
In-class bake-offs

Bill MacCartney and Christopher Potts
CS224U, Stanford University



Background

• We’ve moved a lot of the material into videos and 
codelabs.

• A number of the classes will be devoted to hands-on 
work with the models and concepts.

• These meetings will be centered around challenge 
problems and low-stakes competitions.

• You get credit for these problems by working on them 
in class (and only there).



April 1 challenge problem

Working with distributedwordreps.py:

Do whatever you like to the count matrix ww or wd and run 
word_similarity_evaluation on it. 

• 1 point: Any modification to ww or wd plus a successful run.
• 2 points: Highest scoring modification of all the teams.

The only requirements: no data beyond ww or wd, and the work has to 
be done in the classroom.



April 6 challenge problem

Working with distributedwordreps.py:

Do whatever you like to the count matrix ww or wd to create a new 
VSM v and run 

analogy_evaluation(mat=v[0], rownames=v[1],

src_filename='distributedwordreps-data/question-
data/gram7-past-tense.txt')

• 1 point: Any modification to ww or wd plus a successful run.
• 2 points: Highest mean reciprocal rank of all the teams.

As before, the only requirements: no data beyond ww or wd, and the 
work has to be done in the classroom.



April 8 challenge problem
Problem: for two words w1 and w2, predict w1 ⊂ w2 or w2 ⊃ w2

hippo ⊂ mammal mammal ⊃ hippo

Data: 

• vocab, items = pickle.load(file(‘wordentail_data.pickle’) 
• items[‘train’] = {1.0: [[w1, w2], [w6, w7], … ], -1.0: [[w4, w3], [w2, w1], … ]}
• items[‘test’] = {1.0: [[w1, w7], [w2, w3], … ], -1.0: [[w3, w2], [w9, w8], … ]}
• items[‘disjoint_vocab_test’] = {1.0: [[w21, w72], … ], -1.0: [[w97, w121], … ]}

The all three sets are disjoint. The test vocab is subset of the train vocab. The 
disjoint_vocab_test is disjoint from the others. All the words are in glv. 

You should train only on items[‘train’]!

Starter code: wordentail.py

• data_prep: loads the data; you write vector_func and vector_combo_func
• train_and_evaluate: accepts the output of data_prep and handles evaluation; you 

set up and tune the network



April 8 challenge problem (continued)

hippo mammal

(hidden vec)

0.9

You decide whether these two 
vectors come from by writing 
vector_func. They can be random 
or they can come from a VSM you 
like.

You decide how to put these 
vectors together by writing 
vector_combo_func. (Simplest is 
concatenation.)

You tune the network: hidden_dim, training 
iterations, learning date (activation function, 
optimizer, …). Tips: you’ll know after 50 
iterations whether things are good, and 
small hidden_dim seems powerful.


