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Goal: “Machine Reading”
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Background: Information Extraction

* |E = extracting information from text
e Sometimes called text analytics commercially

e Extract entities
* (the people, organizations, locations, times, dates,
genes, diseases, medicines, etc. in a text)

e Extract the relations between entities

* Figure out the larger events that are taking place



What is Information Extraction?

As a task: I Filling slots in a database from sub-segments of text. I

October 14, 2002, 4:00 a.m. PT

For years, Microsoft Corporation CEO Bill Gates
railed against the economic philosophy of open-
source software with Orwellian fervor, denouncing
its communal licensing as a "cancer" that stifled
technological innovation.

Today, Microsoft claims to "love" the open-source
concept, by which software code is made public to
encourage improvement and development by
outside programmers. Gates himself says
Microsoft will gladly disclose its crown jewels--the
coveted code behind the Windows operating
system--to select customers.

"We can be open source. We love the concept of
shared source," said Bill Veghte, a Microsoft VP.
"That's a super-important shift for us in terms of
code access.”

Richard Stallman, founder of the Free Software
Foundation, countered saying...
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What is Information Extraction?

As a family
of techniques:

Information Extraction =
segmentation
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What is Information Extraction?

As a family | |nformation Extraction =
of techniques: segmentation + classification
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What is Information Extraction?

As a family | |nformation Extraction =

of techniques: segmentation + classification + association
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What is Information Extraction?

As a family  [nformation Extraction =
of techniques: segmentation + classification + association + clustering
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For years, Microsoft Corporation Bill Gates
railed against the economic philosophy of open-
source software with Orwellian fervor, denouncing
its communal licensing as a "cancer" that stifled
technological innovation.

Today, Microsoft claims to "love" the open-source
concept, by which software code is made public to
encourage improvement and development by
outside programmers. Gates himself says
Microsoft will gladly disclose its crown jewels--the
coveted code behind the Windows operating
system--to select customers.

"We can be open source. We love the concept of
shared source," said Bill Veghte, a Microsoft
"That's a super-important shift for us in terms of
code access.”

Richard Stallman, of the Free Software
Foundation, countered saying...
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Extracting Structured Knowledge

Each article can contain hundreds or thousands of items of knowledge...
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Lawrence Livermore National Laboratory
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The Lawrence Livermore National Laboratory (LLNL) in Livermore, California is a scientific
research laboratory founded by tha University of California in 1952. It is funded by the Unied
States Department of Energy (DOE) and managed by Lawrence Livermore National Security, LLC
(LLNS), a partnership of the University of California, Bachtel Corporation, Babcock and Wilcox, the
URS Corporation, and Battelle Memorial Insttute. On October 1, 2007 LLNS assumed

Coordinates: () 37.686026°N 12

2 Log in/ create account

Lawrence Livermore National Laboratory

Universty of Collomis

Lawrence Livermore
National Laboratory
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appled 1o national security.”'"! Its principal responsidility is ensuring the satety, security and reliabiity of the
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Goal: Machine-readable summaries
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From Unstructured Text to Structured Knowledge

Unstructured Text
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From Unstructured Text to Structured Knowledge
Unstructured Text
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From Unstructured Text to Structured Knowledge
Unstructured Text
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From Unstructured Text to Structured Knowledge
Unstructured Text
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Unstructured Text
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From Unstructured Text to Structured Knowledge

Unstructured Text Structured Knowledge
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From Unstructured Text to Structured Knowledge

Unstructured Text
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From Unstructured Text to Structured Knowledge

Unstructured Text Structured Knowledge

..' google
wd

Reaglng Hal Varian on

edicting the present’ by using
(%ogle Trends & Insights for
Search http://bitly.com/3DCp8j

(e ] N Cooghe Maps mastizs som TARS
YIRS, Hmolvs recipiens, ewmaris, eca

2004 CO/ DN WIS (BT (om ZCly rypLE
Sty oo ¢\ o
!n::u c'low. :.w;:;m g'g.«- oC 1 lw-s‘w-.! X
a-Foue
Cmal 15 5 years 0 & brief Iook Thvough e wrcvwe £ cR@D
m:-vb!v‘)‘ll’v‘ ln‘-i-la
RT @Co0gheAWork - Saach anecompiete ssaiadie EFY {g0F |

l:-a- un mul: Cmal 2ot B T3 4 vt -

Lood s Nﬁdwﬂuwﬂmws‘aﬁ
Prtihae, wy om davs &= more o
rer3 v-mwm..

e the Gene Ontology

Our call for patent reform arsculated by our loms dus
cuncar manager MIp /ity comiose

slide from Rion Snow



From Unstructured Text to Structured Knowledge

Unstructured Text Structured Knowledge
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From Unstructured Text to Structured Knowledge
Unstructured Text
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More applications of |IE

e Building & extending knowledge bases and ontologies

e Scholarly literature databases: Google Scholar, CiteSeerX

* People directories: Rapleaf, Spoke, Naymz

e Shopping engines & product search

e Bioinformatics: clinical outcomes, gene interactions, ...

e Patent analysis

e Stock analysis: deals, acquisitions, earnings, hirings & firings
e SEC filings

* Intelligence analysis for business & government
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Item Name Image Description Capacity Height Speed @
Millennium Force Millennium Force is a high-speed giga roller 1,600 riders per hour 310 ft 93 mph

coaster. Guests must be in good health to
ride this ride. Guests with disabilities are
mainstreamed through the ...

Texas Giant At more than 14 stories tall, the Texas Giant 1600 riders per hour 143 ft 62-MPH
is one of the tallest, fastest wooden roller
coasters to be found anywhere. The Giant

was named the #1 roller ...

Cyclone For other roller coasters named Cyclone, 1200 riders per hour 85 feet 60-MPH
% see Cyclone (disambiguation). .... The
Coney Island Cyclone is an ACE Coaster

Classic and Coaster Landmark; ...

Mean Streak The Mean Streak is a high-speed wooden 1,600 riders per hour 161 ft 65 mph
roller coaster. The lap bar and seatbelt must
be fastened and tightened securely. Special

access is via the exit ramp ...

SuperMan The Escape Superman: The Escape is a launched 1050 riders per hour | 415 feet 100 mph
shuttle roller coaster located in the Samurai
Summit area of Six Flags Magic Mountain in
Valencia, California that opened ...

Riddler's Revenge This article is about the Six Flags Magic No value found 156" 65 mph
Mountain roller coaster. For the episode of

The Batman, see Riddler's Revenge (The
Batman). ...

Alpengeist Alpengeist is the tallest and one of the 1820 riders per hour 195 ft 67 mph
fastest full circuit inverted roller coasters in
the world. Alpengeist opened in 1997 at

Busch Gardens Williamsburg ...
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Not finding the right items? Start with an empty Square.
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Item Name
Chihuahua

Maltese

Bichon Frise

Affenpinscher

Brussels Griffon

Pomeranian

Havanese

Australian Terrier

Image Description

Do not let the Chihuahua get away with
things you would not allow a large dog to do
(Small Dog Syndrome), such as jumping up
on humans. ...

Do not allow these dogs to develop Small
Dog Syndrome, human induced behaviors,
... Today, the glamorous Maltese is an
adored pet and sought-after show dog. ...

A Bichon Frisé (French, literally meaning
curly lap dog) is a small breed of dog of the
Bichon type. They are popular pets, similar
in appearance to, ...

. Description, The Affenpinscher is a small
dog with a harsh, shaggy coat, and longer
hair all over the face. It is a smaller version
of a working terrier and ...

Brussels Griffon Breed Standard. Toy
Group. General Appearance A toy dog,
intelligent, alert, sturdy, with a thickset, short
body, a smart carriage and ...

You may find Pomeranian pupples for sale
and Pomeranian dogs for sale from quality
dog .... She Is Soo Small. She Has A
Gorgous Little Baby Doll Face, ...

The Havanese gives a rugged impression of
a little dog, it is sturdy, and while a small
breed, it Is neither fragile nor overdone. ...

"Dedicated to the Advancement of Quality,
Purebred Australian Terriers”. Founded

* Weight
Blb

8lbs

7-12 lbs

7-10 lbs.

18-12 pounds

4los

7-13

12-141b

Height
6-9 inches

18 to 24"

9-12inches

10 - 15 inches

7-8inches

7-12 inches

8-11

10in

10 items

Group - [mar=

Toy

Toy

Non Sporting

Toys

Toy

Toy

Toy

Terrier



Named Entity Recognition

e Labeling names of things in web pages:

e An entity is a discrete thing like “IBM Corporation”

e But often extended in practice to things like dates, instances of
products and chemical/biological substances that aren’t really
entities...

* “Named” means called “IBM” or “Big Blue” not “it”
e Eg,

e Many web pages tag various entities

e “Smart Tags” (Microsoft) inside documents

e Reuters’ OpencCalais



Named Entity Extraction

e The task: and names in text, for example:
The said on Thursday it disagreed
with advice.
Only and backed

's proposal .

“What we have to be extremely careful of is how other
countries are going to take Germany 's lead”,
( ) chairman
said on radio .

e The purpose:
e ... alotof information is really associations between named entities.

e ... for question answering, answers are usually named entities.
e ...the same techniques apply to other slot-filling classifications.



Maximum Entropy Markov Model

exp(i fi(h,t)A))

P(t|h)=— "
ZGXP(Z Ji(ht)A;)

Slide from Chris Manning



Interesting Features

e Words

e Word shapes

e Part-of-speech tags

e Parsing information

e Searching the web for the word in a given context

e X gene, X mutation, X antagonist
e Gazetteer

e |ist words whose classification is known

e Abbreviation extraction (Schwartz and Hearst, 2003)
¢ |dentify short and long forms when occurring together in text

... Zn finger homeodomain 2 (Zth 2) ...

Slide from Chris Manning



Orthographic (letter n-gram)
features: what’s in a name?

OXa

= 0
D0®mAO0

=18

ldrug

B company
_Imovie
_Iplace

M person

Cotrimoxazole

Alien Fury: Countdown to Invasion

Slide from Chris Manning



Named entity recognition results

* NER is commonly thought of as a solved problem

e Accuracies of >90% are typical
e (But very genre-dependent: BioMed NER is much harder)

* NER isn’t usually considered part of NLU

* Reminiscent of “The Al Effect”:
“Every time we figure out a piece of it, it stops
being magical; we say, Oh, that's just a
computation.” —Rodney Brooks



Relation extraction example

CHICAGO (AP) — Citing high fuel prices, United Airlines said
Friday it has increased fares by $6 per round trip on flights to
some cities also served by lower-cost carriers. American Airlines,
a unit AMR, immediately matched the move, spokesman Tim
Wagner said. United, a unit of UAL, said the increase took effect
Thursday night and applies to most routes where it competes
against discount carriers, such as Chicago to Dallas and Atlanta
and Denver to San Francisco, Los Angeles and New York.

Slide from Jim Martin



Relation types

For generic news texts...

Relations Examples Types
Affiliations
Personal married to, mother of PER — PER
Organizational  spokesman for, president of  PER — ORG
Artifactual owns, invented, produces (PER | ORG) — ART
Geospatial
Proximity near. on outskirts LOC — LOC
Directional southeast of LOC — LOC
Part-Of
Organizational  a unit of, parent of ORG — ORG
Political annexed, acquired GPE — GPE

Slide from Jim Martin



Types of ACE Relations, 2003

* ROLE - relates a person to an organization or a geopolitical
entity
e Subtypes: member, owner, affiliate, client, citizen

* PART - generalized containment
e Subtypes: subsidiary, physical part-of, set membership

e AT - permanent and transient locations
e Subtypes: located, based-in, residence

e SOCIAL- social relations among persons
e Subtypes: parent, sibling, spouse, grandparent, associate

Slide from Doug Appelt



Frequent Freebase Relations

Relation name Size | Example

/people/person/nationality 281,107 | John Dugard, South Africa
/location/location/contains 253,223 | Belgium, Nijlen
/people/person/profession 208,888 | Dusa McDuff, Mathematician
/people/person/place_of_birth 105,799 | Edwin Hubble, Marshfield
/dining/restaurant/cuisine 86,213 | MacAyo’s Mexican Kitchen, Mexican
/business/business_chain/location 66,529 | Apple Inc., Apple Inc., South Park, NC
/biology/organism_classification_rank 42,806 | Scorpaeniformes, Order
/film/film/genre 40,658 | Where the Sidewalk Ends, Film noir
/flm/film/language 31,103 | Enter the Phoenix, Cantonese
/biology/organism_higher_classification 30,052 | Calopteryx, Calopterygidae
/film/film/country 27,217 | Turtle Diary, United States
/film/writer/film 23,856 | Irving Shulman, Rebel Without a Cause
/film/director/film 23,539 | Michael Mann, Collateral
/film/producer/film 22,079 | Diane Eskenazi, Aladdin
/people/deceased_person/place _of_death 18,814 | John W. Kern, Asheville
/music/artist/origin 18,619 | The Octopus Project, Austin
/people/person/religion 17,582 | Joseph Chartrand, Catholicism
/book/author/works_written 17,278 | Paul Auster, Travels in the Scriptorium
/soccer/football_position/players 17,244 | Midfielder, Chen Tao
/people/deceased_person/cause_of_death | 16,709 | Richard Daintree, Tuberculosis
/book/book/genre 16,431 | Pony Soldiers, Science fiction
/fil/film/music 14,070 | Stavisky, Stephen Sondheim
/business/company/industry 13,805 | ATS Medical, Health care




Relations in ontologies: geographical

flow_through

capital_of

instance_ of “a‘ .:'
height (m) length (km) row through

L4

located_in s a‘ ., N

*

Design: Philipp Cimiano

Slide from Paul Buitelaar



Other relations: disease outbreaks

May 19 1995| Atlanta -- The Centers for Disease Control

and Prevention, which is in the front line of the world's

response to the deadly [Ebola

epidemic in

is finding itself hard pressed to cope with

Zaire

/

the crisis...

Disease Outbreaks in The New York Times

Date Disease Name Location
Jan. 1995 | Malaria Ethiopia
Information July 1995 | Mad Cow Disease | U.K.
Extraction System Feb. 1995 | Pneumonia U.S.
(e.g., NYU’s >
Proteus)

Slide from Eugene Agichtein



Other relations: protein interactions

+We show that and [CBF—CIinteract]

with each other to form a [CBF-A-CBF-C complex]
and that(CBF-B| does not interact with|(CBF-Al or
CBF-Clindividually but that it|associates|with the
CBF-A-CBF-C complex}.”

interact

CBF'A < Comp|ex >CBF'C

CBF-B associates CBF-A-CBF-C CompIeX
>

Slide from Rosario and Hearst



Other relations: UMLS

* Unified Medical Language System

e integrates linguistic, terminological and semantic information

e Semantic Network consists of 134 semantic types and 54 relations

between types

Pharmacologic Substance
Pharmacologic Substance
Pharmacologic Substance
Pharmacologic Substance
Pharmacologic Substance
Pharmacologic Substance

affects
causes
complicates
diagnoses
prevents
treats

Pathologic Function
Pathologic Function
Pathologic Function
Pathologic Function
Pathologic Function
Pathologic Function

Slide from Paul Buitelaar



Relations in ontologies: GO (Gene Ontology)

* GO (Gene Ontology)

e Aligns descriptions of gene products in different databases, including
plant, animal and microbial genomes

e Organizing principles are molecular function, biological process and
cellular component

Accession: G0:0009292

Ontology: biological process

Synonyms: broad: genetic exchange

Definition: In the absence of a sexual life cycle, the processes

involved in the introduction of genetic information to create
a genetically different individual.
Term Lineage all : all (164142)
G0O:0008150 : biological process (115947)
GO:0007275 : development (11892)
G0:0009292 : genetic transfer (69)

Slide from Paul Buitelaar



Why this is hard: Ambiguity!

Which relations hold between two entities?

Cure?

‘ Prevent?

ey i Side Effect?

Treatment Disease



Relations between disease & treatment

e Cure

These results suggest that con
ameliorated by pretreatment with

* Prevent
A two-dose combined

facilitate immunization programs.

* Vague
... effect of on

was

would

Slide from Barbara Rosario and Marti Hearst



Relations between words

e Language understanding applications need word
meaning!
e Question answering
e Conversational agents
e Summarization

* One key meaning component: word relations
e Hierarchical (hypernym/hyponym) relations
“San Francisco” is a “city”

e Other relations between words
“alternator” is a part of a “car”



Hyponymy

e One sense is a hyponym of another if the first
sense is more specific, denoting a subclass of the
other
e car is a hyponym of vehicle
e dog is a hyponym of animal
* mango is a hyponym of fruit

e Conversely
e vehicle is a hypernym/superordinate of car

e agnimal is a hypernym of dog
e fruitis a hypernym of mango

superordinate |vehicle |fruit furniture mammal

hyponym car mango chair dog




The WordNet noun hierarchy

abstract
entity
causal
( agent >

‘ N ‘a ' ; &
erson Coriolis
p effect
v

playwright Properties:

Transitive, Acyclic

http://wordnetweb.princeton.edu/perl/webwn

slide from Rion Snow



WordNet relations

-

X is-a-kind-of Y
(hyponym / hypernym)

entity

( abstraction )

color,
coloring

o

~

-

~
X is-a-part-of Y

(meronym / holonym)

organism,
being

0

cel

nucleus,
karyon

(51 ()

chromosome

(1 (.
(VAVAV/

telomere

g

J

slide from Rion Snow



WordNet Noun Relations

Relation Also Called Definition Example

Hypernym Superordinate From concepts to superordinates breakfast' — meal*
Hyponym Subordinate  From concepts to subtypes meal' — lunch!
Instance Hypernym Instance From instances to their concepts Austen' — author?
Instance Hyponym  Has-Instance From concepts to concept instances  composer'! — Bach'
Member Meronym  Has-Member From groups to their members faculty* — professor!
Member Holonym  Member-Of  From members to their groups copilot' — crew!

Part Meronym Has-Part From wholes to parts table* — leg?

Part Holonym Part-Of From parts to wholes course’ — meal®
Substance Meronym From substances to their subparts water! — oxygen!
Substance Holonym From parts of substances to wholes  gin! — martini!
Antonym Semantic opposition between lemmas leader! <= follower!
Derivationally Lemmas w/same morphological root  destruction' <= destroy'

Related Form




WordNet is incomplete

Ontological relations are missing for many words:

In WordNet 3.1 Not in WordNet 3.1
insulin leptin
progesterone pregnenolone
combustibility affordability
navigability reusability

HTML XML

Google, Yahoo Microsoft, IBM

Esp. for specific domains: restaurants, auto parts, finance



Relation extraction: 5 easy methods

Hand-built patterns
Supervised methods
Bootstrapping (seed) methods
Unsupervised methods
Distant supervision

A S i



Relation extraction: 5 easy methods

1. Hand-built patterns

2. Supervised methods

3. Bootstrapping (seed) methods
4. Unsupervised methods

5. Distant supervision



A complex hand-built extraction rule

;33 For <company> appoints <person> <position>

(defpattern appoint
"'np-sem(C-company)? rn? sa? vg(C-appoint) np-sem(C-person) °, "7
to-be? np(C-position) to-succeed?:
company-at=1.attributes, sa=3.span, lv=4.span, person-at=5.attributes
position-at=8.attributes |

(defun when-appoint (phrase-type)

(let ((person-at (binding “person-at))
(company-entity (entity-bound “company-at))
(person-entity (essential-entity-bound ‘person-at ‘C-person))
(position-entity (entity-bound “position-at))
(predecessor-entity (entity-bound “predecessor-at))
new-event)

(not-an-antecedent position-entity)

;3 1f no company is specified for position, use agent

NYU Proteus



Problems

* Have to write many new rules for each possible
relation
e hard to write
e hard to maintain
e there are a zillion of them
e domain-dependent

e Can we do something more general?



Adding hyponyms to WordNet

* |ntuition from Hearst (1992)

e “Agar is a substance prepared from a mixture
of red algae, such as Gelidium, for laboratory
or industrial use”

e What does Gelidium mean?

e How do you know?"




Adding hyponyms to WordNet

* |ntuition from Hearst (1992)

e “Agar is a substance prepared from a mixture
offred algae, such as Gelidium, |for laboratory
or industrial use”

e What does Gelidium mean?

e How do you know?"




Predicting the hyponym relation

“...works by such as Herrick, Goldsmith, and Shakespeare.”
“If you consider ike Shakespeare...”
“Some (including Shakespeare)...”

“Shakespeare was the of several...”

“Shakespeare, of The Tempest...”

|

Shakespeare |S-A author (0.87)

How can we capture the variability of expression of a relation in
natural text from a large, unannotated corpus?



Hearst’s lexico-syntactic patterns

“Y such as X ((, X)* (, and/or) X)”
“such Y as X...”

“X... or other Y”

“X... and other Y”

“Y including X...”

“Y, especially X...”

(Hearst, 1992): Automatic Acquisition of Hyponyms



Examples of Hearst patterns

Hearst pattern Example occurrences

X and other Y ...temples, treasuries, and other important civic buildings.
X or other Y bruises, wounds, broken bones or other injuries...

Y such as X The bow lute, such as the Bambara ndang...

such Y as X ...such authors as Herrick, Goldsmith, and Shakespeare.

Y including X ...common-law countries, including Canada and England...

Y, especially X European countries, especially France, England, and Spain...



Patterns for detecting part-whole

relations (meronym-holonym)
-]

Berland and Charniak (1999)

Berland pattern Example occurrences

NPy’s NPx: ...building’s basement...
NPy of {the|la} NPy: | ...basement of a building...
NPy in {thela} NPx: | ...basements in a building...
N Px of NPy : ...basements of buildings...
NPy in NPy: ...basements in buildings...




Results with hand-built patterns

e Hearst: hypernyms
® 66% precision with “X and other Y” patterns

e Berland & Charniak: meronyms
® 55% precision



Problem with hand-built patterns
e Requires that we hand-build patterns for each
relation!

e Don’t want to have to do this for all possible
relations!

e Plus, we'd like better accuracy



Relation extraction: 5 easy methods

1. Hand-built patterns

2. Supervised methods

3. Bootstrapping (seed) methods
4. Unsupervised methods

5. Distant supervision



Supervised relation extraction

e Sometimes done in 3 steps:
1. Find all pairs of named entities
2. Decide if the two entities are related
3. If yes, then classify the relation

* Why the extra step?

e Cuts down on training time for classification by
eliminating most pairs

* Producing separate feature-sets that are appropriate for
each task



Relation analysis

e Usually just run on named entities within the
same sentence

function FINDRELATIONS(words) returns relations

relations — nil
entities — FINDENTITIES (words)

forall entity pairs (el,e2) in entities do
if RELATED?(el. e2)
relations — relations+CLASSIFYRELATION(el. e2)

Slide from Jim Martin



Relation extraction

» Task definition: to label the semantic relation
between a pair of entities in a sentence (fragment)

PHYS > [PER-SOC)> [EMP-ORG) NIL >

PHYS: Physical
PER-SOC: Personal / Social
EMP-ORG: Employment / Membership / Subsidiary

Slide from Jing Jiang



Supervised learning

e Supervised machine learning (e.g. [zhou et al. 2005], [Bunescu
& Mooney 2005], [Zhang et al. 2006], [Surdeanu & Ciaramita 2007])

arg-1 word: leader arg-2 type: ORG

> | dacendendemp-orG) >
arg- of & arg-2
e Training data is needed for each relation type

Slide from Jing Jiang



ACE 2008 tasks

* EDR (Entity Detection and Recognition)
e within-document (“local”)
e cross-document (“global”)

* RDR (Relation Detection and Recognition)
e within-document (“local”)
e cross-document (“global”)



ACE 2008

* An entity is an object or set of objects in the
world.

* A mention is a reference to an entity.
* Name Mention: Joe Smith
e Nominal Mention: the guy wearing a blue shirt
e Pronoun Mentions: he, him



ACE 2008: five entity types

* Person (PER) - Human individual or group.

PER.Individual [Bill Clinton], [The President of the U.S.]
PER.Group: [Analysts], [IBM’s lawyers] [the house painters]

e Organization (ORG) - Corporation, agencies, etc.
groups
ORG.GOV: [KGB], [the administration]
ORG.COM, ORG.EDU, ORG.NONGOV “The Red Cross”
ORG.REL, ORG.SCI, ORG.SPO
ORG.ENT: [the Roundabout Theater Company]



ACE 2008: five entity types

* Geo-political Entity (GPE) - GPE entities are
geographical regions defined by political and/or

social groups
NATION, CONTINENT, STATE, POPCENTER, etc
[France], [The people of France]

e GPE.ORG - France signed a treaty with
Germany last week.

e GPE.PER - France vacations in August.

e GPE.LOC - The world leaders met in
France yesterday.

e GPE.GPE - France produces better wine
than New Jersey.




ACE 2008: five entity types

* Location (LOC) - Location entities are limited to
geographical entities such as geographical areas
and landmasses, bodies of water, and geological
formations.

o ADDRESS, BOUNDARY, CELESTIAL, WATER-BODY, LAND-
REGION-NATURAL, REGION-GENERAL

e Facility (FAC) - Buildings and other permanent
man-made structures
e AIRPORT, PLANT, PATH (street, bridge), etc.



ACE 2008: EDR

* For each entity, all mentions of the entity are
recorded and coreferenced



ACE 2008: six relation types

(Org-affiliation)

Type Subtype

ART (artifact) User-Owner-Inventor-Manufacturer
GEN-AFF Citizen-Resident-Religion-Ethnicity,
(General affiliation) Org-Location

METONYMY" None

ORG-AFF Employment, Founder, Ownership,

Student-Alum, Sports-Affiliation,
Investor-Shareholder, Membership

PART-WHOLE
(part-to-whole)

Artifact, Geographical, Subsidiary

PER-SOC”
(person-social)

Business, Family, Lasting-Personal

PHYS" (physical)

Located, Near




ACE Agent-Artifact Relation

e User-Owner-Inventor-Manufacturer

PER-FAC
[My house] is in West Philadelphia
Class Type Argument 1 Argument 2
Possessive | Agent-Artifact. UOIM | My My house
Asserted

Unspecified




ACE General-Affiliation Relation

e Citizen-Resident-Religion-Ethnicity

PER-GPE
a sheep shearer from New Zealand
Class Type Argument 1 Argument 2
Preposition | Gen-Aff. CRRE a sheep shearer New Zealand
Asserted from New Zealand
Unspecified

* Org-Location-Origin

ORG-LOC
a small robotics company in a St. Louis suburb
Class Type Argument 1 Argument 2
Preposition | Gen-Aff.Loc-Origin | a small robotics a St. Louis suburb
Asserted company in a St.

Unspecified

Louis suburb




ACE ORG-Affiliation Relation

* Employment

PER-ORG
the CEQ of Microsoft
Class Type Argument 1 Argument 2
Preposition | Org-Aff. Employment | the CEQ of Microsoft
Asserted Microsoft
Unspecified

* Owner

PER-ORG
[Dallas Cowboys owner] Jerry Jones
Class Type Argument 1 Argument 2
PreMod Org-Aff.Ownership | Dallas Cowboys Dallas Cowboys
Asserted owner
Unspecified

* + Founder, Membership, Sports-Affiliation,

Shareholder




ACE Part-Whole Relation

* GEO

FAC-FAC
St. Vartan's Cathedral, on Second Avenue
Class Type Argument 1 Argument 2
Preposition | Part-Whole.Geo | St. Vartan's Cathedral, on Second
Asserted Second Avenue Avenue
Unspecified

e SUBSIDIARY

ORG-ORG
Microsoft’s accounting department
Class Type Argument 1 Argument 2
Possessive | Part-Whole.Subsidiary Microsoft's accounting Microsoft
Asserted department
Unspecified




ACE Personal-Social Relation

e Business
PER-PER

his lawyer

Class Type Argument 1 | Argument 2

Possessive | Per-Social.Business | his his lawyer
Asserted
Unspecified

e Family
PER-PER

relatives of the dead

Class Type Argument 1 Argument 2

Preposition | Per-Social.Family relatives of the dead the dead
Asserted

Unspecified

e Lasting

PER-PER

his friendship with some right-wing mayors

Class Type Argument 1 Argument 2

Possessive | Per-Social.Lasting his some right-wing
Asserted mayors
Unspecified




ACE Physical Relation

e LOCATED

PER-GPE
He was campaigning in his home state of Tennessee
Class Type Argument 1 Argument 2
Verbal Physical.Located | He his home state of Tennessee
Asserted
Past

* NEAR

GPE-GPE
a town some 50 miles south of Salzburg in the central Austrian Alps
Class Type Argument 1 Argument 2
Preposition | Physical.Near | a town some 50 miles south of Salzburg
Asserted Salzburg in the central Austrian
Unspecified Alps

PER-FAC
Muslim youths recently staged a half dozen rallies in front of the embassy
Class Type Argument 1 Argument 2
Other Physical.Near Muslim youths the embassy
Asserted

Past




ACE 2008 Training data

Source

Training
epoch

Approximate size

English Resources

Broadcast News 3/03 — 6/03 55,000 words
Broadcast 3/03 — 6/03 40,000 words
Conversations
Newswire 3/03 — 6/03 50,000 words
Weblog 11/04 — 2/05 40,000 words
Usenet 11/04 — 2/05 40,000 words
Conversational 11/04-12/04
Telephone (differentiated by 40,000 words
Speech topic vs. eval)

Arabic Resources

Broadcast News

10/00 — 12/00

30,000+ words

Newswire

10/00 — 12/00

55,000+ words

Weblog

11/04 — 2/05

20,000+ words




Features: words

American Airlines, a unit of AMR, immediately matched the
move, spokesman Tim Wagner said.

Bag-of-words features

WM1 = {American, Airlines}, WM2 = {Tim, Wagner}
Head-word features

HM1 = Airlines, HM2 = Wagner, HM12 = Airlines+Wagner

Words in between
WBNULL = false, WBFL = NULL, WBF = a, WBL = spokesman,
WBO = {unit, of, AMR, immediately, matched, the, move}

Words before and after
BM1F = NULL, BM1L = NULL, AM2F = said, AM2L = NULL

Word features yield good precision, but poor recall



Features: NE type & mention level

American Airlines, a unit of AMR, immediately matched the
move, spokesman Tim Wagner said.

Named entity types (ORG, LOC, PER, etc.)
ET1 =0ORG, ET2 = PER, ET12 = ORG-PER

Mention levels (NAME, NOMINAL, or PRONOUN)
ML1 = NAME, ML2 = NAME, ML12 = NAME+NAME

Named entity type features help recall a lot
Mention level features have little impact



Features: overlap

American Airlines, a unit of AMR, immediately matched the
move, spokesman Tim Wagner said.

Number of mentions and words in between
#HMB=1,#WB =9

Does one mention include in the other?
M1>M?2 = false, M1<M?2 = false

Conjunctive features
ET12+M1>M2 = ORG-PER+false
ET12+M1<M2 = ORG-PER+false
HM12+M1>M2 = Airlines+Wagner+false
HM12+M1<M2 = Airlines+Wagner+false

These features hurt precision a lot, but also help recall a lot



Features: base phrase chunking

American Airlines, a unit of AMR, immediately matched the
move, spokesman Tim Wagner said.

Parse using the , then apply Sabine Buchholz’s

0 B-NP NNP American NOFUNC Airlines 1 B-S/B-S/B-NP/B-NP

1 I-NP NNPS Airlines NP matched 9 I-S/I-S/I-NP/I-NP

20 COMMA COMMA NOFUNC Airlines 1 I-S/I-S/I-NP

3 B-NP DT a NOFUNC unit 4 I-S/I-S/I-NP/B-NP/B-NP
4 I-NP NN unit NP Airlines 1 I-S/I-S/I-NP/I-NP/I-NP
5 B-PP IN of PP unit 4 I-S/I-S/I1I-NP/I-NP/B-PP
6 B-NP NNP AMR NP of 5 I-S/I-S/I-NP/I-NP/I-PP/B-NP
70 COMMA COMMA NOFUNC Airlines 1 I-S/I-S/I-NP

8 B-ADVP RB immediately ADVP matched 9 I-S/I-S/B-ADVP

9 B-VP VBD matched VP/S matched 9 I-S/I-S/B-VP

10 B-NP DT the NOFUNC move 11 I-S/I-S/I-VP/B-NP

11 I-NP NN move NP matched 9 I-S/I-S/I-VP/I-NP

12 0 COMMA COMMA NOFUNC matched 9 I-S

13 B-NP NN spokesman NOFUNC Wagner 15 I-S/B-NP

14 I-NP NNP Tim NOFUNC Wagner 15 I-S/I-NP

15 I-NP NNP Wagner NP matched 9 I-S/I-NP

16 B-VP VBD said VP matched 9 I-S/B-VP

17 O . . NOFUNC matched 9 I-S

[np American Airlines], [yp a unit] [pp Of] [yp AMR], [,pyp Immediately]
[vp matched] [yp the move], [yp spokesman Tim Wagner] [ said].



Features: base phrase chunking

[np American Airlines], [yp a unit] [pp Of] [yp AMR], [,pyp Immediately]
[vp matched] [p the move], [yp spokesman Tim Wagner] [ said].

Phrase heads before and after
CPHBM1F = NULL, CPHBM1L = NULL, CPHAM2F = said, CPHAM2L = NULL

Phrase heads in between
CPHBNULL = false, CPHBFL = NULL, CPHBF = unit, CPHBL = move

CPHBO = {of, AMR, immediately, matched}
Phrase label paths

CPP = [NP, PP, NP, ADVP, VP, NP]
CPPH = NULL

These features increased both precision & recall by 4-6%



Features: syntactic features

Features of mention dependencies
ETIDW1 = ORG:Airlines
H1DW1 = matched:Airlines
ET2DW?2 = PER:Wagner
H2DW?2 = said:Wagner

Features describing entity types and dependency tree
ET12SameNP = ORG-PER-false
ET12SamePP = ORG-PER-false
ET12SameVP = ORG-PER-false

These features had disappointingly little impact!



Features: syntactic features

S
T T
S NP VP
NP ADVP VP NN NNP NNP VBD
T~ | | T~
NP NP RB VBD NP
/\ / \ / \
NNP NNPS NP PP DT NN
/\ /\
DT NN IN NP
\
NNP

l

American Airlines a unit of AMR immediately matched the move spokesman Tim Wagner said

Phrase label paths
PTP =[NP, S, NP]
PTPH = [NP:Airlines, S:matched, NP:Wagner]

These features had disappointingly little impact!



Feature examples

American Airlines, a unit of AMR, immediately matched the
move, spokesman Tim Wagner said.

Entity-based features

Entity; type
Entity; head

Entity, type
Entity; head
Concatenated types

Word-based features
Between-entity bag of words

Word(s) before Entity;
Word(s) after Entity>

Syntactic features
Constituent path
Base syntactic chunk path
Typed-dependency path

ORG
airlines
PERS
Wagner
ORGPERS

{ a, unit, of, AMR, Inc., immediately, matched, the, move,
spokesman }

NONE

said

NPINP|TSTS|NP
NP —NP—PP—-NP—-VP—-NP— NP

Airlines «— g5 j matched «— comp said — s,p; Wagner



Classifiers for supervised methods

Now use any classifier you like:

e SVM

e Logistic regression
e Naive Bayes

°* etc.

[Zhou et al. used a one-vs-many SVM|]



Sample results

Count Cost (%)

Ent Detection Rec Detection Rec Value Value-based

Tot FA Miss Err FA Miss Err (%) Pre Rec F
ART 261 38 157 84 91 63.9 2.5 245 742 33.6 46.2
GEN-AFF 235 28 120 92 91 515 50 34.5 756 43.6 55.3
ORG-AFF 503 71 216 237 96 454 4.0 41.0 789 50.6 61.6
PART-WHOLE 354 57 182 110 121 489 2.2 36.8 774 48.9 59.9
PER-SOC 213 24 90 116 56 38.5 24 53.5 88.0 591 70.7
PHYS 428 76 298 113 8.7 69.1 6.2 16.0 62.3 247 35.4

| total | 1994 | 294 | 1063 | 752 || 94 | 535 | 4.0 | 33.1 | 761 | 425 | 545 |

Surdeanu & Ciaramita 2007



Sample results

Count Cost (%)
Ent Detection Rec Detection Rec Value Value-based
Tot FA Miss Err FA Miss Err (%) Pre Rec F
Artifact 14 0 13 1 0.0 92.0 24 5.6 70.0 56 104
Business 63 4 39 24 2.2 63.8 34 30.7 856 328 47.5
Citizen... 171 23 83 73 105 496 57 34.1 733 44 6 55.5
Employment 344 61 113 189 121 348 40 491 791 61.2 69.0
Family 118 19 32 79 8.6 209 04 70.1 897 787 83.8
Founder 6 0 5 1 0.0 88.8 34 7.8 70.0 7.8 141
Geographical 223 33 102 71 104 42.0 1.9 457 821 56.1 66.7
Investor... 8 0 5 3 0.0 571 29 40.0 93.3 40.0 56.0
Lasting-Personal 32 1 19 13 19 50.6 7.8 39.8 81.2 416 55.0
Located 382 72 263 102 92 68.3 6.6 15.9 61.4 251 35.6
Membership 96 8 55 33 6.0 61.3 42 28.5 772 345 47.7
Near 46 4 35 11 49 75.2 3.2 16.7 728 216 33.3
Org-Location 64 5 37 19 59 55.6 3.2 35.3 82.0 412 548
Ownership 15 2 13 2 50 875 0.0 7.5 714 125 21.3
Sports-Affiliation 17 0 15 2 0.0 88.4 3.5 8.1 70.0 8.1 146
Student-Alum 17 0 10 7 0.0 60.0 75 325 81.2 325 46.4
Subsidiary 117 24 67 38 161 58.8 29 22.2 66.8 38.3 48.7
User-Owner.... 261 38 157 84 91 63.9 25 245 742 33.6 46.2
| total | 1994 | 294 [ 1063 | 752 || 94 | 535 | 40 [ 331 | 761 | 425 | 545

Surdeanu & Ciaramita 2007




Relation extraction: summary

* Supervised approach can achieve high accuracy

e At least, for some relations
e If we have lots of hand-labeled training data

e But has significant limitations!
e Labeling 5,000 relations (+ named entities) is expensive
e Doesn’t generalize to different relations

e Next time: beyond supervised relation extraction
e Semi-supervised relation extraction
e Distantly supervised relation extraction
e Unsupervised relation extraction



