
Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Supervised sentiment analysis

Christopher Potts

Stanford Linguistics

CS 224U: Natural language understanding
April 15 and 17

1 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Overview

1. Sentiment as a deep and important NLU problem
2. General practical tips for sentiment analysis
3. The Stanford Sentiment Treebank (SST)
4. sst.py
5. Methods: hyperparameters and classifier comparison
6. Feature representation
7. RNN classifiers
8. Tree-structured networks

2 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Associated materials

1. Code
a. sst.py
b. sst_01_overview.ipynb
c. sst_02_hand_build_features.ipynb
d. sst_03_neural_networks.ipynb

2. Homework 2 and bake-off 2: hw2_sst.ipynb

3. Core reading: Socher et al. 2013

4. Auxiliary readings: Pang & Lee 2008; Goldberg 2015

3 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Conceptual challenges
Which of the following sentences express sentiment? What is
their sentiment polarity (pos/neg), if any?

1. There was an earthquake in California.
2. The team failed to complete the physical challenge.

(We
win/lose!)

3. They said it would be great.
4. They said it would be great, and they were right.
5. They said it would be great, and they were wrong.
6. The party fat-cats are sipping their expensive imported

wines.
7. Oh, you’re terrible!
8. Here’s to ya, ya bastard!
9. Of 2001, “Many consider the masterpiece bewildering,

boring, slow-moving or annoying, . . . ”
10. long-suffering fans, bittersweet memories, hilariously

embarrassing moments, . . .

4 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Conceptual challenges
Which of the following sentences express sentiment? What is
their sentiment polarity (pos/neg), if any?

1. There was an earthquake in California.

2. The team failed to complete the physical challenge.

(We
win/lose!)

3. They said it would be great.
4. They said it would be great, and they were right.
5. They said it would be great, and they were wrong.
6. The party fat-cats are sipping their expensive imported

wines.
7. Oh, you’re terrible!
8. Here’s to ya, ya bastard!
9. Of 2001, “Many consider the masterpiece bewildering,

boring, slow-moving or annoying, . . . ”
10. long-suffering fans, bittersweet memories, hilariously

embarrassing moments, . . .

4 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Conceptual challenges
Which of the following sentences express sentiment? What is
their sentiment polarity (pos/neg), if any?

1. There was an earthquake in California.
2. The team failed to complete the physical challenge.

(We
win/lose!)

3. They said it would be great.
4. They said it would be great, and they were right.
5. They said it would be great, and they were wrong.
6. The party fat-cats are sipping their expensive imported

wines.
7. Oh, you’re terrible!
8. Here’s to ya, ya bastard!
9. Of 2001, “Many consider the masterpiece bewildering,

boring, slow-moving or annoying, . . . ”
10. long-suffering fans, bittersweet memories, hilariously

embarrassing moments, . . .

4 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Conceptual challenges
Which of the following sentences express sentiment? What is
their sentiment polarity (pos/neg), if any?

1. There was an earthquake in California.
2. The team failed to complete the physical challenge. (We

win/lose!)

3. They said it would be great.
4. They said it would be great, and they were right.
5. They said it would be great, and they were wrong.
6. The party fat-cats are sipping their expensive imported

wines.
7. Oh, you’re terrible!
8. Here’s to ya, ya bastard!
9. Of 2001, “Many consider the masterpiece bewildering,

boring, slow-moving or annoying, . . . ”
10. long-suffering fans, bittersweet memories, hilariously

embarrassing moments, . . .

4 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Conceptual challenges
Which of the following sentences express sentiment? What is
their sentiment polarity (pos/neg), if any?

1. There was an earthquake in California.
2. The team failed to complete the physical challenge. (We

win/lose!)
3. They said it would be great.

4. They said it would be great, and they were right.
5. They said it would be great, and they were wrong.
6. The party fat-cats are sipping their expensive imported

wines.
7. Oh, you’re terrible!
8. Here’s to ya, ya bastard!
9. Of 2001, “Many consider the masterpiece bewildering,

boring, slow-moving or annoying, . . . ”
10. long-suffering fans, bittersweet memories, hilariously

embarrassing moments, . . .

4 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Conceptual challenges
Which of the following sentences express sentiment? What is
their sentiment polarity (pos/neg), if any?

1. There was an earthquake in California.
2. The team failed to complete the physical challenge. (We

win/lose!)
3. They said it would be great.
4. They said it would be great, and they were right.

5. They said it would be great, and they were wrong.
6. The party fat-cats are sipping their expensive imported

wines.
7. Oh, you’re terrible!
8. Here’s to ya, ya bastard!
9. Of 2001, “Many consider the masterpiece bewildering,

boring, slow-moving or annoying, . . . ”
10. long-suffering fans, bittersweet memories, hilariously

embarrassing moments, . . .

4 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Conceptual challenges
Which of the following sentences express sentiment? What is
their sentiment polarity (pos/neg), if any?

1. There was an earthquake in California.
2. The team failed to complete the physical challenge. (We

win/lose!)
3. They said it would be great.
4. They said it would be great, and they were right.
5. They said it would be great, and they were wrong.

6. The party fat-cats are sipping their expensive imported
wines.

7. Oh, you’re terrible!
8. Here’s to ya, ya bastard!
9. Of 2001, “Many consider the masterpiece bewildering,

boring, slow-moving or annoying, . . . ”
10. long-suffering fans, bittersweet memories, hilariously

embarrassing moments, . . .

4 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Conceptual challenges
Which of the following sentences express sentiment? What is
their sentiment polarity (pos/neg), if any?

1. There was an earthquake in California.
2. The team failed to complete the physical challenge. (We

win/lose!)
3. They said it would be great.
4. They said it would be great, and they were right.
5. They said it would be great, and they were wrong.
6. The party fat-cats are sipping their expensive imported

wines.

7. Oh, you’re terrible!
8. Here’s to ya, ya bastard!
9. Of 2001, “Many consider the masterpiece bewildering,

boring, slow-moving or annoying, . . . ”
10. long-suffering fans, bittersweet memories, hilariously

embarrassing moments, . . .

4 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Conceptual challenges
Which of the following sentences express sentiment? What is
their sentiment polarity (pos/neg), if any?

1. There was an earthquake in California.
2. The team failed to complete the physical challenge. (We

win/lose!)
3. They said it would be great.
4. They said it would be great, and they were right.
5. They said it would be great, and they were wrong.
6. The party fat-cats are sipping their expensive imported

wines.
7. Oh, you’re terrible!

8. Here’s to ya, ya bastard!
9. Of 2001, “Many consider the masterpiece bewildering,

boring, slow-moving or annoying, . . . ”
10. long-suffering fans, bittersweet memories, hilariously

embarrassing moments, . . .

4 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Conceptual challenges
Which of the following sentences express sentiment? What is
their sentiment polarity (pos/neg), if any?

1. There was an earthquake in California.
2. The team failed to complete the physical challenge. (We

win/lose!)
3. They said it would be great.
4. They said it would be great, and they were right.
5. They said it would be great, and they were wrong.
6. The party fat-cats are sipping their expensive imported

wines.
7. Oh, you’re terrible!
8. Here’s to ya, ya bastard!

9. Of 2001, “Many consider the masterpiece bewildering,
boring, slow-moving or annoying, . . . ”

10. long-suffering fans, bittersweet memories, hilariously
embarrassing moments, . . .

4 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Conceptual challenges
Which of the following sentences express sentiment? What is
their sentiment polarity (pos/neg), if any?

1. There was an earthquake in California.
2. The team failed to complete the physical challenge. (We

win/lose!)
3. They said it would be great.
4. They said it would be great, and they were right.
5. They said it would be great, and they were wrong.
6. The party fat-cats are sipping their expensive imported

wines.
7. Oh, you’re terrible!
8. Here’s to ya, ya bastard!
9. Of 2001, “Many consider the masterpiece bewildering,

boring, slow-moving or annoying, . . . ”

10. long-suffering fans, bittersweet memories, hilariously
embarrassing moments, . . .

4 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Conceptual challenges
Which of the following sentences express sentiment? What is
their sentiment polarity (pos/neg), if any?

1. There was an earthquake in California.
2. The team failed to complete the physical challenge. (We

win/lose!)
3. They said it would be great.
4. They said it would be great, and they were right.
5. They said it would be great, and they were wrong.
6. The party fat-cats are sipping their expensive imported

wines.
7. Oh, you’re terrible!
8. Here’s to ya, ya bastard!
9. Of 2001, “Many consider the masterpiece bewildering,

boring, slow-moving or annoying, . . . ”
10. long-suffering fans, bittersweet memories, hilariously

embarrassing moments, . . .
4 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Affective dimensions, relations, and transitions

(Sudhof et al. 2014)
5 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Lots of applications, but what’s the real goal?

Many business leaders think they want this:

Positive 70
Negative 30

Positive 65
Negative 35

When they see it, they realize that it does not help them with
decision-making. The distributions (assuming they are
accurately measured) are hiding the phenomena that are
actually relevant.

6 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Lots of applications, but what’s the real goal?

Many business leaders think they want this:

Positive 70
Negative 30

Positive 65
Negative 35

When they see it, they realize that it does not help them with
decision-making. The distributions (assuming they are
accurately measured) are hiding the phenomena that are
actually relevant.

6 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Related tasks in affective computing

With selected papers that make excellent entry points
because of their positioning and/or associated public data:

• Subjectivity (Pang & Lee 2008)
• Bias (Recasens et al. 2013)
• Stance (Anand et al. 2011)
• Hate-speech (Nobata et al. 2016)
• Sarcasm (Khodak et al. 2017)
• Deception and betrayal (Niculae et al. 2015)
• Online trolls (Cheng et al. 2017)
• Polarization (Gentzkow et al. 2019)
• Politeness (Danescu-Niculescu-Mizil et al. 2013)
• Linguistic alignment (Doyle et al. 2016)

7 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

General practical tips

1. Sentiment as a deep and important NLU problem
2. General practical tips for sentiment analysis
3. The Stanford Sentiment Treebank (SST)
4. sst.py
5. Methods: hyperparameters and classifier comparison
6. Feature representation
7. RNN classifiers
8. Tree-structured networks

8 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Selected sentiment datasets
There are too many to try to list, so I picked some with noteworthy
properties, limiting to the core task of sentiment analysis:

• IMDb movie reviews (50K) (Maas et al. 2011):
http://ai.stanford.edu/~amaas/data/sentiment/index.html

• Datasets from Lillian Lee’s group:
http://www.cs.cornell.edu/home/llee/data/

• Datasets from Bing Liu’s group:
https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html

• RateBeer (McAuley et al. 2012; McAuley & Leskovec 2013):
http://snap.stanford.edu/data/web-RateBeer.html

• Amazon Customer Review data:
https://s3.amazonaws.com/amazon-reviews-pds/readme.html

• Amazon Product Data (McAuley et al. 2015; He & McAuley 2016):
http://jmcauley.ucsd.edu/data/amazon/

• Sentiment and social networks together (West et al. 2014)
http://infolab.stanford.edu/~west1/TACL2014/

• Stanford Sentiment Treebank (SST; Socher et al. 2013)
https://nlp.stanford.edu/sentiment/

9 / 57

http://ai.stanford.edu/~amaas/data/sentiment/index.html
http://www.cs.cornell.edu/home/llee/data/
https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html
http://snap.stanford.edu/data/web-RateBeer.html
https://s3.amazonaws.com/amazon-reviews-pds/readme.html
http://jmcauley.ucsd.edu/data/amazon/
http://infolab.stanford.edu/~west1/TACL2014/
https://nlp.stanford.edu/sentiment/

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Lexica

• Bing Liu’s Opinion Lexicon: nltk.corpus.opinion_lexicon

• SentiWordNet: nltk.corpus.sentiwordnet

• MPQA subjectivity lexicon: http://mpqa.cs.pitt.edu

• Harvard General Inquirer
É Download:

http://www.wjh.harvard.edu/~inquirer/spreadsheet_guide.htm
É Documentation:

http://www.wjh.harvard.edu/~inquirer/homecat.htm

• Linguistic Inquiry and Word Counts (LIWC):
https://liwc.wpengine.com

• Hamilton et al. (2016): SocialSent
https://nlp.stanford.edu/projects/socialsent/

• Brysbaert et al. (2014): Norms of valence, arousal, and
dominance for 13,915 English lemmas

10 / 57

http://mpqa.cs.pitt.edu
http://www.wjh.harvard.edu/~inquirer/spreadsheet_guide.htm
http://www.wjh.harvard.edu/~inquirer/homecat.htm
https://liwc.wpengine.com
https://nlp.stanford.edu/projects/socialsent/

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Relationships between sentiment lexica

Opinion
MPQA Lexicon Inquirer SentiWordNet LIWC

MPQA — 33/5402 (0.6%) 49/2867 (2%) 1127/4214 (27%) 12/363 (3%)
Opinion Lexicon — 32/2411 (1%) 1004/3994 (25%) 9/403 (2%)

Inquirer — 520/2306 (23%) 1/204 (0.5%)
SentiWordNet — 174/694 (25%)

LIWC —

Table: Disagreement levels for the sentiment lexicons.

• Where a lexicon had POS tags, I removed them and selected the most
sentiment-rich sense available for the resulting string.

• For SentiWordNet, I counted a word as positive if its positive score was
larger than its negative score; negative if its negative score was larger
than its positive score; else neutral, which means that words with equal
non-0 positive and negative scores are neutral.

11 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Tokenizing

Raw text
@NLUers: can't wait for the Jun 9 #projects!
YAAAAAAY!!! >:-D http://stanford.edu/class/cs224u/.

A good start: nltk.tokenize.casual.TweetTokenizer

12 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Tokenizing

Isolate mark-up, and replace HTML entities.
@NLUers: can’t wait for the Jun 9 #projects! YAAAAAAY!!!
>:-D http://stanford.edu/class/cs224u/.

A good start: nltk.tokenize.casual.TweetTokenizer

12 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Tokenizing

Isolate mark-up, and replace HTML entities.
@NLUers: can’t wait for the Jun 9 #projects! YAAAAAAY!!!
>:-D http://stanford.edu/class/cs224u/.

Whitespace tokenizer
@NLUers:
can’t
wait
for
the
Jun
9
#projects
YAAAAAAY!!!
>:-D
http://stanford.edu/class/cs224u/.

A good start: nltk.tokenize.casual.TweetTokenizer

12 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Tokenizing

Isolate mark-up, and replace HTML entities.
@NLUers: can’t wait for the Jun 9 #projects! YAAAAAAY!!!
>:-D http://stanford.edu/class/cs224u/.

Treebank tokenizer
@
NLUers
:
ca
n’t
wait
for
the
Jun
9
#
projects

!
YAAAAAAY
!
!
!
>
:
-D
http
:
//stanford.edu/class/cs224u/
.

A good start: nltk.tokenize.casual.TweetTokenizer

12 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Tokenizing

Isolate mark-up, and replace HTML entities.
@NLUers: can’t wait for the Jun 9 #projects! YAAAAAAY!!!
>:-D http://stanford.edu/class/cs224u/.

Elements of a sentiment-aware tokenizer
• Isolates emoticons
• Respects Twitter and other domain-specific markup
• Uses the underlying mark-up (e.g., tags)
• Captures those #$%ing masked curses!
• Preserves capitalization where it seems meaningful
• Regularizes lengthening (e.g., YAAAAAAY⇒YAAAY)
• Captures significant multiword expressions (e.g., out of

this world)

A good start: nltk.tokenize.casual.TweetTokenizer
12 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Tokenizing

Isolate mark-up, and replace HTML entities.
@NLUers: can’t wait for the Jun 9 #projects! YAAAAAAY!!!
>:-D http://stanford.edu/class/cs224u/.

Sentiment-aware tokenizer
@nluers
:
can’t
wait
for
the
Jun_9
#projects

!
YAAAY
!
!
!
>:-D
http://stanford.edu/class/cs224u/
.

A good start: nltk.tokenize.casual.TweetTokenizer
12 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

The impact of sentiment-aware tokenizing

Softmax classifier. Training on 12,000 OpenTable reviews
(6000 positive/4-5 stars; 6000 negative/1-2 stars).

13 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

The impact of sentiment-aware tokenizing

Softmax classifier. Training on 12,000 OpenTable reviews
(6000 positive/4-5 stars; 6000 negative/1-2 stars).

13 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

The dangers of stemming

• Stemming collapses distinct word forms.

• Three common stemming algorithms in the context of
sentiment:
É the Porter stemmer
É the Lancaster stemmer
É the WordNet stemmer

• Porter and Lancaster destroy too many sentiment
distinctions.

• The WordNet stemmer does not have this problem nearly
so severely, but it generally doesn’t do enough
collapsing to be worth the resources necessary to run it.

14 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

The dangers of stemming
The Porter stemmer heuristically identifies word suffixes
(endings) and strips them off, with some regularization of the
endings.

Positiv Negativ Porter stemmed

defense defensive defens
extravagance extravagant extravag
affection affectation affect
competence compete compet
impetus impetuous impetu
objective objection object
temperance temper temper
tolerant tolerable toler

Table: Sample of instances in which the Porter stemmer destroys a
Harvard Inquirer Positiv/Negativ distinction.

14 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

The dangers of stemming
The Lancaster stemmer uses the same strategy as the Porter
stemmer.

Positiv Negativ Lancaster stemmed

call callous cal
compliment complicate comply
dependability dependent depend
famous famished fam
fill filth fil
flourish floor flo
notoriety notorious not
passionate passe pass
savings savage sav
truth truant tru

Table: Sample of instances in which the Lancaster stemmer
destroys a Harvard Inquirer Positiv/Negativ distinction.

14 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

The dangers of stemming
The WordNet stemmer (NLTK) is high-precision. It requires
word–POS pairs. Its only general issue for sentiment is that it
removes comparative morphology.

Positiv WordNet stemmed

(exclaims, v) exclaim
(exclaimed, v) exclaim
(exclaiming, v) exclaim
(exclamation, n) exclamation
(proved, v) prove
(proven, v) prove
(proven, a) proven
(happy, a) happy
(happier, a) happy
(happiest, a) happy

Table: Representative examples of what WordNet stemming does
and doesn’t do.

14 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

The impact of stemming

Softmax classifier. Training on 12,000 OpenTable reviews
(6000 positive/4-5 stars; 6000 negative/1-2 stars).

15 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Part-of-speech (POS) tagging
Word Tag1 Val1 Tag2 Val2

arrest jj Positiv vb Negativ
even jj Positiv vb Negativ
even rb Positiv vb Negativ
fine jj Positiv nn Negativ
fine jj Positiv vb Negativ
fine nn Negativ rb Positiv
fine rb Positiv vb Negativ
help jj Positiv vbn Negativ
help nn Positiv vbn Negativ
help vb Positiv vbn Negativ
hit jj Negativ vb Positiv
mind nn Positiv vb Negativ
order jj Positiv vb Negativ
order nn Positiv vb Negativ
pass nn Negativ vb Positiv

Table: Harvard Inquirer POS contrasts.
16 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

The dangers of POS tagging
1,424 cases where a (word, tag) pair is consis-
tent with pos. and neg. lemma-level sentiment

Word Tag ScoreDiff

mean s 1.75
abject s 1.625
benign a 1.625
modest s 1.625
positive s 1.625
smart s 1.625
solid s 1.625
sweet s 1.625
artful a 1.5
clean s 1.5
evil n 1.5
firm s 1.5
gross s 1.5
iniquity n 1.5
marvellous s 1.5
marvelous s 1.5
plain s 1.5
rank s 1.5
serious s 1.5
sheer s 1.5
sorry s 1.5
stunning s 1.5
wickedness n 1.5

[. . .]
unexpectedly r 0.25
velvet s 0.25
vibration n 0.25
weather-beaten s 0.25
well-known s 0.25
whine v 0.25
wizard n 0.25
wonderland n 0.25
yawn v 0.25

17 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Simple negation marking

The phenomenon

1. I didn’t enjoy it.
2. I never enjoy it.
3. No one enjoys it.
4. I have yet to enjoy it.
5. I don’t think I will enjoy it.

18 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Simple negation marking

The phenomenon

1. I didn’t enjoy it.
2. I never enjoy it.
3. No one enjoys it.
4. I have yet to enjoy it.
5. I don’t think I will enjoy it.

The method (Das & Chen 2001; Pang et al. 2002)
Append a _NEG suffix to every word appearing between a
negation and a clause-level punctuation mark.

18 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Simple negation marking

No one enjoys it. no
one_NEG
enjoys_NEG
it_NEG
.

I don’t think I will enjoy it, but I might. i
don’t
think_NEG
i_NEG
will_NEG
enjoy_NEG
it_NEG
,
but
i
might
.

18 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

The impact of negation marking

Softmax classifier. Training on 12,000 OpenTable reviews
(6000 positive/4-5 stars; 6000 negative/1-2 stars).

19 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

The impact of negation marking

Softmax classifier. Training on 12,000 OpenTable reviews
(6000 positive/4-5 stars; 6000 negative/1-2 stars).

19 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

SST

1. Sentiment as a deep and important NLU problem
2. General practical tips for sentiment analysis
3. The Stanford Sentiment Treebank (SST)
4. sst.py
5. Methods: hyperparameters and classifier comparison
6. Feature representation
7. RNN classifiers
8. Tree-structured networks

20 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

SST project overview

1. Socher et al. (2013)

2. Full code and data release:
https://nlp.stanford.edu/sentiment/

3. Sentence-level corpus (10,662 sentences)

4. Original data from Rotten Tomatoes (Pang & Lee 2005)

5. Fully-labeled trees (crowdsourced labels)

6. The 5-way labels were extracted from workers’ slider
responses.

21 / 57

https://nlp.stanford.edu/sentiment/

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Fully labeled trees

4

2

NLU

4

2

is

4

enlightening

These are novel examples,
and the labels are actual output from

https://nlp.stanford.edu/sentiment/

22 / 57

https://nlp.stanford.edu/sentiment/

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Fully labeled trees

2

2

They

3

2

said

3

2

it

2

2

would

3

2

be

4

great

These are novel examples,
and the labels are actual output from

https://nlp.stanford.edu/sentiment/

22 / 57

https://nlp.stanford.edu/sentiment/

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Fully labeled trees
1

2

2

They

3

2

said

3

2

it

2

2

would

3

2

be

4

great

2

;

1

2

they

1

2

were

1

wrong

These are novel examples,
and the labels are actual output from

https://nlp.stanford.edu/sentiment/

22 / 57

https://nlp.stanford.edu/sentiment/

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Fully labeled trees
2

2

2

They

3

3

said

3

3

it

2

3

would

3

2

be

4

great

2

;

2

2

they

2

2

were

3

right

These are novel examples,
and the labels are actual output from

https://nlp.stanford.edu/sentiment/

22 / 57

https://nlp.stanford.edu/sentiment/

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Root-level tasks
Five-way problem

Label Meaning Train Dev

0 very negative 1,092 139
1 negative 2,218 289
2 neutral 1,624 229
3 positive 2,322 279
4 very positive 1,288 165

8,544 1,101

Note: 4 > 3 (more positive) but 0 > 1 (more negative)

23 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Root-level tasks
Five-way problem

Label Meaning Train Dev

0 very negative 1,092 139
1 negative 2,218 289
2 neutral 1,624 229
3 positive 2,322 279
4 very positive 1,288 165

8,544 1,101

Note: 4 > 3 (more positive) but 0 > 1 (more negative)

Ternary problem

Label Meaning Train Dev

0, 1 negative 3,310 428
2 neutral 1,624 229
3, 4 positive 3,610 444

8,544 1,101

23 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Root-level tasks
Five-way problem

Label Meaning Train Dev

0 very negative 1,092 139
1 negative 2,218 289
2 neutral 1,624 229
3 positive 2,322 279
4 very positive 1,288 165

8,544 1,101

Note: 4 > 3 (more positive) but 0 > 1 (more negative)

Binary problem (neutral data simply excluded)

Label Meaning Train Dev

0, 1 negative 3,310 428
3, 4 positive 3,610 444

6,920 872

23 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

All-nodes tasks
Five-way problem

Label Meaning Train Dev

0 very negative 40,774 5,217
1 negative 82,854 10,757
2 neutral 58,398 8,227
3 positive 89,308 11,001
4 very positive 47,248 6,245

318,582 41,447

Note: 4 > 3 (more positive) but 0 > 1 (more negative)

24 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

All-nodes tasks
Five-way problem

Label Meaning Train Dev

0 very negative 40,774 5,217
1 negative 82,854 10,757
2 neutral 58,398 8,227
3 positive 89,308 11,001
4 very positive 47,248 6,245

318,582 41,447

Note: 4 > 3 (more positive) but 0 > 1 (more negative)

Ternary problem

Label Meaning Train Dev

0, 1 negative 123,628 15,974
2 neutral 58,398 8,227
3, 4 positive 136,556 17,246

318,582 41,447

24 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

All-nodes tasks
Five-way problem

Label Meaning Train Dev

0 very negative 40,774 5,217
1 negative 82,854 10,757
2 neutral 58,398 8,227
3 positive 89,308 11,001
4 very positive 47,248 6,245

318,582 41,447

Note: 4 > 3 (more positive) but 0 > 1 (more negative)

Binary problem (neutral data simply excluded)

Label Meaning Train Dev

0, 1 negative 123,628 15,974
3, 4 positive 136,556 17,246

260,184 33,220

24 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

sst.py

1. Sentiment as a deep and important NLU problem
2. General practical tips for sentiment analysis
3. The Stanford Sentiment Treebank (SST)
4. sst.py
5. Methods: hyperparameters and classifier comparison
6. Feature representation
7. RNN classifiers
8. Tree-structured networks

25 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Readers
sst_code_01_solved

April 13, 2019

In [1]: from nltk.tree import Tree
import os
import sst

In [2]: SST_HOME = os.path.join('data', 'trees')

In [3]: # All SST readers are generators that yield (tree, score) pairs.
train_reader = sst.train_reader(SST_HOME)

In [4]: tree, score = next(train_reader)

In [5]: sst.train_reader(SST_HOME, class_func=sst.ternary_class_func)

In [6]: sst.train_reader(SST_HOME, class_func=sst.binary_class_func)

In [7]: sst.dev_reader(SST_HOME)

In [8]: sst.dev_reader(SST_HOME, class_func=sst.ternary_class_func)

In [9]: sst.dev_reader(SST_HOME, class_func=sst.binary_class_func)

In []:

In []:

In []:

In []:

In []:

In []:

In []:

In []:

In []:

In []:

1

26 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

nltk.tree.Tree
In []:

In []:

In [10]: tree = Tree.fromstring("""(4 (2 NLU) (4 (2 is) (4 amazing)))""")

In [11]: tree

Out[11]:

In [12]: tree.label()

Out[12]: '4'

In [13]: tree[0]

Out[13]:

In [14]: tree[1]

Out[14]:

2

In [15]: for subtree in tree.subtrees():
print(subtree)

(4 (2 NLU) (4 (2 is) (4 amazing)))
(2 NLU)
(4 (2 is) (4 amazing))
(2 is)
(4 amazing)

In [16]: from IPython.display import display, Image
import pandas as pd

In [17]: for class_func in (None, sst.ternary_class_func, sst.binary_class_func):
for reader in (sst.train_reader, sst.dev_reader):

print("="*70)
print(reader, class_func)
labels = [y for tree, y in reader(SST_HOME, class_func=class_func)]
print(pd.Series(labels).value_counts().sort_index())
print("Examples: {:,}".format(len(labels)))

==
<function train_reader at 0x1a39595158> None
0 1092
1 2218
2 1624
3 2322
4 1288
dtype: int64
Examples: 8,544
==
<function dev_reader at 0x1a395951e0> None
0 139
1 289
2 229
3 279
4 165
dtype: int64
Examples: 1,101
==
<function train_reader at 0x1a39595158> <function ternary_class_func at 0x1a395950d0>
negative 3310
neutral 1624
positive 3610
dtype: int64
Examples: 8,544
==
<function dev_reader at 0x1a395951e0> <function ternary_class_func at 0x1a395950d0>
negative 428

3

In []:

In []:

In [10]: tree = Tree.fromstring("""(4 (2 NLU) (4 (2 is) (4 amazing)))""")

In [11]: tree

Out[11]:

In [12]: tree.label()

Out[12]: '4'

In [13]: tree[0]

Out[13]:

In [14]: tree[1]

Out[14]:

2
27 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Feature functions

sst_code_02_solved

April 13, 2019

In [1]: from collections import Counter
from nltk.tree import Tree
import sst

In [2]: def unigrams_phi(tree):
"""The basis for a unigrams feature function.

Parameters

tree : nltk.tree

The tree to represent.

Returns

Counter

A map from strings to their counts in `tree`.

"""
return Counter(tree.leaves())

In [3]: tree = Tree.fromstring("""(4 (2 NLU) (4 (2 is) (4 amazing)))""")

In [4]: unigrams_phi(tree)

Out[4]: Counter({'NLU': 1, 'is': 1, 'amazing': 1})

In [5]: from sklearn.linear_model import LogisticRegression

In [6]: def fit_softmax_classifier(X, y):
"""Wrapper for `sklearn.linear.model.LogisticRegression`. This is
also called a Maximum Entropy (MaxEnt) Classifier, which is more
fitting for the multiclass case.

Parameters

X : 2d np.array

The matrix of features, one example per row.
y : list

1

28 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Model wrappers
In [5]: from sklearn.linear_model import LogisticRegression

In [6]: def fit_softmax_classifier(X, y):
"""Wrapper for `sklearn.linear.model.LogisticRegression`. This is
also called a Maximum Entropy (MaxEnt) Classifier, which is more
fitting for the multiclass case.

Parameters

X : 2d np.array

The matrix of features, one example per row.
y : list

The list of labels for rows in `X`.

Returns

sklearn.linear.model.LogisticRegression

A trained `LogisticRegression` instance.

"""
mod = LogisticRegression(

fit_intercept=True, solver='liblinear', multi_class='auto')
mod.fit(X, y)
return mod

In [7]: import os
import utils

In [8]: SST_HOME = os.path.join('data', 'trees')

In [9]: unigrams_softmax_experiment = sst.experiment(
SST_HOME,
unigrams_phi,
fit_softmax_classifier,
train_reader=sst.train_reader, # The default
assess_reader=None, # The default
train_size=0.7, # The default
class_func=sst.ternary_class_func, # The default
score_func=utils.safe_macro_f1, # The default
vectorize=True, # The default
verbose=True) # The default

precision recall f1-score support

negative 0.640 0.662 0.650 1008
neutral 0.280 0.150 0.196 466

positive 0.649 0.757 0.699 1090

micro avg 0.609 0.609 0.609 2564

2

29 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

sst.experiment

In [7]: import os
import utils

In [8]: SST_HOME = os.path.join('data', 'trees')

In [9]: unigrams_softmax_experiment = sst.experiment(
SST_HOME,
unigrams_phi,
fit_softmax_classifier,
train_reader=sst.train_reader, # The default
assess_reader=None, # The default
train_size=0.7, # The default
class_func=sst.ternary_class_func, # The default
score_func=utils.safe_macro_f1, # The default
vectorize=True, # The default
verbose=True) # The default

precision recall f1-score support

negative 0.640 0.662 0.650 1008
neutral 0.280 0.150 0.196 466

positive 0.649 0.757 0.699 1090

micro avg 0.609 0.609 0.609 2564
macro avg 0.523 0.523 0.515 2564

weighted avg 0.578 0.609 0.588 2564

In [10]: list(unigrams_softmax_experiment.keys())

Out[10]: ['model',
'phi',
'train_dataset',
'assess_dataset',
'predictions',
'metric',
'score']

In [11]: list(unigrams_softmax_experiment['train_dataset'].keys())

Out[11]: ['X', 'y', 'vectorizer', 'raw_examples']

In []:

3

30 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

sst.experiment

30 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

sst.experiment
The return value of sst.experiment is a dict packaging up
the objects and info needed to test this model in new
settings and conduct deep error analysis:

In [7]: import os
import utils

In [8]: SST_HOME = os.path.join('data', 'trees')

In [9]: unigrams_softmax_experiment = sst.experiment(
SST_HOME,
unigrams_phi,
fit_softmax_classifier,
train_reader=sst.train_reader, # The default
assess_reader=None, # The default
train_size=0.7, # The default
class_func=sst.ternary_class_func, # The default
score_func=utils.safe_macro_f1, # The default
vectorize=True, # The default
verbose=True) # The default

precision recall f1-score support

negative 0.640 0.662 0.650 1008
neutral 0.280 0.150 0.196 466

positive 0.649 0.757 0.699 1090

micro avg 0.609 0.609 0.609 2564
macro avg 0.523 0.523 0.515 2564

weighted avg 0.578 0.609 0.588 2564

In [10]: list(unigrams_softmax_experiment.keys())

Out[10]: ['model',
'phi',
'train_dataset',
'assess_dataset',
'predictions',
'metric',
'score']

In [11]: list(unigrams_softmax_experiment['train_dataset'].keys())

Out[11]: ['X', 'y', 'vectorizer', 'raw_examples']

In []:

3

30 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Bringing it all together

sst_code_03_solved

April 13, 2019

In [1]: from collections import Counter
import os
from sklearn.linear_model import LogisticRegression
import sst

In [2]: SST_HOME = os.path.join('data', 'trees')

In [3]: def phi(tree):
Tree to Counter.
return Counter(tree.leaves())

In [4]: def fit_model(X, y):
X, y to a fitted model with a predict method.
mod = LogisticRegression(

fit_intercept=True, solver='liblinear', multi_class='auto')
mod.fit(X, y)
return mod

In [5]: experiment = sst.experiment(SST_HOME, phi, fit_model)

precision recall f1-score support

negative 0.613 0.680 0.645 1003
neutral 0.318 0.137 0.191 468

positive 0.666 0.761 0.710 1093

micro avg 0.615 0.615 0.615 2564
macro avg 0.532 0.526 0.515 2564

weighted avg 0.582 0.615 0.590 2564

1

31 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

sklearn.feature_extraction.DictVectorizer

sst_code_04_solved

April 13, 2019

In [1]: import pandas as pd
from sklearn.feature_extraction import DictVectorizer

In [2]: train_feats = [
{'a': 1, 'b': 1},
{'b': 1, 'c': 2}]

In [3]: vec = DictVectorizer(sparse=False) # Use `sparse=True` for real problems!

In [4]: X_train = vec.fit_transform(train_feats)

In [5]: pd.DataFrame(X_train, columns=vec.get_feature_names())

Out[5]: a b c
0 1.0 1.0 0.0
1 0.0 1.0 2.0

In [6]: test_feats = [
{'a': 2},
{'a': 4, 'b': 2, 'd': 1}]

In [7]: X_test = vec.transform(test_feats) # Not `fit_transform`!

In [8]: pd.DataFrame(X_test, columns=vec.get_feature_names())

Out[8]: a b c
0 2.0 0.0 0.0
1 4.0 2.0 0.0

1

32 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Methods

1. Sentiment as a deep and important NLU problem
2. General practical tips for sentiment analysis
3. The Stanford Sentiment Treebank (SST)
4. sst.py
5. Methods: hyperparameters and classifier comparison
6. Feature representation
7. RNN classifiers
8. Tree-structured networks

33 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Hyperparameter search: Rationale

1. The parameters of a model are those whose values are
learned as part of optimizing the model itself.

2. The hyperparameters of a model are any settings that
are set outside of this optimization. Examples:
a. GloVe or LSA dimensionality
b. GloVe xmax and α
c. Regularization terms, hidden dimensionalities,

learning rates, activation functions
d. Optimization methods

3. Hyperparameter optimization is crucial to building a
persuasive argument: every model must be put in its
best light!

4. Otherwise, one could appear to have evidence that one
model is better than other simply by strategically picking
hyperparameters that favored the outcome.

34 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Hyperparameter search in sst.py

sst_code_05_solved

April 13, 2019

In [1]: from collections import Counter
import os
from sklearn.linear_model import LogisticRegression
import sst
import utils

In [2]: SST_HOME = os.path.join('data', 'trees')

In [3]: def phi(tree):
return Counter(tree.leaves())

In [4]: def fit_softmax_with_crossvalidation(X, y):
basemod = LogisticRegression(solver='liblinear', multi_class='auto')
cv = 5
param_grid = {'fit_intercept': [True, False],

'C': [0.4, 0.6, 0.8, 1.0, 2.0, 3.0],
'penalty': ['l1','l2']}

best_mod = utils.fit_classifier_with_crossvalidation(
X, y, basemod, cv, param_grid)

return best_mod

In [5]: experiment = sst.experiment(SST_HOME, phi, fit_softmax_with_crossvalidation)

Best params: {'C': 3.0, 'fit_intercept': False, 'penalty': 'l2'}
Best score: 0.518

precision recall f1-score support

negative 0.619 0.661 0.639 987
neutral 0.303 0.185 0.230 486

positive 0.655 0.729 0.690 1091

micro avg 0.599 0.599 0.599 2564
macro avg 0.526 0.525 0.520 2564

weighted avg 0.574 0.599 0.583 2564

In [6]: experiment['model']

1

35 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Classifier comparison: Rationale

1. Suppose you’ve assessed a baseline model B and your
favored model M, and your chosen assessment metric
favors M. Is M really better?

2. If the difference between B and M is clearly of practical
significance, then you might not need to do anything
beyond presenting the numbers. Still, is there variation
in how B or M performs?

3. Demšar (2006) advises the Wilcoxon signed-rank test for
situations in which you can afford to repeatedly assess B
and M on different train/test splits. We’ll talk later in the
term about the rationale for this.

4. For situations where you can’t repeatedly assess B and
M, McNemar’s test is a reasonable alternative. It
operates on the confusion matrices produced by the two
models, testing the null hypothesis that the two models
have the same error rate.

36 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Classifier comparison in sst.py

sst_code_06_solved

April 13, 2019

In [1]: from collections import Counter
import os
import scipy.stats
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import MultinomialNB
import sst
import utils

In [2]: SST_HOME = os.path.join('data', 'trees')

In [3]: def phi(tree):
return Counter(tree.leaves())

In [4]: def fit_softmax(X, y):
mod = LogisticRegression(

fit_intercept=True,
solver='liblinear',
multi_class='auto')

mod.fit(X, y)
return mod

In [5]: def fit_naivebayes(X, y):
mod = MultinomialNB(fit_prior=True)
mod.fit(X, y)
return mod

In [6]: _ = sst.compare_models(
SST_HOME,
phi1=phi,
phi2=None, # Defaults to `phi1`
train_func1=fit_softmax,
train_func2=fit_naivebayes, # Defaults to `train_func1`
stats_test=scipy.stats.wilcoxon, # Default
trials=10, # Default
reader=sst.train_reader, # Default
train_size=0.7, # Default
class_func=sst.ternary_class_func, # Default
score_func=utils.safe_macro_f1) # Default

1

37 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Classifier comparison in sst.py

Wilcoxon signed rank test

In []:

In []:

In []:

In []:

In []:

In []:

In []:

In [6]: mod1_scores, mod2_scores, p = sst.compare_models(
SST_HOME,
phi1=phi,
phi2=None, # Defaults to `phi1`
train_func1=fit_softmax,
train_func2=fit_naivebayes, # Defaults to `train_func1`
stats_test=scipy.stats.wilcoxon, # Default
trials=10, # Default
reader=sst.train_reader, # Default
train_size=0.7, # Default
class_func=sst.ternary_class_func, # Default
score_func=utils.safe_macro_f1) # Default

Model 1 mean: 0.510
Model 2 mean: 0.492
p = 0.005

In [7]: softmax_experiment = sst.experiment(
SST_HOME, phi, fit_softmax)

In [8]: naivebayes_experiment = sst.experiment(
SST_HOME, phi, fit_naivebayes)

In [9]: stat, p = utils.mcnemar(
softmax_experiment['assess_dataset']['y'],
naivebayes_experiment['predictions'],
softmax_experiment['predictions'])

2

37 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Classifier comparison in sst.py

McNemar’s test

In []:

In []:

In []:

In []:

In []:

In []:

In []:

In [6]: mod1_scores, mod2_scores, p = sst.compare_models(
SST_HOME,
phi1=phi,
phi2=None, # Defaults to `phi1`
train_func1=fit_softmax,
train_func2=fit_naivebayes, # Defaults to `train_func1`
stats_test=scipy.stats.wilcoxon, # Default
trials=10, # Default
reader=sst.train_reader, # Default
train_size=0.7, # Default
class_func=sst.ternary_class_func, # Default
score_func=utils.safe_macro_f1) # Default

Model 1 mean: 0.510
Model 2 mean: 0.492
p = 0.005

In [7]: softmax_experiment = sst.experiment(
SST_HOME, phi, fit_softmax)

In [8]: naivebayes_experiment = sst.experiment(
SST_HOME, phi, fit_naivebayes)

In [9]: stat, p = utils.mcnemar(
softmax_experiment['assess_dataset']['y'],
naivebayes_experiment['predictions'],
softmax_experiment['predictions'])

2
37 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Feature representation

1. Sentiment as a deep and important NLU problem
2. General practical tips for sentiment analysis
3. The Stanford Sentiment Treebank (SST)
4. sst.py
5. Methods: hyperparameters and classifier comparison
6. Feature representation
7. RNN classifiers
8. Tree-structured networks

38 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Hand-built features: Bags of subparts
sst_code_07_solved

April 13, 2019

In [1]: from collections import Counter
from nltk.tree import Tree

In [2]: tree = Tree.fromstring("""(4 (2 NLU) (4 (2 is) (4 amazing)))""")
tree

Out[2]:

In [3]: def phi_bigrams(tree):
toks = ["<s>"] + tree.leaves() + ["</s>"]
bigrams = [(w1, w2) for w1, w2 in zip(toks[: -1], toks[1:])]
return Counter(bigrams)

In [4]: phi_bigrams(tree)

Out[4]: Counter({('<s>', 'NLU'): 1,
('NLU', 'is'): 1,
('is', 'amazing'): 1,
('amazing', '</s>'): 1})

In [5]: def phi_phrases(tree):
phrases = []
for subtree in tree.subtrees():

if subtree.height() <= 3:
phrases.append(tuple(subtree.leaves()))

return Counter(phrases)

In [6]: phi_phrases(tree)

Out[6]: Counter({('NLU',): 1, ('is', 'amazing'): 1, ('is',): 1, ('amazing',): 1})

1

sst_code_07_solved

April 13, 2019

In [1]: from collections import Counter
from nltk.tree import Tree

In [2]: tree = Tree.fromstring("""(4 (2 NLU) (4 (2 is) (4 amazing)))""")
tree

Out[2]:

In [3]: def phi_bigrams(tree):
toks = ["<s>"] + tree.leaves() + ["</s>"]
bigrams = [(w1, w2) for w1, w2 in zip(toks[: -1], toks[1:])]
return Counter(bigrams)

In [4]: phi_bigrams(tree)

Out[4]: Counter({('<s>', 'NLU'): 1,
('NLU', 'is'): 1,
('is', 'amazing'): 1,
('amazing', '</s>'): 1})

In [5]: def phi_phrases(tree):
phrases = []
for subtree in tree.subtrees():

if subtree.height() <= 3:
phrases.append(tuple(subtree.leaves()))

return Counter(phrases)

In [6]: phi_phrases(tree)

Out[6]: Counter({('NLU',): 1, ('is', 'amazing'): 1, ('is',): 1, ('amazing',): 1})

1 39 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Hand-built feature: Negation
Simple negation marking
The dialogue was n’t very_NEG good_NEG but_NEG the_NEG acting_NEG
was_NEG amazing_NEG ._NEG

Negation marking based on structure
S

S

NP

Det

The

N

dialogue

VP

V

was

AP

NEG

n’t

AP

Adv

very_NEG

A

good_NEG

S

but the acting was amazing

40 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Extension to other kinds of scope-taking

S

NP

They

VP

V

said

S

NP

it

VP

V

was

AP

great

41 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Extension to other kinds of scope-taking

S

NP

It

VP

V

might

VP

V

be

AP

successful

41 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Other ideas for hand-built feature functions

• Lexicon-derived features

• Modal adverbs:
É “It is quite possibly a masterpiece.”
É “It is totally amazing.”

• Thwarted expectations:
É “Many consider the movie bewildering, boring,

slow-moving or annoying.”
É “It was hailed as a brilliant, unprecedented artistic

achievement worthy of multiple Oscars.”

• Non-literal language:
É “Not exactly a masterpiece.”
É “Like 50 hours long.”
É “The best movie in the history of the universe.”

42 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Assessing individual feature functions
1. sklearn.feature_selection offers functions to assess how much

information your feature functions contain with respect to your labels.

2. Take care when assessing feature functions individually; correlations
betwen them will make these assessments hard to interpret:

X1 X2 X3 y

1 1 0 T
1 0 1 T
1 0 0 T
0 1 1 T
0 1 0 F
0 0 1 F
0 0 1 F
0 0 1 F

chi2(X1, y) = 3

chi2(X2, y) = 0.33

chi2(X3, y) = 0.2

What do the scores tell us about the best model? In truth, a linear
model performs best with just X1, and including X2 hurts.

3. Consider more holistic assessment methods: systematically removing
or disrupting features in the context of a full model and comparing
performance before and after.

43 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Distributed representations as features

44 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Distributed representations as features

sst_09_code_solved

April 13, 2019

In [1]: import numpy as np
import os
from sklearn.linear_model import LogisticRegression
import sst
import utils

In [2]: GLOVE_HOME = os.path.join('data', 'glove.6B')
SST_HOME = os.path.join('data', 'trees')

In [3]: glove_lookup = utils.glove2dict(
os.path.join(GLOVE_HOME, 'glove.6B.300d.txt'))

In [4]: def vsm_leaves_phi(tree, lookup, np_func=np.sum):
allvecs = np.array([lookup[w] for w in tree.leaves() if w in lookup])
if len(allvecs) == 0:

dim = len(next(iter(lookup.values())))
feats = np.zeros(dim)

else:
feats = np_func(allvecs, axis=0)

return feats

In [5]: def glove_leaves_phi(tree, np_func=np.sum):
return vsm_leaves_phi(tree, glove_lookup, np_func=np_func)

In [6]: def fit_softmax(X, y):
mod = LogisticRegression(

fit_intercept=True, solver='liblinear', multi_class='auto')
mod.fit(X, y)
return mod

In [7]: glove_sum_experiment = sst.experiment(
SST_HOME,
glove_leaves_phi,
fit_softmax,
vectorize=False) # Tell `experiment` it needn't use a DictVectorizer.

precision recall f1-score support

negative 0.638 0.722 0.678 1007

1

44 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

RNN classifiers

1. Sentiment as a deep and important NLU problem
2. General practical tips for sentiment analysis
3. The Stanford Sentiment Treebank (SST)
4. sst.py
5. Methods: hyperparameters and classifier comparison
6. Feature representation
7. RNN classifiers
8. Tree-structured networks

45 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Model overview

For complete details, see the reference
implementation np_rnn_classifier.py

46 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Standard RNN dataset preparation

Examples
[a, b, a]
[b, c]
⇓

Indices
[1, 2, 1]
[2, 3]
⇓

Vectors

h

[−0.42 0.10 0.12], [−0.16 −0.21 0.29], [−0.42 0.10 0.12]
i

h

[−0.16 −0.21 0.29], [−0.26 0.31 0.37]
i

Embedding

1 −0.42 0.10 0.12
2 −0.16 −0.21 0.29
3 −0.26 0.31 0.37

47 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

A note on LSTMs

1. Plain RNNs tend to perform poorly with very long
sequences; as information flows back through the
network, it is lost or distorted.

2. LSTM cells are a prominent response to this problem:
they introduce mechanisms that control the flow of
information.

3. We won’t review all the mechanism for this here. I
instead recommend these excellent blog posts, which
include intuitive diagrams and discuss the motivations
for the various pieces in detail:
É Towards Data Science: Illustrated Guide to LSTM’s

and GRU’s: A step by step explanation
É colah’s blog: Understanding LSTM networks

48 / 57

https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Code snippets

sst_10_code_solved

April 13, 2019

In [1]: import os
import sst
from torch_rnn_classifier import TorchRNNClassifier
import torch.nn as nn
import utils

In [2]: GLOVE_HOME = os.path.join('data', 'glove.6B')
SST_HOME = os.path.join('data', 'trees')

In [3]: GLOVE_LOOKUP = utils.glove2dict(
os.path.join(GLOVE_HOME, 'glove.6B.50d.txt'))

In [4]: def rnn_phi(tree):
return tree.leaves()

In [5]: def fit_rnn(X, y):
sst_train_vocab = utils.get_vocab(X, n_words=10000)
glove_embedding, sst_glove_vocab = utils.create_pretrained_embedding(

GLOVE_LOOKUP, sst_train_vocab)
mod = TorchRNNClassifier(

sst_glove_vocab,
eta=0.05,
embedding=glove_embedding,
batch_size=1000,
hidden_dim=50,
max_iter=50,
l2_strength=0.001,
bidirectional=True,
hidden_activation=nn.ReLU())

mod.fit(X, y)
return mod

In [6]: rnn_experiment = sst.experiment(SST_HOME, rnn_phi, fit_rnn, vectorize=False)

1

49 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Tree-structured networks

1. Sentiment as a deep and important NLU problem
2. General practical tips for sentiment analysis
3. The Stanford Sentiment Treebank (SST)
4. sst.py
5. Methods: hyperparameters and classifier comparison
6. Feature representation
7. RNN classifiers
8. Tree-structured networks

50 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Model overview

For complete details, see the reference
implementation np_tree_nn.py

51 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Some alternative composition functions

Basic, as in the previous diagram (Pollack 1990)
h = f ([a;c]W + b)

a c

Matrix–Vector (Socher et al. 2012)
All nodes are represented by both vectors and matries, and
the combination function creates a lot of multiplicative
interactions between them.

Tensor (Socher et al. 2013)
An extension of our basic model with a 3d tensor that allows
for multiplicative interactions between the child vectors.

LSTM (Tai et al. 2015)
Each parent node combines separately-gated memory and
hidden states of its children.

52 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Subtree supervision

53 / 57

Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Code snippets

sst_11_code_solved

April 14, 2019

In [1]: from collections import Counter
import os
import sst
from torch_tree_nn import TorchTreeNN
import utils

In [2]: SST_HOME = os.path.join('data', 'trees')

In [3]: def get_tree_vocab(X, n_words=None):
wc = Counter([w for ex in X for w in ex.leaves()])
wc = wc.most_common(n_words) if n_words else wc.items()
vocab = {w for w, c in wc}
vocab.add("$UNK")
return sorted(vocab)

In [4]: def tree_phi(tree):
return tree

In [5]: def fit_tree(X, y):
sst_train_vocab = get_tree_vocab(X, n_words=10000)
mod = TorchTreeNN(

sst_train_vocab,
embedding=None,
embed_dim=50,
max_iter=10,
eta=0.05)

Tree models use the labels on their examples for
supervision, and hence don't use `y` in `fit`:
mod.fit(X)
return mod

In [6]: tree_experiment = sst.experiment(SST_HOME, tree_phi, fit_tree, vectorize=False)

1

54 / 57

References

References I
Anand, Pranav, Marilyn Walker, Rob Abbott, Jean E. Fox Tree, Robeson Bowmani & Michael Minor. 2011. Cats rule and dogs

drool!: Classifying stance in online debate. In Proceedings of the 2nd workshop on computational approaches to
subjectivity and sentiment analysis, 1–9. Portland, Oregon: Association for Computational Linguistics.
http://www.aclweb.org/anthology/W11-1701.

Brysbaert, Marc, Amy Beth Warriner & Victor Kuperman. 2014. Concreteness ratings for 40 thousand generally known
English word lemmas. Behavior Research Methods 46(3). 904–911. doi:10.3758/s13428-013-0403-5.

Cheng, Justin, Michael Bernstein, Cristian Danescu-Niculescu-Mizil & Jure Leskovec. 2017. Anyone can become a troll:
Causes of trolling behavior in online discussions. In Proceedings of the 2017 acm conference on computer supported
cooperative work and social computing CSCW ’17, 1217–1230. New York, NY, USA: ACM.
doi:10.1145/2998181.2998213. http://doi.acm.org/10.1145/2998181.2998213.

Danescu-Niculescu-Mizil, Cristian, Moritz Sudhof, Dan Jurafsky, Jure Leskovec & Christopher Potts. 2013. A computational
approach to politeness with application to social factors. In Proceedings of the 2013 annual conference of the
Association for Computational Linguistics, 250–259. Stroudsburg, PA: Association for Computational Linguistics.

Das, Sanjiv & Mike Chen. 2001. Yahoo! for Amazon: Extracting market sentiment from stock message boards. In
Proceedings of the 8th asia pacific finance association annual conference, .

Demšar, Janez. 2006. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research
7. 1–30. http://www.jmlr.org/papers/v7/demsar06a.html.

Doyle, Gabriel, Dan Yurovsky & Michael C. Frank. 2016. A robust framework for estimating linguistic alignment in twitter
conversations. In Proceedings of the 25th international World Wide Web conference WWW ’16, 637–648. Republic and
Canton of Geneva, Switzerland: International World Wide Web Conferences Steering Committee.
doi:10.1145/2872427.2883091. https://doi.org/10.1145/2872427.2883091.

Gentzkow, Matthew, Jesse M. Shapiro & Matt Taddy. 2019. Measuring group differences in high-dimensional choices:
Method and application to congressional speech. Ms, Stanford University, Brown Universitym and Amazon.

Goldberg, Yoav. 2015. A primer on neural network models for natural language processing. Ms., Bar Ilan University.
Hamilton, William L., Kevin Clark, Jure Leskovec & Dan Jurafsky. 2016. Inducing domain-specific sentiment lexicons from

unlabeled corpora. In Proceedings of the 2016 conference on empirical methods in natural language processing,
595–605. Austin, Texas: Association for Computational Linguistics. doi:10.18653/v1/D16-1057.
https://www.aclweb.org/anthology/D16-1057.

He, Ruining & Julian McAuley. 2016. Ups and downs: Modeling the visual evolution of fashion trends with one-class
collaborative filtering. In Proceedings of the 25th international conference on world wide web WWW ’16, 507–517.
Republic and Canton of Geneva, Switzerland: International World Wide Web Conferences Steering Committee.
doi:10.1145/2872427.2883037. https://doi.org/10.1145/2872427.2883037.

Khodak, Mikhail, Nikunj Saunshi & Kiran Vodrahalli. 2017. A large self-annotated corpus for sarcasm. arXiv preprint
arXiv:1704.05579 .

55 / 57

http://www.aclweb.org/anthology/W11-1701
http://doi.acm.org/10.1145/2998181.2998213
http://www.jmlr.org/papers/v7/demsar06a.html
https://doi.org/10.1145/2872427.2883091
https://www.aclweb.org/anthology/D16-1057
https://doi.org/10.1145/2872427.2883037

References

References II
Maas, Andrew L., Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng & Christopher Potts. 2011. Learning word

vectors for sentiment analysis. In Proceedings of the 49th annual meeting of the Association for Computational
Linguistics, 142–150. Portland, Oregon: Association for Computational Linguistics.
http://www.aclweb.org/anthology/P11-1015.

McAuley, Julian & Jure Leskovec. 2013. From amateurs to connoisseurs: Modeling the evolution of user expertise through
online reviews. In Proceedings of the 22nd International World Wide Web conference, 897–907. New York: ACM.

McAuley, Julian, Jure Leskovec & Dan Jurafsky. 2012. Learning attitudes and attributes from multi-aspect reviews. In 12th
international conference on data mining, 1020–1025. Washington, D.C.: IEEE Computer Society.

McAuley, Julian, Christopher Targett, Qinfeng Shi & Anton van den Hengel. 2015. Image-based recommendations on styles
and substitutes. In Proceedings of the 38th international acm sigir conference on research and development in
information retrieval SIGIR ’15, 43–52. New York, NY, USA: ACM. doi:10.1145/2766462.2767755.
http://doi.acm.org/10.1145/2766462.2767755.

Niculae, Vlad, Srijan Kumar, Jordan Boyd-Graber & Cristian Danescu-Niculescu-Mizil. 2015. Linguistic harbingers of
betrayal: A case study on an online strategy game. In Proceedings of the 53rd annual meeting of the association for
computational linguistics and the 7th international joint conference on natural language processing (volume 1: Long
papers), 1650–1659. Beijing, China: Association for Computational Linguistics. doi:10.3115/v1/P15-1159.
https://www.aclweb.org/anthology/P15-1159.

Nobata, Chikashi, Joel Tetreault, Achint Thomas, Yashar Mehdad & Yi Chang. 2016. Abusive language detection in online
user content. In Proceedings of the 25th international conference on world wide web WWW ’16, 145–153. Republic
and Canton of Geneva, Switzerland: International World Wide Web Conferences Steering Committee.
doi:10.1145/2872427.2883062. https://doi.org/10.1145/2872427.2883062.

Pang, Bo & Lillian Lee. 2005. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating
scales. In Proceedings of the 43rd annual meeting of the Association for Computational Linguistics, 115–124. Ann
Arbor, MI: Association for Computational Linguistics.

Pang, Bo & Lillian Lee. 2008. Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval
2(1). 1–135.

Pang, Bo, Lillian Lee & Shivakumar Vaithyanathan. 2002. Thumbs up? sentiment classification using machine learning
techniques. In Proceedings of the conference on empirical methods in natural language processing (emnlp), 79–86.
Philadelphia: Association for Computational Linguistics.

Pollack, Jordan B. 1990. Recursive distributed representations. Artificial Intelligence 46(1). 77–105.
doi:10.1016/0004-3702(90)90005-K.

Recasens, Marta, Cristian Danescu-Niculescu-Mizil & Dan Jurafsky. 2013. Linguistic models for analyzing and detecting
biased language. In Proceedings of the 51st annual meeting of the association for computational linguistics (volume 1:
Long papers), 1650–1659. Sofia, Bulgaria: Association for Computational Linguistics.
http://www.aclweb.org/anthology/P13-1162.

56 / 57

http://www.aclweb.org/anthology/P11-1015
http://doi.acm.org/10.1145/2766462.2767755
https://www.aclweb.org/anthology/P15-1159
https://doi.org/10.1145/2872427.2883062
http://www.aclweb.org/anthology/P13-1162

References

References III

Socher, Richard, Brody Huval, Christopher D. Manning & Andrew Y. Ng. 2012. Semantic compositionality through recursive
matrix-vector spaces. In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning, 1201–1211. Stroudsburg, PA.
http://www.aclweb.org/anthology/D12-1110.

Socher, Richard, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Y. Ng & Christopher Potts. 2013.
Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings of the 2013
conference on Empirical Methods in Natural Language Processing, 1631–1642. Stroudsburg, PA: Association for
Computational Linguistics. http://www.aclweb.org/anthology/D13-1170.

Sudhof, Moritz, Andrés Gómez Emilsson, Andrew L. Maas & Christopher Potts. 2014. Sentiment expression conditioned by
affective transitions and social forces. In Proceedings of 20th conference on knowledge discovery and data mining,
1136–1145. New York: ACM. doi:10.1145/2623330.2623687.

Tai, Kai Sheng, Richard Socher & Christopher D. Manning. 2015. Improved semantic representations from tree-structured
Long Short-Term Memory networks. In Proceedings of the 53rd annual meeting of the association for computational
linguistics and the 7th international joint conference on natural language processing (volume 1: Long papers),
1556–1566. Beijing, China: Association for Computational Linguistics. doi:10.3115/v1/P15-1150.
https://www.aclweb.org/anthology/P15-1150.

West, Robert, Hristo S. Paskov, Jure Leskovec & Christopher Potts. 2014. Exploiting social network structure for
person-to-person sentiment analysis. Transactions of the Association for Computational Linguistics 2(2). 297–310.

57 / 57

http://www.aclweb.org/anthology/D12-1110
http://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/P15-1150

	Overview
	Associated materials
	Conceptual challenges
	Affective dimensions, relations, and transitions
	Lots of applications, but what's the real goal?
	Related tasks in affective computing

	General practical tips
	Selected sentiment datasets
	Lexica
	Relationships between sentiment lexica
	Tokenizing
	The impact of sentiment-aware tokenizing
	The dangers of stemming
	The impact of stemming
	Part-of-speech (POS) tagging
	The dangers of POS tagging
	Simple negation marking
	The impact of negation marking

	SST
	SST project overview
	Fully labeled trees
	Root-level tasks
	All-nodes tasks

	sst.py
	Readers
	nltk.tree.Tree
	Feature functions
	Model wrappers
	sst.experiment
	Bringing it all together
	sklearn.feature_extraction.DictVectorizer

	Methods
	Hyperparameter search: Rationale
	Hyperparameter search in sst.py
	Classifier comparison: Rationale
	Classifier comparison in sst.py

	Feature representation
	Hand-built features: Bag of subparts
	Hand-built feature: Negation
	Extension to other kinds of scope-taking
	Other ideas for hand-built feature functions
	Assessing individual feature functions
	Distributed representations as features

	RNN classifiers
	Model overview
	Standard RNN dataset preparation
	A note on LSTMs
	Code snippets

	Tree-structured networks
	Model overview
	Some alternative composition functions
	Subtree supervision
	Code snippets

	References
	References

