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Goal: Help you with your projects

• Managing data
• Establishing baselines
• Comparing models
• Optimizing models
• Navigating tricky situations
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Associated materials

• Evaluation metrics notebook:
https://github.com/cgpotts/cs224u/blob/master/
evaluation_metrics.ipynb
• scikit-learn guidance on model evaluation:

http://scikit-learn.org/stable/modules/model_
evaluation.html
• Evaluation methods notebook:

https://github.com/cgpotts/cs224u/blob/master/
evaluation_methods.ipynb
• Resnik and Lin 2010; Smith 2011, Appendix B
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Your projects

1. We will never evaluate a project based on how “good” the results are.
É Publication venues do this, because they have additional constraints

on space that lead them to favor positive evidence for new
developments over negative results.
É In CS224u, we are not subject to this constraint, so we can do the

right and good thing of valuing positive results, negative results, and
everything in between.

2. We will evaluate your project on:
É The appropriateness of the metrics.
É The strength of the methods.
É The extent to which the paper is open and clear-sighted about the

limits of its findings.
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Methods: How times have changed!
Circa 2010

1. Develop your complete system
on tiny samples of your train
data.

2. Once it is working, do regular
cross-validation using only your
train data

3. Evaluate only very occasionally
on dev so that you don’t hill
climb on it.

4. In the final stages of your
project, do a complete round of
hyperparameter tuning using
your dev data, select the best
model, and evaluate it on test.

In 2023
1. Develop your complete system

on tiny samples of your train
data.

2. Either there is no train data or
cross-validation would cost $20K
and take six months.

3. Dev is frequently and crucially
important to optimization, so

that it’s a superb proxy for
test.

4. Either hyperparameter tuning
would cost $100K and take ten
years or there are no
hyperparameters but test runs
cost $4K in API costs.
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So what do we do?

1. The core tenets of the previous era remain perfectly sound.
2. But enforcing them has become impossible – only the richest

organizations could follow them, and restricting participation in the
field in that way would be terrible.

3. So: articulate your methods and the rationale behind them,
including practical details.

4. Two rules should remain absolutely fixed:
É Never do any model selection (even informally) based on test

set evaluations.
É Try to give all the systems you evaluate the best chance of

success – never stack the deck in favor of a system you are
advocating for.
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Metrics: How times should change!

Strathern’s Law: When a measure becomes a target,
it ceases to be a good measure.

Leaderboards – the good
An objective basis for comparisons, creating opportunities for
wild-seeming ideas to get a hearing.

Leaderboards – the bad
• Conflation of benchmark improvements with progress
• Conflation of benchmarks with empirical domains (“X is solved”)
• Conflation of benchmark performance with capabilities
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Metrics and application areas

• Missing a safety signal costs lives; human review is feasible
• Exemplars need to be found in a massive dataset
• Specific mistakes are deal-breakers; others hardly matter
• Cases need to be prioritized
• The solution needs to work over an aging cell network
• The solution cannot provide worse service to specific groups
• Specific predictions need to be blocked

Our (apparent) answer: F1 and friends
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Abstract

Machine learning (ML) currently exerts an outsized influence on the world, in-
creasingly affecting communities and institutional practices. It is therefore critical
that we question vague conceptions of the field as value-neutral or universally
beneficial, and investigate what specific values the field is advancing. In this pa-
per, we present a rigorous examination of the values of the field by quantitatively
and qualitatively analyzing 100 highly cited ML papers published at premier ML
conferences, ICML and NeurIPS. We annotate key features of papers which reveal
their values: how they justify their choice of project, which aspects they uplift,
their consideration of potential negative consequences, and their institutional affili-
ations and funding sources. We find that societal needs are typically very loosely
connected to the choice of project, if mentioned at all, and that consideration of
negative consequences is extremely rare. We identify 67 values that are uplifted
in machine learning research, and, of these, we find that papers most frequently
justify and assess themselves based on performance, generalization, efficiency,
researcher understanding, novelty, and building on previous work. We present
extensive textual evidence and analysis of how these values are operationalized.
Notably, we find that each of these top values is currently being defined and applied
with assumptions and implications generally supporting the centralization of power.
Finally, we find increasingly close ties between these highly cited papers and tech
companies and elite universities.

1 Introduction

Over the past few decades, ML has risen from a relatively obscure research area to an extremely
influential discipline, actively being deployed in myriad applications and contexts around the world.
The objectives and values of ML research are influenced by many factors, including the personal
preferences of researchers and reviewers, other work in science and engineering, the interests
of academic institutions, funding agencies and companies, and larger institutional and systemic
pressures, including systems of oppression impacting who is able to do research and on which topics.
Together these forces shape patterns in what research gets done and who benefits from this research.
Therefore, it is important to document and understand the emergent values of the field: what the field
is prioritizing and working toward. To this end, we perform a comprehensive analysis of 100 highly
cited NeurIPS and ICML papers from four recent years spanning more than a decade.

Our key contributions are as follows:
⇤equal contribution

Preprint. Under review.
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What we seem to value

Selected ‘Values encoded in ML research’ from Birhane et al. (2021):

Performance
Efficiency

Interpretability (for researchers)
Applicability in the real world

Robustness
Scalability

Interpretability (for users)
Benificence

Privacy

Fairness

Justice
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Towards multidimensional leaderboards
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Dynascores

8

2 2 2 2

Model Performance Throughput Memory Fairness Robustness Dynascore

DeBERTa 76.25 4.47 6.97 88.33 90.06 45.92
ELECTRA-large 76.07 2.37 25.30 93.13 91.64 45.79
RoBERTa 69.67 6.88 6.17 88.32 86.10 42.54
ALBERT 68.63 6.85 2.54 87.44 80.90 41.74
BERT 57.14 6.70 5.55 91.45 80.81 36.07
BiDAF 53.48 10.71 3.60 80.79 77.03 33.96
Unrestricted T5 28.80 4.51 10.69 92.32 88.41 22.18
Return Context 5.99 89.80 1.10 95.97 91.61 15.47

Question answering
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Dynascores

8

1 1

5

1
Model Performance Throughput Memory Fairness Robustness Dynascore

DeBERTa 76.25 4.47 6.97 88.33 90.06 46.70
ELECTRA-large 76.07 2.37 25.30 93.13 91.64 46.86
RoBERTa 69.67 6.88 6.17 88.32 86.10 43.37
ALBERT 68.63 6.85 2.54 87.44 80.90 42.66
BERT 57.14 6.70 5.55 91.45 80.81 37.17
BiDAF 53.48 10.71 3.60 80.79 77.03 34.62
Unrestricted T5 28.80 4.51 10.69 92.32 88.41 23.19
Return Context 5.99 89.80 1.10 95.97 91.61 14.29

Question answering
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Turing Test results

A machine’s behavior is intelligent if it can trick a human interrogator
into thinking it is human using only conversation.
• Report from the first Turing Test (Shieber 1994): Shakespeare

expert Cynthia Clay thrice misclassified as a computer.
• 2014 Turing Test event: AI Eugene Goostman (“13-year-old

Ukrainian boy”) passes!
• Google Duplex: An AI that routinely runs and wins Turing tests with

service workers.
• Clark et al. (2021), “All That’s ‘Human’ Is Not Gold”
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Estimating human performance

Premise Label Hypothesis

A dog jumping neutral A dog wearing a sweater
turtle contradiction linguist
A photo of a race horse ? A photo of an athlete
A chef using a barbecue ? A person using a machine

Human response throughout: “Let’s discuss”

“Human performance” ≈ Average performance of harried crowdworkers doing a
machine task repeatedly

14 / 94
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Somewhere between accuracy and Turing tests

1. Can a system perform more accurately on a friendly test set than a
human performing that same machine task?

(Standard: scalable and familiar)

2. Can a system behave systematically (even if it’s not accurate)?

3. Can a system assess its own confidence – know when not to make a
prediction (Rajpurkar et al. 2018)?

4. Can a system make people happier and more productive?

5. Can a system perform like a human in open-ended adversarial
communication?

(Turing test: particular and thorny)
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Times are changing!

Assessment today
• One-dimensional
• Largely insensitive to context (use-case)
• Terms set by the research community
• Opaque
• Tailored to machine tasks

Assessments in the future
• High-dimensional and fluid
• Highly sensitive to context (use-case)
• Terms set by the stakeholders
• Judgments ultimately made by users
• Tailored to human tasks
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Classifier metrics
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Overview

• Different evaluation metrics encode different values.
• Choosing a metric is a crucial aspect to experimental work.
• You should feel free to motivate new metrics and specific uses of

existing metrics, depending on what your goals are.
• For established tasks, there is usually pressure to use specific

metrics, but you should feel empowered to push back.
• Areas can stagnate due to poor metrics, so we must be vigilant!
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Confusion matrices

Predicted
pos neg neutral Support

Gold
pos 15 10 100 125
neg 10 15 10 35
neutral 10 100 1000 1110

A threshold was imposed for these categorical predictions.
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Accuracy

The correct predictions divided by the total number of examples.

Predicted
pos neg neutral

Gold
pos 15 10 100
neg 10 15 10
neutral 10 100 1000

• Bounds: [0, 1], with 0 the worst and 1 the best.
• Value encoded: how often is the system correct?
• Weaknesses:
É No per-class metrics.
É Failure to control for class size.
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Accuracy and the cross-entropy loss
Cross-entropy loss
Accuracy is inversely proportional to the negative log-loss (a.k.a. cross
entropy loss; sklearn link):

−
1
N

N
∑

i=1

K
∑

k=1
yi ,k log(pi ,k)

KL-divergence
KL-divergence is an analogue of accuracy for soft labels:

DKL(y‖p)
K
∑

k=1
yk log
� yk

pk

�

Where y is a “one-hot vector” with 1 at position k, this reduces to

log

� 1
pk

�

= − log(pk)
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Precision
For class k: the correct predictions for k divided by the sum of all guesses
for k.

Predicted
pos neg neutral

Gold
pos 15 10 100
neg 10 15 10
neutral 10 100 1000
Precision 0.43 0.12 0.90

Precision for pos: 15 / (15 + 10 + 10) = 0.43

• Bounds: [0, 1], with 0 the worst and 1 the best. (Caveat: undefined
values resulting from dividing by 0 need to be mapped to 0.)
• Value encoded: penalize incorrect guesses.
• Weakness: Achieve high precision for k simply by rarely guessing k.
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Recall

For class k: the correct predictions for k divided by the sum of all true
members of k.

Predicted
pos neg neutral Recall

Gold
pos 15 10 100 0.12
neg 10 15 10 0.43
neutral 10 100 1000 0.90

Recall for pos: 15 / (15 + 10 + 100) = 0.12

• Bounds: [0, 1], with 0 the worst and 1 the best.
• Value encoded: penalize missed true cases.
• Weakness: Achieve high recall for k simply by always guessing k.
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F scores
Fβ(k) = (β2 + 1) ·

Precision(k) · Recall(k)
(β2 · Precision(k)) + Recall(k)

Predicted
pos neg neutral F1

Gold
pos 15 10 100 0.19
neg 10 15 10 0.19
neutral 10 100 1000 0.90

• Bounds: [0, 1], with 0 the worst and 1 the best; always between precision
and recall.
• Value encoded: how much do predictions for k align with true instances

of k, with β controlling the weight places on precision vs. recall
• Weaknesses:
É No normalization for the size of the dataset.
É Ignores the values off the row and column for k.
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Averaging F scores

• Macro-averaging
• Weighted averaging
• Micro-averaging
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Macro-averaged F scores

Predicted
pos neg neutral F1

Gold
pos 15 10 100 0.19
neg 10 15 10 0.19
neutral 10 100 1000 0.90

0.43

• Bounds: [0, 1], with 0 the worst and 1 the best.
• Value encoded: same values as F scores plus the assumption that all

classes are equal.
• Weaknesses:
É A classifier that does well only on small classes might not do

well in the real world.
É A classifier that does well only on large classes might do poorly

on small but vital smaller ones.
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Weighted average F scores

Predicted
pos neg neutral Support F1

Gold
pos 15 10 100 125 0.19
neg 10 15 10 35 0.19
neutral 10 100 1000 1110 0.90

0.43

0.19 · 125+ 0.19 · 35+ 0.90 · 1110
125+ 35+ 1110

• Bounds: [0, 1], with 0 the worst and 1 the best.
• Value encoded: same values as Fβ plus the assumption that class

size matters.
• Weaknesses: Large classes will dominate.
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Micro-averaged F scores

Predicted
pos neg neutral

Gold
pos 15 10 100
neg 10 15 10
neutral 10 100 1000

yes no

yes 15 110
no 20 1125

yes no

yes 15 20
no 110 1125

yes no

yes 1000 110
no 110 50

yes no F1

yes 1030 240 0.81
no 240 2300 0.91
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Micro-averaged F scores

• Bounds: [0, 1], with 0 the worst and 1 the best.
• Value encoded: Micro-averaged F1 for “yes” = accuracy.
• Weaknesses:
É Same as for weighted F scores, plus
É a score for “yes” and “no”, hence no single summary number.
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Precision–recall curves
Summarizes the relationship between precision and recall by using each
predicted probability as a potential threshold:

Average precision provides a summary of the curve.
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Generation metrics
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Challenges

1. There is more than one effective way to say most things.
2. What are we measuring?
É Fluency?
É Truthfulness?
É Communicative effectiveness?
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Perplexity of a probability distribution

Perplexity
For a sequence x = [x1, . . . xn] and probability distribution p:

PP(p, x) =
n
∏

i=1

� 1
p(xi)

�
1
n

Mean perplexity
For a corpus X of m examples:

mean-PP(p,X) = exp

�

1
m

∑

x∈X
logPP(p, x)
�
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Perplexity: Properties

• Bounds: [1,∞], with 1 best.
• Equivalent to the exponentiation of the cross-entropy loss.
• Value encoded: does the model assign high probability to the input

sequence?
• Weaknesses:
É Heavily dependent on the underlying vocabulary.
É Doesn’t allow comparisons between datasets.
É Even comparisons between models are tricky.
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Word-error rate: Definition

Edit distance
A measure of distance between strings. Word-error rate can be seen as a
family of measures depending on the choice of distance measure.

Word-error rate

wer(x,pred) =
distance(x,pred)

length(x)

Corpus word-error rate
For a corpus X :

∑

x∈X distance(x,pred)
∑

x∈X length(x)
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Word-error rate: Properties

• Bounds: [0,∞], with 0 the best.
• Value encoded: how aligned is the predicted sequence with the

actual sequence – similar to F scores.
• Weaknesses:
É Just one reference text.
É A very syntactic notion – consider It was good vs. It was not

good. vs. It was great
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BLEU scores: Definition

Modified n-gram precision
Candidate: the the the the the the the
Ref 1: the cat is on the mat
Ref 2: there is a cat on the mat
Score: 2 / 7

Brevity penalty
• r : sum of all minimal absolute length differences between candidates

and referents.
• c: total length of all candidates
• BP: 1 if c > r else e1− r

c

BLEU
BP · the sum of weighted modified n-gram precision values for each n
considered

37 / 94



Overview Classifier metrics Generation metrics Datasets Data org. Model evaluation Next

BLEU scores: Properties

• Bounds: [0, 1], with 1 the best, though with no expectation that any
system will achieve 1.
• Value encoded:
É Appropriate balance of (modified) precision and “recall” (BP).
É Similar to word-error rate, but seeks to accommodate the fact

that there are typically multiple suitable outputs for a given
input.

• Weaknesses:
É Callison-Burch et al. (2006) argue that BLEU fails to correlate

with human scoring of translations.
É Very sensitive to n-gram order.
É Insensitive to n-gram types (that dog vs. the dog vs. that

toaster).
É Liu et al. (2016) specifically argue against BLEU as a metric for

assessing dialogue systems.
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Other reference-based metrics

Word-error rate Edit-distance from a single reference text

BLEU Modified precision and brevity penalty, against
many reference texts

ROUGE Recall-focused variant of BLEU, focused on assess-
ing summarization systems

METEOR Unigram-based alignments using exact match,
stemming, synonyms

CIDEr Weighted cosine similarity between TF-IDF vectors

BERTScore Weighted MaxSim of token-level BERT representa-
tions
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Image-based NLG metrics

• For the task of assessing texts associated with images, the
reference-based metrics can be used if the needed human
annotations exist.
• Reference-less metrics in this space seek to score text–image pairs

with no need for human-created references:
É CLIPScore (Hessel et al. 2021)
É UMIC (Lee et al. 2021)
É SPURTS (Feinglass and Yang 2021)

• Kreiss et al. (2022) criticize these methods as being insensitive to
the context of the image and the purpose of the associated text, and
they begin to design variants of CLIPScore that capture these
dimensions of quality.
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Task-oriented metrics

1. The classical off-the-shelf reference-based metrics will only capture
aspects of the task to the extent that the human annotations do.

2. Model-based metrics could conceivably be tuned to specific tasks,
but this is currently rare.

3. It is fruitful to think about what the goal of the generated tests is
and consider whether one’s evaluation could be based on that goal:
É Can an agent that received the generated text use it to solve

the task?
É Was a specific piece of information reliably communicated?
É Did the message lead the person to take a desirable action?

41 / 94
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Datasets
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Water and air for our field

Jacques Cousteau: Water and air, the two es-
sential fluids on which all life depends, have
become global garbage cans.
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Photo credit: Wikipedia
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We ask a lot of our datasets

1. Optimize models

2. Evaluate models

3. Compare models

4. Enable new capabilities in models

5. Measure fieldwide progress

6. Scientific inquiry
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Seeing farther than ever before

Aravind Joshi: Datasets as the
telescopes of our field
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Photo credit: JoshiFest

https://www.cis.upenn.edu/events/speaker-archive/joshifest/
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Benchmarks saturate faster than ever
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Limitations found more quickly

PTB
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Central questions

1. Naturalistic data or crowdsourcing? Both!
2. Adversarial examples or the most common cases? Both!
3. Synthetic or naturalistic benchmarks? Both!
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Trade-offs

Naturalistic: Found and curated
• Abundant
• Inexpensive
• Genuine

• Uncontrolled
• Limited
• Intrusive

Crowdsourced: Lab-grown
• Controlled
• Privacy preserving
• Expressive

• Scarce
• Expensive
• Contrived
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DynaSent: Prompts increase naturalism

1. “My sister hated the food but she’s massively wrong.”
2. “The cookies seemed dry to my boss but I couldn’t disagree more.”
3. “Breakfast is really good, if you’re trying to feed it to dogs.”

50 / 94
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Adversarial examples or the most common cases?

Standard
Create a dataset from a single model-independent process and divide it
into train/dev/test.

Adversarial assessment
A separate test set is created in ways that you suspect or know will be
challenging given your system and/or the (Standard) train data.

Adversarial datasets
Dataset (train/dev/test) guided by attempts to fool a set of models.
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Dynamics of adversarial datasets

1. SWAG to BERT to HellaSWAG (Zellers et al. 2018, 2019)
2. Adversarial NLI (Nie et al. 2020)
3. Beat the AI (Bartolo et al. 2020)
4. Dynabench Hate Speech (Vidgen et al. 2020)
5. DynaSent (Potts et al. 2021)
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Counterpoint from Bowman and Dahl (2021)

Adversarial examples not a panacea
“Adversarial filtering […] can systematically eliminate coverage of
linguistic phenomena or skills that are necessary for the task but already
well-solved by the adversary model. This mode-seeking (as opposed to
mass covering) behavior by adversarial filtering, if left unchecked, tends
to reduce dataset diversity and thus make validity harder to achieve.”

Standard evaluations sufficient
“This position paper argues that concerns about standard benchmarks
that motivate methods like adversarial filtering are justified, but that they
can and should be addressed directly, and that it is possible and
reasonable to do so in the context of static, IID evaluation.”
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The job to be done

0 “The food was good”
1 “My sister hated the food but she’s massively wrong.”
2 “The cookies seemed dry to my boss but I couldn’t disagree more.”
3 “Breakfast is really good, if you’re trying to feed it to dogs.”
4 “worthy of gasps of foodgasms”
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Major lessons thus far

1. Top systems have often found unsystematic solutions.

2. Progress on challenge sets seems to correlate with meaningful
progress.

3. Present-day systems get traction on adversarial cases without
degradation on the general cases.

4. Adversarial examples often define public perception.
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Synthetic or naturalistic benchmarks

Dataset and models as unknowns

Output

56 / 94

Photo credit: Robert Couse-Baker
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Negation as a learning target

Intuitive learning target

If A entails B then not-B entails not-A

Observation
Top-performing NLI models fail to achieve the learning target (Yanaka
et al. 2019, 2020; Hossain et al. 2020; Geiger et al. 2020).

Tempting conclusion
Top-performing models are incapable of learning negation.

Dataset observation
Negation is severely under-represented in NLI benchmarks.
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MoNLI: A slightly synthetic dataset

Positive MoNLI (PMoNLI; 1,476 examples)
SNLI hypothesis (A) Food was served.
WordNet pizza À food
New example (B) Pizza was served.
Positive MoNLI (A) neutral (B)
Positive MoNLI (B) entailment (A)

Negative MoNLI (NMoNLI; 1,202 examples)
SNLI hypothesis (A) The children are not holding plants.
WordNet flowers À plants
New example (B) The children are not holding flowers.
Negative MoNLI (A) entailment (B)
Negative MoNLI (B) neutral (A)
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MoNLI as challenge dataset

No MoNLI fine-tuning With NMoNLI fine-tuning
Model Input pretrain NLI train data SNLI PMoNLI NMoNLI SNLI NMoNLI

BiLSTM GloVe SNLI train 81.6 73.2 37.9 74.6 93.5
ESIM GloVe SNLI train 87.9 86.6 39.4 56.9 96.2
BERT BERT SNLI train 90.8 94.4 2.2 90.5 90.0
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The value of messy data

When we turn to naturalistic data, we do so knowing:
1. that BERT can in principle learn negation; and
2. that data coverage will be a major factor.
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Other vital issues for datasets

My central questions
1. Naturalistic data or crowdsourcing? Both!
2. Adversarial examples or the most common cases? Both!
3. Synthetic or naturalistic benchmarks? Both!

At least as important
1. Datasheets (Gebru et al. 2018)
2. Achieving cross-linguistic coverage for benchmarks
3. Statistical power (Bowman and Dahl 2021)
4. Pernicious social biases
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Data organization
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Train/Dev/Test

• Common in large publicly available datasets.
• Presupposes a fairly large dataset.
• We’re all on the honor system to do test-set runs only when

development is complete.
• The test part ensures consistent evaluations, but encourages hill

climbing.
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No fixed splits

• Small public datasets might not have predefined splits.
• A challenge for assessment: for robust comparisons, you really have

to run all models using your assessment regime on your splits.
• For large datasets, you can impose splits and use them for the entire

project:
É Simplifies your experimental set-up.
É Reduces hyperparameter optimization.

• For small datasets, imposing a split might leave too little data,
leading to highly variable performance.
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Cross-validation

In cross-validation, we take a set of examples and partition them into two
or more train/test splits, and then we average over the results in some
way.
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Cross-validation: Random splits
Method
For k times:

1. Shuffle.
2. Split: t percent train, usually 1− t test.
3. Conduct an evaluation.

In general (but not always), we want these splits to be stratified in the
sense that the train and test splits have approximately the same
distribution over the classes.

Trade-offs
• Good: you can create as many as you want without having this

impact the ratio of training to testing examples.
• Bad: no guarantee that every example will be used the same

number of times for training and testing.

from sklearn.model_selection import ShuffleSplit,
StratifiedShuffleSplit, train_test_split

66 / 94



Overview Classifier metrics Generation metrics Datasets Data org. Model evaluation Next

Cross-validation: K-folds

Method

Splits

fold 1
fold 2
fold 3

Experiment 1

Test fold 1

Train fold 2
fold 3

Experiment 2

Test fold 2

Train fold 1
fold 3

Experiment 3

Test fold 3

Train fold 1
fold 2

Trade-offs
• Good: every example appears in a train set exactly k − 1 times and

in a test set exactly once.
• Bad: the size of k determines the size train/test:
É 3-fold: train 67%, test 33%.
É 10-fold: train 90%, test 10%.

from sklearn.model_selection import KFold,
StratifiedKFold, LeaveOneOut, cross_val_score
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Model evaluation
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Overview

• Baselines
• Hyperparameter optimization
• Classifier comparison
• Assessing models without convergence
• The role of random parameter initialization
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Baselines

Evaluation numbers can never be understood properly in
isolation:

1. Your system gets 0.95 F1! Is your task too easy?
2. Your system gets 0.60 F1. But what do humans get?

Baselines are crucial for strong experiments
• Defining baselines should not be an afterthought, but rather central

to how you define your overall hypotheses.
• Baselines are essential to building a persuasive case.
• They can also be used to illuminate specific aspects of the problem

and specific virtues of your proposed system.

70 / 94



Overview Classifier metrics Generation metrics Datasets Data org. Model evaluation Next

Random baselines

Random baselines are almost always useful to include. sklearn:
• DummyClassifier
É stratified
É uniform
É most_frequent

• DummyRegressor
É mean
É median
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Task-specific baselines

It is worth considering whether your problem suggests a baseline that will
reveal something about the problem or the ways it is modeled.

Two recent examples from NLU:
• NLI: Hypothesis-only baselines.
• The Story Cloze task: Distinguish between a coherent and

incoherent ending for a story. Systems that look only at the ending
options can do really well (Schwartz et al. 2017).
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Hyperparameter optimization

Discussed in our unit on sentiment analysis. Rationales:
• Obtaining the best version of your model.
• Conducting fair comparisons between models.
• Understanding the stability of your architecture.

All hyperparameter tuning must be done only on train and
development data.

73 / 94



Overview Classifier metrics Generation metrics Datasets Data org. Model evaluation Next

The ideal hyperparameter optimization setting

1. For each hyperparameter, identify a large set of values for it.
2. Create a list of all the combinations of all the hyperparameter

values. This will be the cross-product of all the values for all the
features identified at step 1.

3. For each of the settings, cross-validate it on the available training
data.

4. Choose the settings that did best in step 3, train on all the training
data using those settings, and then evaluate that model on the test
set.
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An example

1. Parameter h1 has 5 values.
2. Parameter h2 has 10 values.
3. Total settings: 5 · 10 = 50.
4. Add h3 with 2 values.
5. Total settings: 5 · 10 · 2 = 100.
6. 5-fold cross-validation to select optimal parameters: 500 runs
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Practical considerations

The above is untenable as a set of laws for the scientific community.

If we adopted it, then complex models trained on large datasets would
end up disfavored, and only the very wealthy would be able to participate.

Rajkomar et al. (2018):
“the performance of all above neural networks were [sic] tuned
automatically using Google Vizier [35] with a total of > 201, 000 GPU
hours”
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Reasonable compromises

Pragmatic steps you can take to alleviate this problem, in descending order of
attractiveness:

1. Random sampling and guided sampling allow you to explore a large space
on a fixed budget of runs.

2. Search based on a few epochs of training. (Could be bolstered with short
learning curves for different settings.)

3. Search based on subsets of the data. (However, some parameters will be
very dependent on dataset size, so this can be risky.)

4. Via heuristic search, determine which hyperparameters matter less, and
set them by hand. (Justify this in the paper!)

5. Find optimal hyperparameters via a single split and use them for all the
subsequent splits. Justified if the splits are similar.

6. Adopt others’ choices. The skeptic will complain that these findings don’t
translate to your new data sets, but it could be the only option.
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Tools for hyperparameter search

• from sklearn.model_selection import GridSearchCV,
RandomizedSearchCV, HalvingGridSearchCV
• scikit-optimize offers a variety of methods for guided search through

the grid of hyperparameters.
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Classifier comparison

Suppose you’ve assessed two classifier models. Their performance is
probably different to some degree. What can be done to establish
whether these models are different in any meaningful sense?
• Practical differences
• Confidence intervals
• Wilcoxon signed-rank test
• McNemar’s test
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Assessing models without convergence

• When working with linear models, convergence issues rarely arise.
• With neural networks, convergence takes center stage:
É The models rarely converge.
É For they converge at different rates between runs.
É Their performance on the test data is often heavily dependent

on these differences.
• Sometimes a model with a low final error turns out to be great, and

sometimes it turns out to be worse than one that finished with a
higher error. Who knows?!
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Incremental dev-set testing

1. To address this uncertainty: regularly collect information about dev
set performance as part of training.

2. For example, at every 100th iteration, one could make predictions on
the dev set and store that vector of predictions.

3. All the PyTorch models for this course have an early_stopping
with various controllable parameters.
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A bit of motivation for early stopping
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Learning curves with confidence intervals
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The role of random parameter initialization

1. Most deep learning models have their parameters initialized randomly
2. Clearly meaningful for non-convex optimization problems Simpler

models can be impacted as well.
3. Reimers and Gurevych (2017):
É Different initializations for neural sequence models can lead to

statistically significant differences.
É A number of recent systems are indistinguishable in terms of

raw performance once this source of variation is taken into
account.

4. Related: catastrophic failure as a result of unlucky initialization.
5. In evaluation_methods.ipynb: A feedforward network on the

XOR problem succeeds 8 of 10 times.
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Conclusion
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Experiment protocols

This is a short, structured report designed to help you establish your core
experimental framework. The required sections are as follows:

1. Hypotheses
2. Data
3. Metrics
4. Models
5. General reasoning
6. Summary of progress so far
7. References section

Goal: clarity of project goals, identification of obstacles and project risks.
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An ideal moment for innovation

1. Architecture innovation – overrated!

2. Metric innovation – way underrated!

3. Evaluation innovation – way underrated!

4. Task innovation – underrated!

5. Exhaustive hyperparameter search – needs to be weighed against
other factors!
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3. Yang et al. 2020 B
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