with CBF-A or CBF-C individually but that it associates with the CBF-A-CBF-C complex."

Other relations: UMLS

Unified Medical Language System

- integrates linguistic, terminological and semantic information
- Semantic Network consists of 134 semantic types and 54 relations between types

Pharmacologic Substance	affects	Pathologic Function
Pharmacologic Substance	causes	Pathologic Function
Pharmacologic Substance	complicates	Pathologic Function
Pharmacologic Substance	diagnoses	Pathologic Function
Pharmacologic Substance	prevents	Pathologic Function
Pharmacologic Substance	treats	Pathologic Function

Relations in ontologies: GO (Gene Ontology)

GO (Gene Ontology)

- Aligns descriptions of gene products in different databases, including plant, animal and microbial genomes
- Organizing principles are molecular function, biological process and cellular component

Accession: GO:0009292

Ontology: biological process

Synonyms: broad: genetic exchange

Definition: In the absence of a sexual life cycle, the processes

involved in the introduction of genetic information to create

a genetically different individual.

Term Lineage all : all (164142)

GO:0008150 : biological process (115947)

GO:0007275 : development (11892)

GO:0009292 : genetic transfer (69)

Why this is hard: Ambiguity!

Which relations hold between two entities?

Treatment

Cure?
Prevent?
Side Effect?

Disease

Relations between disease & treatment

Cure

These results suggest that con A-induced hepatitis was ameliorated by pretreatment with TJ-135.

Prevent

A two-dose combined hepatitis A and B vaccine would facilitate immunization programs.

Vague

... effect of interferon on hepatitis B.

Relations between words

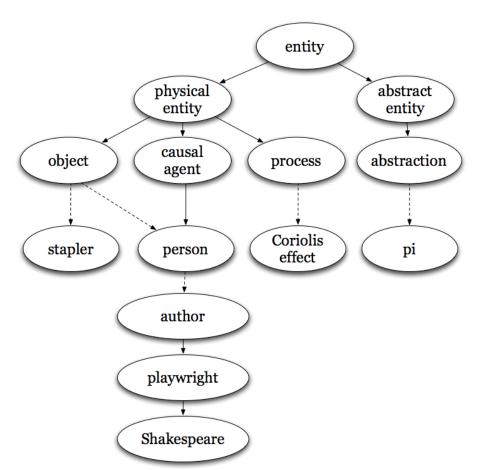
- Language understanding applications need word meaning!
 - Question answering
 - Conversational agents
 - Summarization
- One key meaning component: word relations
 - Hierarchical (hypernym/hyponym) relations
 - "San Francisco" is a "city"
 - Other relations between words
 - "alternator" is a part of a "car"

Hyponymy

- One sense is a hyponym of another if the first sense is more specific, denoting a subclass of the other
 - car is a hyponym of vehicle
 - dog is a hyponym of animal
 - mango is a hyponym of fruit
- Conversely
 - vehicle is a hypernym/superordinate of car
 - animal is a hypernym of dog
 - fruit is a hypernym of mango

superordinate	vehicle	fruit	furniture	mammal
hyponym	car	mango	chair	dog

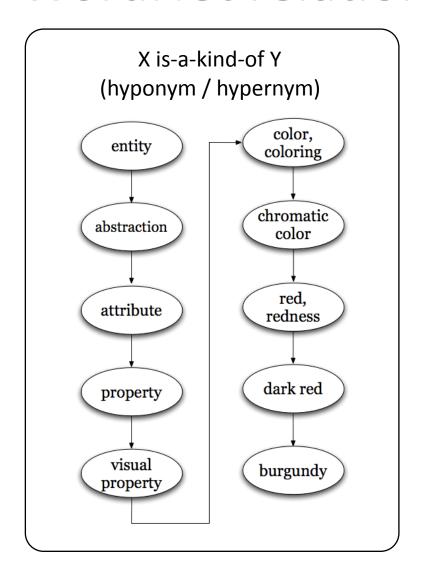
The WordNet noun hierarchy

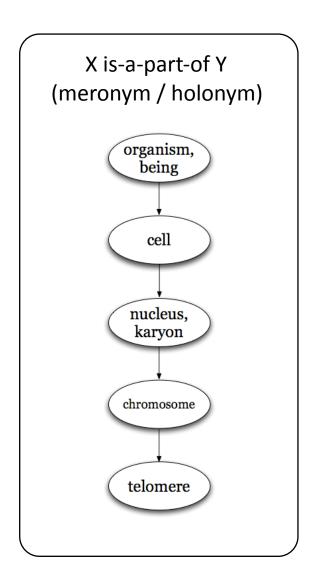


Properties: Transitive, Acyclic

http://wordnetweb.princeton.edu/perl/webwn

WordNet relations





WordNet Noun Relations

Relation	Also Called	Definition	Example
Hypernym	Superordinate	From concepts to superordinates	$break fast^1 o meal^1$
Hyponym	Subordinate	From concepts to subtypes	$meal^1 o lunch^1$
Instance Hypernym	Instance	From instances to their concepts	$Austen^1 \rightarrow author^1$
Instance Hyponym	Has-Instance	From concepts to concept instances	$composer^1 o Bach^1$
Member Meronym	Has-Member	From groups to their members	$faculty^2 \rightarrow professor^1$
Member Holonym	Member-Of	From members to their groups	$copilot^1 \rightarrow crew^1$
Part Meronym	Has-Part	From wholes to parts	$table^2 \rightarrow leg^3$
Part Holonym	Part-Of	From parts to wholes	$course^7 o meal^1$
Substance Meronym		From substances to their subparts	$water^1 o oxygen^1$
Substance Holonym		From parts of substances to wholes	$gin^1 \rightarrow martini^1$
Antonym		Semantic opposition between lemmas	$leader^1 \iff follower^1$
Derivationally		Lemmas w/same morphological root	$destruction^1 \iff destroy^1$
Related Form			

WordNet is incomplete

Ontological relations are missing for many words:

In WordNet 3.1	Not in WordNet 3.1
insulin	leptin
progesterone	pregnenolone
combustibility	affordability
navigability	reusability
HTML	XML
Google, Yahoo	Microsoft, IBM

Esp. for specific domains: restaurants, auto parts, finance

Relation extraction: 5 easy methods

- 1. Hand-built patterns
- Supervised methods
- 3. Bootstrapping (seed) methods
- 4. Unsupervised methods
- 5. Distant supervision

Relation extraction: 5 easy methods

- 1. Hand-built patterns
- 2. Supervised methods
- 3. Bootstrapping (seed) methods
- 4. Unsupervised methods
- 5. Distant supervision

A complex hand-built extraction rule

```
;;; For <company> appoints <person> <position>
(defpattern appoint
   "np-sem(C-company)? rn? sa? vg(C-appoint) np-sem(C-person) ','?
    to-be? np(C-position) to-succeed?:
    company-at=1.attributes, sa=3.span, lv=4.span, person-at=5.attributes
    position-at=8.attributes |
(defun when-appoint (phrase-type)
    (let ((person-at (binding 'person-at))
        (company-entity (entity-bound 'company-at))
        (person-entity (essential-entity-bound 'person-at 'C-person))
        (position-entity (entity-bound 'position-at))
       (predecessor-entity (entity-bound 'predecessor-at))
       new-event)
     (not-an-antecedent position-entity)
     ;; if no company is specified for position, use agent
```

NYU Proteus

Problems

- Have to write many new rules for each possible relation
 - hard to write
 - hard to maintain
 - there are a zillion of them
 - domain-dependent
- Can we do something more general?

Adding hyponyms to WordNet

- Intuition from Hearst (1992)
 - "Agar is a substance prepared from a mixture of red algae, such as Gelidium, for laboratory or industrial use"
- What does Gelidium mean?
- How do you know?`

Adding hyponyms to WordNet

- Intuition from Hearst (1992)
 - "Agar is a substance prepared from a mixture of red algae, such as Gelidium, for laboratory or industrial use"
- What does Gelidium mean?
- How do you know?`

Predicting the hyponym relation

```
"...works by such authors as Herrick, Goldsmith, and Shakespeare."

"If you consider authors like Shakespeare..."

"Some authors (including Shakespeare)..."

"Shakespeare was the author of several..."

"Shakespeare, author of The Tempest..."
```

Shakespeare IS-A author (0.87)

How can we capture the variability of expression of a relation in natural text from a large, unannotated corpus?

Hearst's lexico-syntactic patterns

```
"Y such as X ((, X)* (, and/or) X)"
"such Y as X..."
"X... or other Y"
"X... and other Y"
"Y including X..."
"Y, especially X..."
```

(Hearst, 1992): Automatic Acquisition of Hyponyms

Examples of Hearst patterns

Hearst pattern	Example occurrences
X and other Y	temples, treasuries, and other important civic buildings.
X or other Y	bruises, wounds, broken bones or other injuries
Y such as X	The bow lute, such as the Bambara ndang
such Y as X	such authors as Herrick, Goldsmith, and Shakespeare.
Y including X	common-law countries, including Canada and England
Y, especially X	European countries, especially France, England, and Spain

Patterns for detecting part-whole relations (meronym-holonym)

Berland and Charniak (1999)

Berland pattern	Example occurrences
NP_Y 's NP_X :	building's basement
NP_X of $\{\text{the} a\}$ NP_Y :	basement of a building
NP_X in {the a} NP_X :	basements in a building
NP_X of NP_Y :	basements of buildings
NP_X in NP_Y :	basements in buildings

Results with hand-built patterns

- Hearst: hypernyms
 - 66% precision with "X and other Y" patterns
- Berland & Charniak: meronyms
 - 55% precision

Problem with hand-built patterns

- Requires that we hand-build patterns for each relation!
- Don't want to have to do this for all possible relations!
- Plus, we'd like better accuracy

Relation extraction: 5 easy methods

- 1. Hand-built patterns
- 2. Supervised methods
- 3. Bootstrapping (seed) methods
- 4. Unsupervised methods
- 5. Distant supervision

Supervised relation extraction

- Sometimes done in 3 steps:
 - 1. Find all pairs of named entities
 - Decide if the two entities are related
 - 3. If yes, then classify the relation
- Why the extra step?
 - Cuts down on training time for classification by eliminating most pairs
 - Producing separate feature-sets that are appropriate for each task

Relation analysis

Usually just run on named entities within the same sentence

```
function FINDRELATIONS(words) returns relations

relations ← nil

entities ← FINDENTITIES(words)

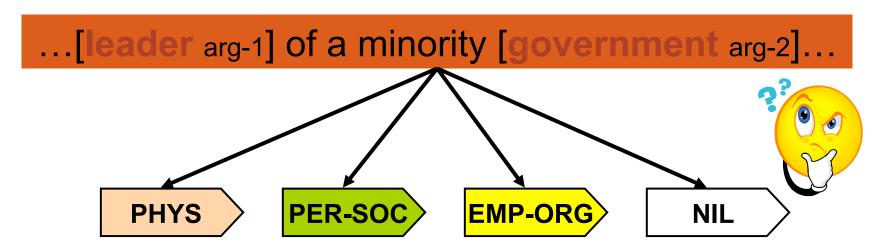
forall entity pairs ⟨e1, e2⟩ in entities do

if RELATED?(e1, e2)

relations ← relations+CLASSIFYRELATION(e1, e2)
```

Relation extraction

 Task definition: to label the semantic relation between a pair of entities in a sentence (fragment)



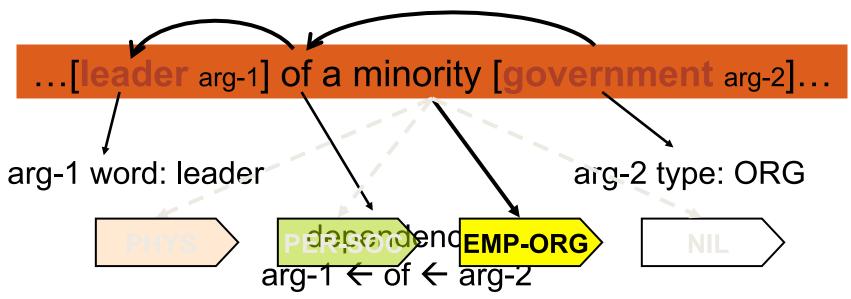
PHYS: Physical

PER-SOC: Personal / Social

EMP-ORG: Employment / Membership / Subsidiary

Supervised learning

Supervised machine learning (e.g. [Zhou et al. 2005], [Bunescu & Mooney 2005], [Zhang et al. 2006], [Surdeanu & Ciaramita 2007])



Training data is needed for each relation type

ACE 2008 tasks

- EDR (Entity Detection and Recognition)
 - within-document ("local")
 - cross-document ("global")
- RDR (Relation Detection and Recognition)
 - within-document ("local")
 - cross-document ("global")

ACE 2008

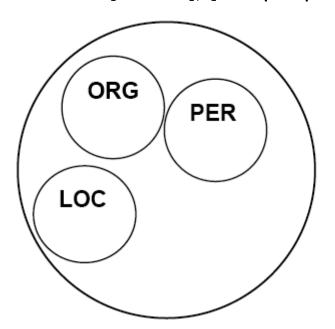
- An entity is an object or set of objects in the world.
- A mention is a reference to an entity.
 - Name Mention: Joe Smith
 - Nominal Mention: the guy wearing a blue shirt
 - Pronoun Mentions: he, him

ACE 2008: five entity types

- Person (PER) Human individual or group.
 - PER.Individual [Bill Clinton], [The President of the U.S.]
 - PER.Group: [Analysts], [IBM's lawyers] [the house painters]
- Organization (ORG) Corporation, agencies, etc. groups
 - ORG.GOV: [KGB], [the administration]
 - ORG.COM, ORG.EDU, ORG.NONGOV "The Red Cross"
 - ORG.REL, ORG.SCI, ORG.SPO
 - ORG.ENT: [the Roundabout Theater Company]

ACE 2008: five entity types

- Geo-political Entity (GPE) GPE entities are geographical regions defined by political and/or social groups
 - NATION, CONTINENT, STATE, POPCENTER, etc.
 - [France], [The people of France]



- GPE.ORG <u>France</u> signed a treaty with Germany last week.
- GPE.PER <u>France</u> vacations in August.
- GPE.LOC The world leaders met in <u>France</u> yesterday.
- GPE.GPE <u>France</u> produces better wine than New Jersey.

ACE 2008: five entity types

- Location (LOC) Location entities are limited to geographical entities such as geographical areas and landmasses, bodies of water, and geological formations.
 - ADDRESS, BOUNDARY, CELESTIAL, WATER-BODY, LAND-REGION-NATURAL, REGION-GENERAL
- Facility (FAC) Buildings and other permanent man-made structures
 - AIRPORT, PLANT, PATH (street, bridge), etc.

ACE 2008: EDR

 For each entity, all mentions of the entity are recorded and coreferenced

ACE 2008: six relation types

Туре	Subtype
ART (artifact)	User-Owner-Inventor-Manufacturer
GEN-AFF (General affiliation)	Citizen-Resident-Religion-Ethnicity, Org-Location
METONYMY*	None
ORG-AFF (Org-affiliation)	Employment, Founder, Ownership, Student-Alum, Sports-Affiliation, Investor-Shareholder, Membership
PART-WHOLE (part-to-whole)	Artifact, Geographical, Subsidiary
PER-SOC* (person-social)	Business, Family, Lasting-Personal
PHYS* (physical)	Located, Near

ACE Agent-Artifact Relation

User-Owner-Inventor-Manufacturer

PER-FAC

[My house] is in West Philadelphia			
Class	Туре	Argument 1	Argument 2
Possessive Asserted Unspecified	Agent-Artifact.UOIM	Му	My house

ACE General-Affiliation Relation

Citizen-Resident-Religion-Ethnicity

PER-GPE

a sheep shearer from New Zealand			
Class	Туре	Argument 1	Argument 2
Preposition Asserted Unspecified	Gen-Aff.CRRE	a sheep shearer from New Zealand	New Zealand

Org-Location-Origin

ORG-LOC

a small robotics company in a St. Louis suburb			
Class	Туре	Argument 1	Argument 2
Preposition Asserted Unspecified	Gen-Aff.Loc-Origin	a small robotics company in a St. Louis suburb	a St. Louis suburb

ACE ORG-Affiliation Relation

Employment

PER-ORG

the CEO of Microsoft			
Class	Туре	Argument 1	Argument 2
Preposition Asserted	Org-Aff.Employment	the CEO of Microsoft	Microsoft
Unspecified			

Owner

PER-ORG

[Dallas Cowboys owner] Jerry Jones			
Class	Туре	Argument 1	Argument 2
PreMod	Org-Aff.Ownership	Dallas Cowboys	Dallas Cowboys
Asserted		owner	
Unspecified			

+ Founder, Membership, Sports-Affiliation,
 Shareholder

ACE Part-Whole Relation

GEO

FAC-FAC

St. Vartan's Cathedral, on Second Avenue			
Class	Туре	Argument 1	Argument 2
Preposition Asserted Unspecified		St. Vartan's Cathedral, on Second Avenue	Second Avenue

SUBSIDIARY

ORG-ORG

Microsoft's accounting department			
Class	Туре	Argument 1	Argument 2
Possessive	Part-Whole.Subsidiary	Microsoft's accounting	Microsoft
Asserted	_	department	
Unspecified		-	

ACE Personal-Social Relation

Business

PER-PER

his lawyer			
Class	Туре	Argument 1	Argument 2
Possessive Asserted Unspecified	Per-Social.Business	his	his lawyer

Family

PER-PER

relatives of the dead			
Class	Туре	Argument 1	Argument 2
Preposition Asserted Unspecified	Per-Social.Family	relatives of the dead	the dead

Lasting

PER-PER

his friendship with some right-wing mayors			
Class	Туре	Argument 1	Argument 2
Possessive	Per-Social.Lasting	his	some right-wing
Asserted			mayors
Unspecified			_

ACE Physical Relation

LOCATED

PER-GPE

He was campaigning in his home state of Tennessee				
Class	Туре	Argument 1	Argument 2	
Verbal Asserted Past	Physical.Located	He	his home state of Tennessee	

NEAR

GPE-GPE

a town some 50 miles south of Salzburg in the central Austrian Alps								
Class	Argument 2							
Preposition Asserted Unspecified		a town some 50 miles south of Salzburg in the central Austrian Alps	Salzburg					

PER-FAC

Muslim youths recently staged a half dozen rallies in front of the embassy									
Class	Туре	Argument 1	Argument 2						
Other Asserted Past	Physical.Near	Muslim youths	the embassy						

ACE 2008 Training data

Source	Training epoch	Approximate size							
English Resources									
Broadcast News	3/03 - 6/03	55,000 words							
Broadcast Conversations	3/03 – 6/03	40,000 words							
Newswire	3/03 - 6/03	50,000 words							
Weblog	11/04 – 2/05	40,000 words							
Usenet	11/04 – 2/05	40,000 words							
Conversational Telephone Speech	11/04-12/04 (differentiated by topic vs. eval)	40,000 words							
Arabic Resources									
Broadcast News	10/00 - 12/00	30,000+ words							
Newswire	10/00 - 12/00	55,000+ words							
Weblog	11/04 – 2/05	20,000+ words							

Features: words

American Airlines, a unit of AMR, immediately matched the move, spokesman Tim Wagner said.

Bag-of-words features

WM1 = {American, Airlines}, WM2 = {Tim, Wagner}

Head-word features

HM1 = Airlines, HM2 = Wagner, HM12 = Airlines+Wagner

Words in between

WBNULL = false, WBFL = NULL, WBF = a, WBL = spokesman, WBO = {unit, of, AMR, immediately, matched, the, move}

Words before and after

BM1F = NULL, BM1L = NULL, AM2F = said, AM2L = NULL

Word features yield good precision, but poor recall

Features: NE type & mention level

American Airlines, a unit of AMR, immediately matched the move, spokesman Tim Wagner said.

```
Named entity types (ORG, LOC, PER, etc.)
ET1 = ORG, ET2 = PER, ET12 = ORG-PER
```

Mention levels (NAME, NOMINAL, or PRONOUN)
ML1 = NAME, ML2 = NAME, ML12 = NAME+NAME

Named entity type features help recall a lot Mention level features have little impact

Features: overlap

American Airlines, a unit of AMR, immediately matched the move, spokesman Tim Wagner said.

Number of mentions and words in between

#MB = 1, #WB = 9

Does one mention include in the other?

M1>M2 = false, M1<M2 = false

Conjunctive features

ET12+M1>M2 = ORG-PER+false ET12+M1<M2 = ORG-PER+false HM12+M1>M2 = Airlines+Wagner+false

HM12+M1<M2 = Airlines+Wagner+false

These features hurt precision a lot, but also help recall a lot

Features: base phrase chunking

American Airlines, a unit of AMR, immediately matched the move, spokesman Tim Wagner said.

Parse using the **Stanford Parser**, then apply Sabine Buchholz's **chunklink.pl**:

```
0 B-NP
          NNP
                American
                                 NOFUNC
                                             Airlines
                                                           1 B-S/B-S/B-NP/B-NP
          NNPS Airlines
                                             matched
                                                           9 I-S/I-S/I-NP/I-NP
1 I-NP
2 0
          COMMA COMMA
                                 NOFUNC
                                             Airlines
                                                           1 I-S/I-S/I-NP
3 B-NP
                                 NOFUNC
                                             unit
                                                           4 I-S/I-S/I-NP/B-NP/B-NP
                                             Airlines
4 I-NP
          NN
                unit
                                                           1 I-S/I-S/I-NP/I-NP/I-NP
5 B-PP
          IN
                                             unit
                                                           4 I-S/I-S/I-NP/I-NP/B-PP
                                                           5 I-S/I-S/I-NP/I-NP/I-PP/B-NP
          NNP
                AMR
                                 NOFUNC
                                             Airlines
          COMMA COMMA
                                                           1 I-S/I-S/I-NP
8 B-ADVP
          RB
                 immediately
                                 ADVP
                                             matched
                                                           9 I-S/I-S/B-ADVP
                                 VP/S
9 B-VP
          VBD
                matched
                                             matched
                                                           9 I-S/I-S/B-VP
10 B-NP
          DТ
                 the
                                 NOFUNC
                                             move
                                                           11 I-S/I-S/I-VP/B-NP
          NN
11 I-NP
                move
                                             matched
                                                           9 I-S/I-S/I-VP/I-NP
12 0
          COMMA COMMA
                                 NOFUNC
                                             matched
                                                           9 I-S
13 B-NP
                 spokesman
                                 NOFUNC
                                             Wagner
                                                           15 I-S/B-NP
14 I-NP
                Tim
                                 NOFUNC
                                             Wagner
                                                           15 I-S/I-NP
                                                           9 I-S/I-NP
15 I-NP
          NNP
                Wagner
                                             matched
                                                           9 I-S/B-VP
16 B-VP
          VBD
                said
                                             matched
17 O
                                 NOFUNC
                                             matched
                                                            9 I-S
```

[$_{NP}$ American Airlines], [$_{NP}$ a unit] [$_{PP}$ of] [$_{NP}$ AMR], [$_{ADVP}$ immediately] [$_{VP}$ matched] [$_{NP}$ the move], [$_{NP}$ spokesman Tim Wagner] [$_{VP}$ said].

Features: base phrase chunking

[$_{NP}$ American Airlines], [$_{NP}$ a unit] [$_{PP}$ of] [$_{NP}$ AMR], [$_{ADVP}$ immediately] [$_{VP}$ matched] [$_{NP}$ the move], [$_{NP}$ spokesman Tim Wagner] [$_{VP}$ said].

Phrase heads before and after

CPHBM1F = NULL, CPHBM1L = NULL, CPHAM2F = said, CPHAM2L = NULL

Phrase heads in between

CPHBNULL = false, CPHBFL = NULL, CPHBF = unit, CPHBL = move CPHBO = {of, AMR, immediately, matched}

Phrase label paths

CPP = [NP, PP, NP, ADVP, VP, NP] CPPH = NULL

These features increased both precision & recall by 4-6%

Features: syntactic features

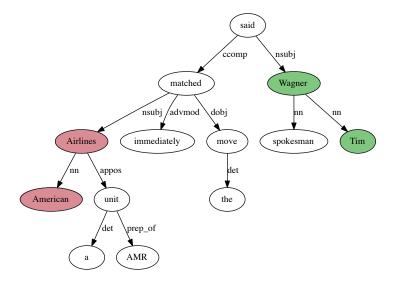
Features of mention dependencies

ET1DW1 = ORG:Airlines

H1DW1 = matched:Airlines

ET2DW2 = PER:Wagner

H2DW2 = said:Wagner



Features describing entity types and dependency tree

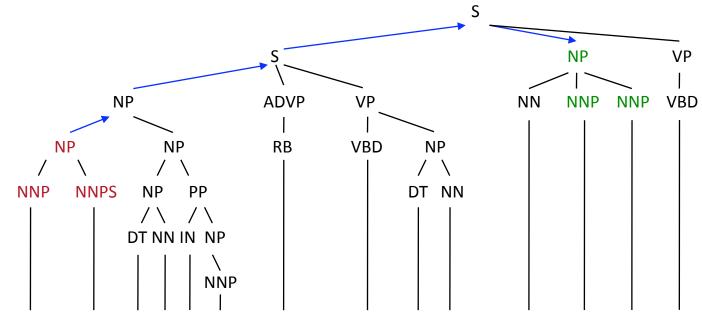
FT12SameNP = ORG-PFR-false

ET12SamePP = ORG-PER-false

ET12SameVP = ORG-PER-false

These features had disappointingly little impact!

Features: syntactic features



American Airlines a unit of AMR immediately matched the move spokesman Tim Wagner said

Phrase label paths

PTP = [NP, S, NP]

PTPH = [NP:Airlines, S:matched, NP:Wagner]

These features had disappointingly little impact!

Feature examples

American Airlines, a unit of AMR, immediately matched the move, spokesman Tim Wagner said.

Entity-based features

Entity₁ type ORG
Entity₁ head airlines
Entity₂ type PERS
Entity₂ head Wagner
Concatenated types ORGPERS

Word-based features

Between-entity bag of words { a, unit, of, AMR, Inc., immediately, matched, the, move,

spokesman }

Word(s) before Entity₁ NONE Word(s) after Entity₂ said

Syntactic features

Constituent path $NP \uparrow NP \uparrow S \uparrow S \downarrow NP$

Base syntactic chunk path $NP \rightarrow NP \rightarrow PP \rightarrow NP \rightarrow NP \rightarrow NP \rightarrow NP$

Typed-dependency path $Airlines \leftarrow_{subj} matched \leftarrow_{comp} said \rightarrow_{subj} Wagner$

Classifiers for supervised methods

Now use any classifier you like:

- SVM
- Logistic regression
- Naïve Bayes
- etc.

[Zhou et al. used a one-vs-many SVM]

Sample results

		Co	unt		Cost (%)						
	Ent	Detection		Rec	Detection		Rec	Value	Value-based		ed
	Tot	FA	Miss	Err	FA	Miss	Err	(%)	Pre	Rec	F
ART	261	38	157	84	9.1	63.9	2.5	24.5	74.2	33.6	46.2
GEN-AFF	235	28	120	92	9.1	51.5	5.0	34.5	75.6	43.6	55.3
ORG-AFF	503	71	216	237	9.6	45.4	4.0	41.0	78.9	50.6	61.6
PART-WHOLE	354	57	182	110	12.1	48.9	2.2	36.8	77.4	48.9	59.9
PER-SOC	213	24	90	116	5.6	38.5	2.4	53.5	88.0	59.1	70.7
PHYS	428	76	298	113	8.7	69.1	6.2	16.0	62.3	24.7	35.4
total	1994	294	1063	752	9.4	53.5	4.0	33.1	76.1	42.5	54.5

Surdeanu & Ciaramita 2007

Sample results

	Count				Cost (%)						
	Ent Detection Rec			Detection Rec			Value	Value-based		ed	
	Tot	FA	Miss	Err	FA	Miss	Err	(%)	Pre	Rec	F
Artifact	14	0	13	1	0.0	92.0	2.4	5.6	70.0	5.6	10.4
Business	63	4	39	24	2.2	63.8	3.4	30.7	85.6	32.8	47.5
Citizen	171	23	83	73	10.5	49.6	5.7	34.1	73.3	44.6	55.5
Employment	344	61	113	189	12.1	34.8	4.0	49.1	79.1	61.2	69.0
Family	118	19	32	79	8.6	20.9	0.4	70.1	89.7	78.7	83.8
Founder	6	0	5	1	0.0	88.8	3.4	7.8	70.0	7.8	14.1
Geographical	223	33	102	71	10.4	42.0	1.9	45.7	82.1	56.1	66.7
Investor	8	0	5	3	0.0	57.1	2.9	40.0	93.3	40.0	56.0
Lasting-Personal	32	1	19	13	1.9	50.6	7.8	39.8	81.2	41.6	55.0
Located	382	72	263	102	9.2	68.3	6.6	15.9	61.4	25.1	35.6
Membership	96	8	55	33	6.0	61.3	4.2	28.5	77.2	34.5	47.7
Near	46	4	35	11	4.9	75.2	3.2	16.7	72.8	21.6	33.3
Org-Location	64	5	37	19	5.9	55.6	3.2	35.3	82.0	41.2	54.8
Ownership	15	2	13	2	5.0	87.5	0.0	7.5	71.4	12.5	21.3
Sports-Affiliation	17	0	15	2	0.0	88.4	3.5	8.1	70.0	8.1	14.6
Student-Alum	17	0	10	7	0.0	60.0	7.5	32.5	81.2	32.5	46.4
Subsidiary	117	24	67	38	16.1	58.8	2.9	22.2	66.8	38.3	48.7
User-Owner	261	38	157	84	9.1	63.9	2.5	24.5	74.2	33.6	46.2
total	1994	294	1063	752	9.4	53.5	4.0	33.1	76.1	42.5	54.5

Surdeanu & Ciaramita 2007

Relation extraction: summary

- Supervised approach can achieve high accuracy
 - At least, for some relations
 - If we have lots of hand-labeled training data
- But has significant limitations!
 - Labeling 5,000 relations (+ named entities) is expensive
 - Doesn't generalize to different relations
- Next time: beyond supervised relation extraction
 - Semi-supervised relation extraction
 - Distantly supervised relation extraction
 - Unsupervised relation extraction