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Overview

1. Sentiment as a deep and important NLU problem
2. General practical tips for sentiment analysis
3. The Stanford Sentiment Treebank (SST)
4. sst.py
5. Methods: hyperparameters and classifier comparison
6. Feature representation
7. RNN classifiers
8. Tree-structured networks
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Associated materials

1. Code
a. sst.py
b. sst_01_overview.ipynb
c. sst_02_hand_build_features.ipynb
d. sst_03_neural_networks.ipynb

2. Homework 2 and bake-off 2: hw2_sst.ipynb

3. Core reading: Socher et al. 2013

4. Auxiliary readings: Pang & Lee 2008; Goldberg 2015
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Conceptual challenges
Which of the following sentences express sentiment? What is
their sentiment polarity (pos/neg), if any?

1. There was an earthquake in California.
2. The team failed to complete the physical challenge.

(We
win/lose!)

3. They said it would be great.
4. They said it would be great, and they were right.
5. They said it would be great, and they were wrong.
6. The party fat-cats are sipping their expensive imported

wines.
7. Oh, you’re terrible!
8. Here’s to ya, ya bastard!
9. Of 2001, “Many consider the masterpiece bewildering,

boring, slow-moving or annoying, . . . ”
10. long-suffering fans, bittersweet memories, hilariously

embarrassing moments, . . .
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Affective dimensions, relations, and transitions

(Sudhof et al. 2014)
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Lots of applications, but what’s the real goal?

Many business leaders think they want this:

Positive 70
Negative 30

Positive 65
Negative 35

When they see it, they realize that it does not help them with
decision-making. The distributions (assuming they are
accurately measured) are hiding the phenomena that are
actually relevant.
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Related tasks in affective computing

With selected papers that make excellent entry points
because of their positioning and/or associated public data:

• Subjectivity (Pang & Lee 2008)
• Bias (Recasens et al. 2013)
• Stance (Anand et al. 2011)
• Hate-speech (Nobata et al. 2016)
• Sarcasm (Khodak et al. 2017)
• Deception and betrayal (Niculae et al. 2015)
• Online trolls (Cheng et al. 2017)
• Polarization (Gentzkow et al. 2019)
• Politeness (Danescu-Niculescu-Mizil et al. 2013)
• Linguistic alignment (Doyle et al. 2016)
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General practical tips

1. Sentiment as a deep and important NLU problem
2. General practical tips for sentiment analysis
3. The Stanford Sentiment Treebank (SST)
4. sst.py
5. Methods: hyperparameters and classifier comparison
6. Feature representation
7. RNN classifiers
8. Tree-structured networks
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Selected sentiment datasets
There are too many to try to list, so I picked some with noteworthy
properties, limiting to the core task of sentiment analysis:

• IMDb movie reviews (50K) (Maas et al. 2011):
http://ai.stanford.edu/~amaas/data/sentiment/index.html

• Datasets from Lillian Lee’s group:
http://www.cs.cornell.edu/home/llee/data/

• Datasets from Bing Liu’s group:
https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html

• RateBeer (McAuley et al. 2012; McAuley & Leskovec 2013):
http://snap.stanford.edu/data/web-RateBeer.html

• Amazon Customer Review data:
https://s3.amazonaws.com/amazon-reviews-pds/readme.html

• Amazon Product Data (McAuley et al. 2015; He & McAuley 2016):
http://jmcauley.ucsd.edu/data/amazon/

• Sentiment and social networks together (West et al. 2014)
http://infolab.stanford.edu/~west1/TACL2014/

• Stanford Sentiment Treebank (SST; Socher et al. 2013)
https://nlp.stanford.edu/sentiment/
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Lexica

• Bing Liu’s Opinion Lexicon: nltk.corpus.opinion_lexicon

• SentiWordNet: nltk.corpus.sentiwordnet

• MPQA subjectivity lexicon: http://mpqa.cs.pitt.edu

• Harvard General Inquirer
É Download:

http://www.wjh.harvard.edu/~inquirer/spreadsheet_guide.htm
É Documentation:

http://www.wjh.harvard.edu/~inquirer/homecat.htm

• Linguistic Inquiry and Word Counts (LIWC):
https://liwc.wpengine.com

• Hamilton et al. (2016): SocialSent
https://nlp.stanford.edu/projects/socialsent/

• Brysbaert et al. (2014): Norms of valence, arousal, and
dominance for 13,915 English lemmas
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Relationships between sentiment lexica

Opinion
MPQA Lexicon Inquirer SentiWordNet LIWC

MPQA — 33/5402 (0.6%) 49/2867 (2%) 1127/4214 (27%) 12/363 (3%)
Opinion Lexicon — 32/2411 (1%) 1004/3994 (25%) 9/403 (2%)

Inquirer — 520/2306 (23%) 1/204 (0.5%)
SentiWordNet — 174/694 (25%)

LIWC —

Table: Disagreement levels for the sentiment lexicons.

• Where a lexicon had POS tags, I removed them and selected the most
sentiment-rich sense available for the resulting string.

• For SentiWordNet, I counted a word as positive if its positive score was
larger than its negative score; negative if its negative score was larger
than its positive score; else neutral, which means that words with equal
non-0 positive and negative scores are neutral.
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Tokenizing

Raw text
@NLUers: can&#39;t wait for the Jun 9 #projects!
YAAAAAAY!!! &gt;:-D http://stanford.edu/class/cs224u/.

A good start: nltk.tokenize.casual.TweetTokenizer
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Tokenizing

Isolate mark-up, and replace HTML entities.
@NLUers: can’t wait for the Jun 9 #projects! YAAAAAAY!!!
>:-D http://stanford.edu/class/cs224u/.

Whitespace tokenizer
@NLUers:
can’t
wait
for
the
Jun
9
#projects
YAAAAAAY!!!
>:-D
http://stanford.edu/class/cs224u/.

A good start: nltk.tokenize.casual.TweetTokenizer
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Tokenizing

Isolate mark-up, and replace HTML entities.
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Treebank tokenizer
@
NLUers
:
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9
#
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Tokenizing

Isolate mark-up, and replace HTML entities.
@NLUers: can’t wait for the Jun 9 #projects! YAAAAAAY!!!
>:-D http://stanford.edu/class/cs224u/.

Elements of a sentiment-aware tokenizer
• Isolates emoticons
• Respects Twitter and other domain-specific markup
• Uses the underlying mark-up (e.g., <strong> tags)
• Captures those #$%ing masked curses!
• Preserves capitalization where it seems meaningful
• Regularizes lengthening (e.g., YAAAAAAY⇒YAAAY)
• Captures significant multiword expressions (e.g., out of

this world)

A good start: nltk.tokenize.casual.TweetTokenizer
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Tokenizing

Isolate mark-up, and replace HTML entities.
@NLUers: can’t wait for the Jun 9 #projects! YAAAAAAY!!!
>:-D http://stanford.edu/class/cs224u/.

Sentiment-aware tokenizer
@nluers
:
can’t
wait
for
the
Jun_9
#projects

!
YAAAY
!
!
!
>:-D
http://stanford.edu/class/cs224u/
.

A good start: nltk.tokenize.casual.TweetTokenizer
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The impact of sentiment-aware tokenizing

Softmax classifier. Training on 12,000 OpenTable reviews
(6000 positive/4-5 stars; 6000 negative/1-2 stars).
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The dangers of stemming

• Stemming collapses distinct word forms.

• Three common stemming algorithms in the context of
sentiment:
É the Porter stemmer
É the Lancaster stemmer
É the WordNet stemmer

• Porter and Lancaster destroy too many sentiment
distinctions.

• The WordNet stemmer does not have this problem nearly
so severely, but it generally doesn’t do enough
collapsing to be worth the resources necessary to run it.
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The dangers of stemming
The Porter stemmer heuristically identifies word suffixes
(endings) and strips them off, with some regularization of the
endings.

Positiv Negativ Porter stemmed

defense defensive defens
extravagance extravagant extravag
affection affectation affect
competence compete compet
impetus impetuous impetu
objective objection object
temperance temper temper
tolerant tolerable toler

Table: Sample of instances in which the Porter stemmer destroys a
Harvard Inquirer Positiv/Negativ distinction.
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The dangers of stemming
The Lancaster stemmer uses the same strategy as the Porter
stemmer.

Positiv Negativ Lancaster stemmed

call callous cal
compliment complicate comply
dependability dependent depend
famous famished fam
fill filth fil
flourish floor flo
notoriety notorious not
passionate passe pass
savings savage sav
truth truant tru

Table: Sample of instances in which the Lancaster stemmer
destroys a Harvard Inquirer Positiv/Negativ distinction.
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The dangers of stemming
The WordNet stemmer (NLTK) is high-precision. It requires
word–POS pairs. Its only general issue for sentiment is that it
removes comparative morphology.

Positiv WordNet stemmed

(exclaims, v) exclaim
(exclaimed, v) exclaim
(exclaiming, v) exclaim
(exclamation, n) exclamation
(proved, v) prove
(proven, v) prove
(proven, a) proven
(happy, a) happy
(happier, a) happy
(happiest, a) happy

Table: Representative examples of what WordNet stemming does
and doesn’t do.
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The impact of stemming

Softmax classifier. Training on 12,000 OpenTable reviews
(6000 positive/4-5 stars; 6000 negative/1-2 stars).
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Part-of-speech (POS) tagging
Word Tag1 Val1 Tag2 Val2

arrest jj Positiv vb Negativ
even jj Positiv vb Negativ
even rb Positiv vb Negativ
fine jj Positiv nn Negativ
fine jj Positiv vb Negativ
fine nn Negativ rb Positiv
fine rb Positiv vb Negativ
help jj Positiv vbn Negativ
help nn Positiv vbn Negativ
help vb Positiv vbn Negativ
hit jj Negativ vb Positiv
mind nn Positiv vb Negativ
order jj Positiv vb Negativ
order nn Positiv vb Negativ
pass nn Negativ vb Positiv

Table: Harvard Inquirer POS contrasts.
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The dangers of POS tagging
1,424 cases where a (word, tag) pair is consis-
tent with pos. and neg. lemma-level sentiment

Word Tag ScoreDiff

mean s 1.75
abject s 1.625
benign a 1.625
modest s 1.625
positive s 1.625
smart s 1.625
solid s 1.625
sweet s 1.625
artful a 1.5
clean s 1.5
evil n 1.5
firm s 1.5
gross s 1.5
iniquity n 1.5
marvellous s 1.5
marvelous s 1.5
plain s 1.5
rank s 1.5
serious s 1.5
sheer s 1.5
sorry s 1.5
stunning s 1.5
wickedness n 1.5

[. . . ]
unexpectedly r 0.25
velvet s 0.25
vibration n 0.25
weather-beaten s 0.25
well-known s 0.25
whine v 0.25
wizard n 0.25
wonderland n 0.25
yawn v 0.25
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Simple negation marking

The phenomenon

1. I didn’t enjoy it.
2. I never enjoy it.
3. No one enjoys it.
4. I have yet to enjoy it.
5. I don’t think I will enjoy it.
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Simple negation marking

The phenomenon

1. I didn’t enjoy it.
2. I never enjoy it.
3. No one enjoys it.
4. I have yet to enjoy it.
5. I don’t think I will enjoy it.

The method (Das & Chen 2001; Pang et al. 2002)
Append a _NEG suffix to every word appearing between a
negation and a clause-level punctuation mark.
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Simple negation marking

No one enjoys it. no
one_NEG
enjoys_NEG
it_NEG
.

I don’t think I will enjoy it, but I might. i
don’t
think_NEG
i_NEG
will_NEG
enjoy_NEG
it_NEG
,
but
i
might
.
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The impact of negation marking

Softmax classifier. Training on 12,000 OpenTable reviews
(6000 positive/4-5 stars; 6000 negative/1-2 stars).
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SST

1. Sentiment as a deep and important NLU problem
2. General practical tips for sentiment analysis
3. The Stanford Sentiment Treebank (SST)
4. sst.py
5. Methods: hyperparameters and classifier comparison
6. Feature representation
7. RNN classifiers
8. Tree-structured networks
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SST project overview

1. Socher et al. (2013)

2. Full code and data release:
https://nlp.stanford.edu/sentiment/

3. Sentence-level corpus (10,662 sentences)

4. Original data from Rotten Tomatoes (Pang & Lee 2005)

5. Fully-labeled trees (crowdsourced labels)

6. The 5-way labels were extracted from workers’ slider
responses.
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Fully labeled trees

4

2

NLU

4

2

is

4

enlightening

These are novel examples,
and the labels are actual output from

https://nlp.stanford.edu/sentiment/
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3

3

it

2

3

would

3

2

be

4

great

2

;

2

2

they

2

2

were

3

right

These are novel examples,
and the labels are actual output from

https://nlp.stanford.edu/sentiment/
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Root-level tasks
Five-way problem

Label Meaning Train Dev

0 very negative 1,092 139
1 negative 2,218 289
2 neutral 1,624 229
3 positive 2,322 279
4 very positive 1,288 165

8,544 1,101

Note: 4 > 3 (more positive) but 0 > 1 (more negative)
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Root-level tasks
Five-way problem

Label Meaning Train Dev

0 very negative 1,092 139
1 negative 2,218 289
2 neutral 1,624 229
3 positive 2,322 279
4 very positive 1,288 165

8,544 1,101

Note: 4 > 3 (more positive) but 0 > 1 (more negative)

Ternary problem

Label Meaning Train Dev

0, 1 negative 3,310 428
2 neutral 1,624 229
3, 4 positive 3,610 444

8,544 1,101

23 / 57



Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Root-level tasks
Five-way problem

Label Meaning Train Dev

0 very negative 1,092 139
1 negative 2,218 289
2 neutral 1,624 229
3 positive 2,322 279
4 very positive 1,288 165

8,544 1,101

Note: 4 > 3 (more positive) but 0 > 1 (more negative)

Binary problem (neutral data simply excluded)

Label Meaning Train Dev

0, 1 negative 3,310 428
3, 4 positive 3,610 444

6,920 872
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All-nodes tasks
Five-way problem

Label Meaning Train Dev

0 very negative 40,774 5,217
1 negative 82,854 10,757
2 neutral 58,398 8,227
3 positive 89,308 11,001
4 very positive 47,248 6,245

318,582 41,447

Note: 4 > 3 (more positive) but 0 > 1 (more negative)
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All-nodes tasks
Five-way problem

Label Meaning Train Dev

0 very negative 40,774 5,217
1 negative 82,854 10,757
2 neutral 58,398 8,227
3 positive 89,308 11,001
4 very positive 47,248 6,245

318,582 41,447

Note: 4 > 3 (more positive) but 0 > 1 (more negative)

Ternary problem

Label Meaning Train Dev

0, 1 negative 123,628 15,974
2 neutral 58,398 8,227
3, 4 positive 136,556 17,246

318,582 41,447
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All-nodes tasks
Five-way problem

Label Meaning Train Dev

0 very negative 40,774 5,217
1 negative 82,854 10,757
2 neutral 58,398 8,227
3 positive 89,308 11,001
4 very positive 47,248 6,245

318,582 41,447

Note: 4 > 3 (more positive) but 0 > 1 (more negative)

Binary problem (neutral data simply excluded)

Label Meaning Train Dev

0, 1 negative 123,628 15,974
3, 4 positive 136,556 17,246

260,184 33,220
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sst.py

1. Sentiment as a deep and important NLU problem
2. General practical tips for sentiment analysis
3. The Stanford Sentiment Treebank (SST)
4. sst.py
5. Methods: hyperparameters and classifier comparison
6. Feature representation
7. RNN classifiers
8. Tree-structured networks
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Readers
sst_code_01_solved

April 13, 2019

In [1]: from nltk.tree import Tree
import os
import sst

In [2]: SST_HOME = os.path.join('data', 'trees')

In [3]: # All SST readers are generators that yield (tree, score) pairs.
train_reader = sst.train_reader(SST_HOME)

In [4]: tree, score = next(train_reader)

In [5]: sst.train_reader(SST_HOME, class_func=sst.ternary_class_func)

In [6]: sst.train_reader(SST_HOME, class_func=sst.binary_class_func)

In [7]: sst.dev_reader(SST_HOME)

In [8]: sst.dev_reader(SST_HOME, class_func=sst.ternary_class_func)

In [9]: sst.dev_reader(SST_HOME, class_func=sst.binary_class_func)

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

1
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nltk.tree.Tree
In [ ]:

In [ ]:

In [10]: tree = Tree.fromstring("""(4 (2 NLU) (4 (2 is) (4 amazing)))""")

In [11]: tree

Out[11]:

In [12]: tree.label()

Out[12]: '4'

In [13]: tree[0]

Out[13]:

In [14]: tree[1]

Out[14]:

2

In [15]: for subtree in tree.subtrees():
print(subtree)

(4 (2 NLU) (4 (2 is) (4 amazing)))
(2 NLU)
(4 (2 is) (4 amazing))
(2 is)
(4 amazing)

In [16]: from IPython.display import display, Image
import pandas as pd

In [17]: for class_func in (None, sst.ternary_class_func, sst.binary_class_func):
for reader in (sst.train_reader, sst.dev_reader):

print("="*70)
print(reader, class_func)
labels = [y for tree, y in reader(SST_HOME, class_func=class_func)]
print(pd.Series(labels).value_counts().sort_index())
print("Examples: {:,}".format(len(labels)))

======================================================================
<function train_reader at 0x1a39595158> None
0 1092
1 2218
2 1624
3 2322
4 1288
dtype: int64
Examples: 8,544
======================================================================
<function dev_reader at 0x1a395951e0> None
0 139
1 289
2 229
3 279
4 165
dtype: int64
Examples: 1,101
======================================================================
<function train_reader at 0x1a39595158> <function ternary_class_func at 0x1a395950d0>
negative 3310
neutral 1624
positive 3610
dtype: int64
Examples: 8,544
======================================================================
<function dev_reader at 0x1a395951e0> <function ternary_class_func at 0x1a395950d0>
negative 428

3

In [ ]:

In [ ]:

In [10]: tree = Tree.fromstring("""(4 (2 NLU) (4 (2 is) (4 amazing)))""")

In [11]: tree

Out[11]:

In [12]: tree.label()

Out[12]: '4'

In [13]: tree[0]

Out[13]:

In [14]: tree[1]

Out[14]:

2
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Feature functions

sst_code_02_solved

April 13, 2019

In [1]: from collections import Counter
from nltk.tree import Tree
import sst

In [2]: def unigrams_phi(tree):
"""The basis for a unigrams feature function.

Parameters
----------
tree : nltk.tree

The tree to represent.

Returns
-------
Counter

A map from strings to their counts in `tree`.

"""
return Counter(tree.leaves())

In [3]: tree = Tree.fromstring("""(4 (2 NLU) (4 (2 is) (4 amazing)))""")

In [4]: unigrams_phi(tree)

Out[4]: Counter({'NLU': 1, 'is': 1, 'amazing': 1})

In [5]: from sklearn.linear_model import LogisticRegression

In [6]: def fit_softmax_classifier(X, y):
"""Wrapper for `sklearn.linear.model.LogisticRegression`. This is
also called a Maximum Entropy (MaxEnt) Classifier, which is more
fitting for the multiclass case.

Parameters
----------
X : 2d np.array

The matrix of features, one example per row.
y : list

1
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Model wrappers
In [5]: from sklearn.linear_model import LogisticRegression

In [6]: def fit_softmax_classifier(X, y):
"""Wrapper for `sklearn.linear.model.LogisticRegression`. This is
also called a Maximum Entropy (MaxEnt) Classifier, which is more
fitting for the multiclass case.

Parameters
----------
X : 2d np.array

The matrix of features, one example per row.
y : list

The list of labels for rows in `X`.

Returns
-------
sklearn.linear.model.LogisticRegression

A trained `LogisticRegression` instance.

"""
mod = LogisticRegression(

fit_intercept=True, solver='liblinear', multi_class='auto')
mod.fit(X, y)
return mod

In [7]: import os
import utils

In [8]: SST_HOME = os.path.join('data', 'trees')

In [9]: unigrams_softmax_experiment = sst.experiment(
SST_HOME,
unigrams_phi,
fit_softmax_classifier,
train_reader=sst.train_reader, # The default
assess_reader=None, # The default
train_size=0.7, # The default
class_func=sst.ternary_class_func, # The default
score_func=utils.safe_macro_f1, # The default
vectorize=True, # The default
verbose=True) # The default

precision recall f1-score support

negative 0.640 0.662 0.650 1008
neutral 0.280 0.150 0.196 466

positive 0.649 0.757 0.699 1090

micro avg 0.609 0.609 0.609 2564

2
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sst.experiment

In [7]: import os
import utils

In [8]: SST_HOME = os.path.join('data', 'trees')

In [9]: unigrams_softmax_experiment = sst.experiment(
SST_HOME,
unigrams_phi,
fit_softmax_classifier,
train_reader=sst.train_reader, # The default
assess_reader=None, # The default
train_size=0.7, # The default
class_func=sst.ternary_class_func, # The default
score_func=utils.safe_macro_f1, # The default
vectorize=True, # The default
verbose=True) # The default

precision recall f1-score support

negative 0.640 0.662 0.650 1008
neutral 0.280 0.150 0.196 466

positive 0.649 0.757 0.699 1090

micro avg 0.609 0.609 0.609 2564
macro avg 0.523 0.523 0.515 2564

weighted avg 0.578 0.609 0.588 2564

In [10]: list(unigrams_softmax_experiment.keys())

Out[10]: ['model',
'phi',
'train_dataset',
'assess_dataset',
'predictions',
'metric',
'score']

In [11]: list(unigrams_softmax_experiment['train_dataset'].keys())

Out[11]: ['X', 'y', 'vectorizer', 'raw_examples']

In [ ]:

3
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sst.experiment
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sst.experiment
The return value of sst.experiment is a dict packaging up
the objects and info needed to test this model in new
settings and conduct deep error analysis:

In [7]: import os
import utils

In [8]: SST_HOME = os.path.join('data', 'trees')

In [9]: unigrams_softmax_experiment = sst.experiment(
SST_HOME,
unigrams_phi,
fit_softmax_classifier,
train_reader=sst.train_reader, # The default
assess_reader=None, # The default
train_size=0.7, # The default
class_func=sst.ternary_class_func, # The default
score_func=utils.safe_macro_f1, # The default
vectorize=True, # The default
verbose=True) # The default

precision recall f1-score support

negative 0.640 0.662 0.650 1008
neutral 0.280 0.150 0.196 466

positive 0.649 0.757 0.699 1090

micro avg 0.609 0.609 0.609 2564
macro avg 0.523 0.523 0.515 2564

weighted avg 0.578 0.609 0.588 2564

In [10]: list(unigrams_softmax_experiment.keys())

Out[10]: ['model',
'phi',
'train_dataset',
'assess_dataset',
'predictions',
'metric',
'score']

In [11]: list(unigrams_softmax_experiment['train_dataset'].keys())

Out[11]: ['X', 'y', 'vectorizer', 'raw_examples']

In [ ]:

3
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Bringing it all together

sst_code_03_solved

April 13, 2019

In [1]: from collections import Counter
import os
from sklearn.linear_model import LogisticRegression
import sst

In [2]: SST_HOME = os.path.join('data', 'trees')

In [3]: def phi(tree):
# Tree to Counter.
return Counter(tree.leaves())

In [4]: def fit_model(X, y):
# X, y to a fitted model with a predict method.
mod = LogisticRegression(

fit_intercept=True, solver='liblinear', multi_class='auto')
mod.fit(X, y)
return mod

In [5]: experiment = sst.experiment(SST_HOME, phi, fit_model)

precision recall f1-score support

negative 0.613 0.680 0.645 1003
neutral 0.318 0.137 0.191 468

positive 0.666 0.761 0.710 1093

micro avg 0.615 0.615 0.615 2564
macro avg 0.532 0.526 0.515 2564

weighted avg 0.582 0.615 0.590 2564

1
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sklearn.feature_extraction.DictVectorizer

sst_code_04_solved

April 13, 2019

In [1]: import pandas as pd
from sklearn.feature_extraction import DictVectorizer

In [2]: train_feats = [
{'a': 1, 'b': 1},
{'b': 1, 'c': 2}]

In [3]: vec = DictVectorizer(sparse=False) # Use `sparse=True` for real problems!

In [4]: X_train = vec.fit_transform(train_feats)

In [5]: pd.DataFrame(X_train, columns=vec.get_feature_names())

Out[5]: a b c
0 1.0 1.0 0.0
1 0.0 1.0 2.0

In [6]: test_feats = [
{'a': 2},
{'a': 4, 'b': 2, 'd': 1}]

In [7]: X_test = vec.transform(test_feats) # Not `fit_transform`!

In [8]: pd.DataFrame(X_test, columns=vec.get_feature_names())

Out[8]: a b c
0 2.0 0.0 0.0
1 4.0 2.0 0.0

1
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Methods

1. Sentiment as a deep and important NLU problem
2. General practical tips for sentiment analysis
3. The Stanford Sentiment Treebank (SST)
4. sst.py
5. Methods: hyperparameters and classifier comparison
6. Feature representation
7. RNN classifiers
8. Tree-structured networks
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Hyperparameter search: Rationale

1. The parameters of a model are those whose values are
learned as part of optimizing the model itself.

2. The hyperparameters of a model are any settings that
are set outside of this optimization. Examples:
a. GloVe or LSA dimensionality
b. GloVe xmax and α
c. Regularization terms, hidden dimensionalities,

learning rates, activation functions
d. Optimization methods

3. Hyperparameter optimization is crucial to building a
persuasive argument: every model must be put in its
best light!

4. Otherwise, one could appear to have evidence that one
model is better than other simply by strategically picking
hyperparameters that favored the outcome.
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Hyperparameter search in sst.py

sst_code_05_solved

April 13, 2019

In [1]: from collections import Counter
import os
from sklearn.linear_model import LogisticRegression
import sst
import utils

In [2]: SST_HOME = os.path.join('data', 'trees')

In [3]: def phi(tree):
return Counter(tree.leaves())

In [4]: def fit_softmax_with_crossvalidation(X, y):
basemod = LogisticRegression(solver='liblinear', multi_class='auto')
cv = 5
param_grid = {'fit_intercept': [True, False],

'C': [0.4, 0.6, 0.8, 1.0, 2.0, 3.0],
'penalty': ['l1','l2']}

best_mod = utils.fit_classifier_with_crossvalidation(
X, y, basemod, cv, param_grid)

return best_mod

In [5]: experiment = sst.experiment(SST_HOME, phi, fit_softmax_with_crossvalidation)

Best params: {'C': 3.0, 'fit_intercept': False, 'penalty': 'l2'}
Best score: 0.518

precision recall f1-score support

negative 0.619 0.661 0.639 987
neutral 0.303 0.185 0.230 486

positive 0.655 0.729 0.690 1091

micro avg 0.599 0.599 0.599 2564
macro avg 0.526 0.525 0.520 2564

weighted avg 0.574 0.599 0.583 2564

In [6]: experiment['model']

1
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Classifier comparison: Rationale

1. Suppose you’ve assessed a baseline model B and your
favored model M, and your chosen assessment metric
favors M. Is M really better?

2. If the difference between B and M is clearly of practical
significance, then you might not need to do anything
beyond presenting the numbers. Still, is there variation
in how B or M performs?

3. Demšar (2006) advises the Wilcoxon signed-rank test for
situations in which you can afford to repeatedly assess B
and M on different train/test splits. We’ll talk later in the
term about the rationale for this.

4. For situations where you can’t repeatedly assess B and
M, McNemar’s test is a reasonable alternative. It
operates on the confusion matrices produced by the two
models, testing the null hypothesis that the two models
have the same error rate.

36 / 57



Overview General practical tips SST sst.py Methods Feature representation RNNs TreeNNs

Classifier comparison in sst.py

sst_code_06_solved

April 13, 2019

In [1]: from collections import Counter
import os
import scipy.stats
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import MultinomialNB
import sst
import utils

In [2]: SST_HOME = os.path.join('data', 'trees')

In [3]: def phi(tree):
return Counter(tree.leaves())

In [4]: def fit_softmax(X, y):
mod = LogisticRegression(

fit_intercept=True,
solver='liblinear',
multi_class='auto')

mod.fit(X, y)
return mod

In [5]: def fit_naivebayes(X, y):
mod = MultinomialNB(fit_prior=True)
mod.fit(X, y)
return mod

In [6]: _ = sst.compare_models(
SST_HOME,
phi1=phi,
phi2=None, # Defaults to `phi1`
train_func1=fit_softmax,
train_func2=fit_naivebayes, # Defaults to `train_func1`
stats_test=scipy.stats.wilcoxon, # Default
trials=10, # Default
reader=sst.train_reader, # Default
train_size=0.7, # Default
class_func=sst.ternary_class_func, # Default
score_func=utils.safe_macro_f1) # Default

1
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Classifier comparison in sst.py

Wilcoxon signed rank test

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [6]: mod1_scores, mod2_scores, p = sst.compare_models(
SST_HOME,
phi1=phi,
phi2=None, # Defaults to `phi1`
train_func1=fit_softmax,
train_func2=fit_naivebayes, # Defaults to `train_func1`
stats_test=scipy.stats.wilcoxon, # Default
trials=10, # Default
reader=sst.train_reader, # Default
train_size=0.7, # Default
class_func=sst.ternary_class_func, # Default
score_func=utils.safe_macro_f1) # Default

Model 1 mean: 0.510
Model 2 mean: 0.492
p = 0.005

In [7]: softmax_experiment = sst.experiment(
SST_HOME, phi, fit_softmax)

In [8]: naivebayes_experiment = sst.experiment(
SST_HOME, phi, fit_naivebayes)

In [9]: stat, p = utils.mcnemar(
softmax_experiment['assess_dataset']['y'],
naivebayes_experiment['predictions'],
softmax_experiment['predictions'])

2
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Classifier comparison in sst.py

McNemar’s test

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [ ]:

In [6]: mod1_scores, mod2_scores, p = sst.compare_models(
SST_HOME,
phi1=phi,
phi2=None, # Defaults to `phi1`
train_func1=fit_softmax,
train_func2=fit_naivebayes, # Defaults to `train_func1`
stats_test=scipy.stats.wilcoxon, # Default
trials=10, # Default
reader=sst.train_reader, # Default
train_size=0.7, # Default
class_func=sst.ternary_class_func, # Default
score_func=utils.safe_macro_f1) # Default

Model 1 mean: 0.510
Model 2 mean: 0.492
p = 0.005

In [7]: softmax_experiment = sst.experiment(
SST_HOME, phi, fit_softmax)

In [8]: naivebayes_experiment = sst.experiment(
SST_HOME, phi, fit_naivebayes)

In [9]: stat, p = utils.mcnemar(
softmax_experiment['assess_dataset']['y'],
naivebayes_experiment['predictions'],
softmax_experiment['predictions'])

2
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Feature representation

1. Sentiment as a deep and important NLU problem
2. General practical tips for sentiment analysis
3. The Stanford Sentiment Treebank (SST)
4. sst.py
5. Methods: hyperparameters and classifier comparison
6. Feature representation
7. RNN classifiers
8. Tree-structured networks
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Hand-built features: Bags of subparts
sst_code_07_solved

April 13, 2019

In [1]: from collections import Counter
from nltk.tree import Tree

In [2]: tree = Tree.fromstring("""(4 (2 NLU) (4 (2 is) (4 amazing)))""")
tree

Out[2]:

In [3]: def phi_bigrams(tree):
toks = ["<s>"] + tree.leaves() + ["</s>"]
bigrams = [(w1, w2) for w1, w2 in zip(toks[: -1], toks[1: ])]
return Counter(bigrams)

In [4]: phi_bigrams(tree)

Out[4]: Counter({('<s>', 'NLU'): 1,
('NLU', 'is'): 1,
('is', 'amazing'): 1,
('amazing', '</s>'): 1})

In [5]: def phi_phrases(tree):
phrases = []
for subtree in tree.subtrees():

if subtree.height() <= 3:
phrases.append(tuple(subtree.leaves()))

return Counter(phrases)

In [6]: phi_phrases(tree)

Out[6]: Counter({('NLU',): 1, ('is', 'amazing'): 1, ('is',): 1, ('amazing',): 1})

1

sst_code_07_solved

April 13, 2019

In [1]: from collections import Counter
from nltk.tree import Tree

In [2]: tree = Tree.fromstring("""(4 (2 NLU) (4 (2 is) (4 amazing)))""")
tree

Out[2]:

In [3]: def phi_bigrams(tree):
toks = ["<s>"] + tree.leaves() + ["</s>"]
bigrams = [(w1, w2) for w1, w2 in zip(toks[: -1], toks[1: ])]
return Counter(bigrams)

In [4]: phi_bigrams(tree)

Out[4]: Counter({('<s>', 'NLU'): 1,
('NLU', 'is'): 1,
('is', 'amazing'): 1,
('amazing', '</s>'): 1})

In [5]: def phi_phrases(tree):
phrases = []
for subtree in tree.subtrees():

if subtree.height() <= 3:
phrases.append(tuple(subtree.leaves()))

return Counter(phrases)

In [6]: phi_phrases(tree)

Out[6]: Counter({('NLU',): 1, ('is', 'amazing'): 1, ('is',): 1, ('amazing',): 1})
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Hand-built feature: Negation
Simple negation marking
The dialogue was n’t very_NEG good_NEG but_NEG the_NEG acting_NEG
was_NEG amazing_NEG ._NEG

Negation marking based on structure
S

S

NP

Det

The

N

dialogue

VP

V

was

AP

NEG

n’t

AP

Adv

very_NEG

A

good_NEG

S

but the acting was amazing
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Extension to other kinds of scope-taking

S

NP

They

VP

V

said

S

NP

it

VP

V

was

AP

great
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Extension to other kinds of scope-taking

S

NP

It

VP

V

might

VP

V

be

AP

successful
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Other ideas for hand-built feature functions

• Lexicon-derived features

• Modal adverbs:
É “It is quite possibly a masterpiece.”
É “It is totally amazing.”

• Thwarted expectations:
É “Many consider the movie bewildering, boring,

slow-moving or annoying.”
É “It was hailed as a brilliant, unprecedented artistic

achievement worthy of multiple Oscars.”

• Non-literal language:
É “Not exactly a masterpiece.”
É “Like 50 hours long.”
É “The best movie in the history of the universe.”
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Assessing individual feature functions
1. sklearn.feature_selection offers functions to assess how much

information your feature functions contain with respect to your labels.

2. Take care when assessing feature functions individually; correlations
betwen them will make these assessments hard to interpret:

X1 X2 X3 y

1 1 0 T
1 0 1 T
1 0 0 T
0 1 1 T
0 1 0 F
0 0 1 F
0 0 1 F
0 0 1 F

chi2(X1, y) = 3

chi2(X2, y) = 0.33

chi2(X3, y) = 0.2

What do the scores tell us about the best model? In truth, a linear
model performs best with just X1, and including X2 hurts.

3. Consider more holistic assessment methods: systematically removing
or disrupting features in the context of a full model and comparing
performance before and after.
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Distributed representations as features
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Distributed representations as features

sst_09_code_solved

April 13, 2019

In [1]: import numpy as np
import os
from sklearn.linear_model import LogisticRegression
import sst
import utils

In [2]: GLOVE_HOME = os.path.join('data', 'glove.6B')
SST_HOME = os.path.join('data', 'trees')

In [3]: glove_lookup = utils.glove2dict(
os.path.join(GLOVE_HOME, 'glove.6B.300d.txt'))

In [4]: def vsm_leaves_phi(tree, lookup, np_func=np.sum):
allvecs = np.array([lookup[w] for w in tree.leaves() if w in lookup])
if len(allvecs) == 0:

dim = len(next(iter(lookup.values())))
feats = np.zeros(dim)

else:
feats = np_func(allvecs, axis=0)

return feats

In [5]: def glove_leaves_phi(tree, np_func=np.sum):
return vsm_leaves_phi(tree, glove_lookup, np_func=np_func)

In [6]: def fit_softmax(X, y):
mod = LogisticRegression(

fit_intercept=True, solver='liblinear', multi_class='auto')
mod.fit(X, y)
return mod

In [7]: glove_sum_experiment = sst.experiment(
SST_HOME,
glove_leaves_phi,
fit_softmax,
vectorize=False) # Tell `experiment` it needn't use a DictVectorizer.

precision recall f1-score support

negative 0.638 0.722 0.678 1007

1
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RNN classifiers

1. Sentiment as a deep and important NLU problem
2. General practical tips for sentiment analysis
3. The Stanford Sentiment Treebank (SST)
4. sst.py
5. Methods: hyperparameters and classifier comparison
6. Feature representation
7. RNN classifiers
8. Tree-structured networks
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Model overview

For complete details, see the reference
implementation np_rnn_classifier.py
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Standard RNN dataset preparation

Examples
[a, b, a]
[b, c]
⇓

Indices
[1, 2, 1]
[2, 3]
⇓

Vectors

h

[−0.42 0.10 0.12], [−0.16 −0.21 0.29], [−0.42 0.10 0.12]
i

h

[−0.16 −0.21 0.29], [−0.26 0.31 0.37]
i

Embedding

1 −0.42 0.10 0.12
2 −0.16 −0.21 0.29
3 −0.26 0.31 0.37
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A note on LSTMs

1. Plain RNNs tend to perform poorly with very long
sequences; as information flows back through the
network, it is lost or distorted.

2. LSTM cells are a prominent response to this problem:
they introduce mechanisms that control the flow of
information.

3. We won’t review all the mechanism for this here. I
instead recommend these excellent blog posts, which
include intuitive diagrams and discuss the motivations
for the various pieces in detail:
É Towards Data Science: Illustrated Guide to LSTM’s

and GRU’s: A step by step explanation
É colah’s blog: Understanding LSTM networks
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Code snippets

sst_10_code_solved

April 13, 2019

In [1]: import os
import sst
from torch_rnn_classifier import TorchRNNClassifier
import torch.nn as nn
import utils

In [2]: GLOVE_HOME = os.path.join('data', 'glove.6B')
SST_HOME = os.path.join('data', 'trees')

In [3]: GLOVE_LOOKUP = utils.glove2dict(
os.path.join(GLOVE_HOME, 'glove.6B.50d.txt'))

In [4]: def rnn_phi(tree):
return tree.leaves()

In [5]: def fit_rnn(X, y):
sst_train_vocab = utils.get_vocab(X, n_words=10000)
glove_embedding, sst_glove_vocab = utils.create_pretrained_embedding(

GLOVE_LOOKUP, sst_train_vocab)
mod = TorchRNNClassifier(

sst_glove_vocab,
eta=0.05,
embedding=glove_embedding,
batch_size=1000,
hidden_dim=50,
max_iter=50,
l2_strength=0.001,
bidirectional=True,
hidden_activation=nn.ReLU())

mod.fit(X, y)
return mod

In [6]: rnn_experiment = sst.experiment(SST_HOME, rnn_phi, fit_rnn, vectorize=False)

1
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Tree-structured networks

1. Sentiment as a deep and important NLU problem
2. General practical tips for sentiment analysis
3. The Stanford Sentiment Treebank (SST)
4. sst.py
5. Methods: hyperparameters and classifier comparison
6. Feature representation
7. RNN classifiers
8. Tree-structured networks
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Model overview

For complete details, see the reference
implementation np_tree_nn.py
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Some alternative composition functions

Basic, as in the previous diagram (Pollack 1990)
h = f ([a;c]W + b)

a c

Matrix–Vector (Socher et al. 2012)
All nodes are represented by both vectors and matries, and
the combination function creates a lot of multiplicative
interactions between them.

Tensor (Socher et al. 2013)
An extension of our basic model with a 3d tensor that allows
for multiplicative interactions between the child vectors.

LSTM (Tai et al. 2015)
Each parent node combines separately-gated memory and
hidden states of its children.
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Subtree supervision
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Code snippets

sst_11_code_solved

April 14, 2019

In [1]: from collections import Counter
import os
import sst
from torch_tree_nn import TorchTreeNN
import utils

In [2]: SST_HOME = os.path.join('data', 'trees')

In [3]: def get_tree_vocab(X, n_words=None):
wc = Counter([w for ex in X for w in ex.leaves()])
wc = wc.most_common(n_words) if n_words else wc.items()
vocab = {w for w, c in wc}
vocab.add("$UNK")
return sorted(vocab)

In [4]: def tree_phi(tree):
return tree

In [5]: def fit_tree(X, y):
sst_train_vocab = get_tree_vocab(X, n_words=10000)
mod = TorchTreeNN(

sst_train_vocab,
embedding=None,
embed_dim=50,
max_iter=10,
eta=0.05)

# Tree models use the labels on their examples for
# supervision, and hence don't use `y` in `fit`:
mod.fit(X)
return mod

In [6]: tree_experiment = sst.experiment(SST_HOME, tree_phi, fit_tree, vectorize=False)

1
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