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Recent progress on deep learning

Neural network models are starting to seem 
pretty good at capturing aspects of meaning.

From Stanford NLP alone:
- Sentiment (EMNLP ‘11, EMNLP ‘12, EMNLP ‘13)
- Paraphrase detection (NIPS ‘11)
- Knowledge base completion (NIPS ‘13, ICLR ‘13)
- Word–word translation (EMNLP ‘13)
- Parse evaluation (NIPS ‘10, NAACL ‘12, ACL ‘13)
- Image labelling (ICLR ‘13)



Recent progress on deep learning

Wired, Jan 2014:
Where will this next generation of researchers take the deep 
learning movement? The big potential lies in deciphering the 
words we post to the web — the status updates and the 
tweets and instant messages and the comments — and 
there’s enough of that to keep companies like Facebook, 
Google, and Yahoo busy for an awfully long time. 



Today

Can these techniques learn models for general purpose 
NLU?
● Survey: Deep learning models for NLU
● Experiment: Can RNTNs learn to reason with quantifiers 

(in an ideal world)?
● Experiment: Can RNTNs learn the natural logic join 

operator?
● Experiment: How do these models do on a challenge 

dataset?



Recursive neural networks for text

Label: 4/10

badthat

that badnot

not that bad

Softmax classifier

Composition NN layer

Learned word vectors

Composition NN layer

● Words and constituents are 
~50 dimensional vectors.

● RNN composition function:
      y = f(Mx + b)

● Optimize with AdaGrad SGD 
or L-BFGS

● Gradients from backprop 
(through structure)

f(x) = tanh(x)
     ...usually

Socher et al. 2011



Recursive neural networks for text

Label: 4/10

badthat

that badnot

not that bad Label: 2/10

Label: 3/10

Label: 6/10

Label: 4/10

Socher et al. 2013

Supervision for everyone!
● ~10k sentences
● ~200k sentiment labels from mechanical Turk



Recursive neural networks for text

Label: 4/10

badthat

that badnot

not that bad ~bad~that

...

Socher et al. 2011

● Recursive autoencoder
● Two objectives: Classification and reconstruction



Recursive neural networks for text

bad

is

the movie isn’t bad

● Dependency tree RNNs
y = Mheadxhead + f(Mrel(1)x1) + f(Mrel(2)x2)...

is

DET
Words transformed into constituents

n’t

n’t
NEG

Learned word vectors

Label: 4/10
Softmax classifier

movie

the movie

the

the

COPNSUBJ

Socher et al. 2014



Recursive neural networks for text

Label: 4/10

badthat

that badnot

not that bad

Softmax classifier

Composition NN layer

Learned word vectors
and word matrices

● Matrix-vector RNN 
composition functions:
     y = f(Mv[Ba; Ab])

Y = Mm[A; B]

Socher et al. 2012



Recursive neural networks for text

Label: 4/10

badthat

that badnot

not that bad

Softmax classifier

Composition NN layer

Learned word vectors

Composition NN layer

● Recursive neural tensor 
network composition 
function:
     y = f(x1M

[1...N]x2 + Mx + b)

Chen et al. 2013, Socher et al. 2013



Recursive neural networks for text

And more:
● Convolutional RNNs (Kalchbrenner, Grefenstette, and 

Blunsom 2014)
● Bilingual objectives (Hermann and Blunsom 2014)
...

And this isn’t even considering model structures for 
language modeling or speech recognition...



Today

Can these techniques learn models for general purpose 
NLU?
● Survey: Deep learning models for NLU
● Experiment: Can RNTNs learn to reason with 

quantifiers (in an ideal world)?
● Experiment: Can RNTNs learn the natural logic join 

operator?
● Experiment: How do these models do on a challenge 

dataset?



The problem

Mikolov et al. 2013, NIPS



The problem

The Mikolov et al. result:
○ Paris - France + Spain = Madrid
○ Paris - France + USA = ?
○ most - some + all = ?
○ not = ?



The problem

● Relatively little work to date on the expressive power of 
this kind of model.

● The goal of the project:
Can the representation learning systems used in 
practice capture every aspect of meaning that 
formal semantics says language users need?

● This talk:
Can RNNs learn to accurately reason with 
quantification and monotonicity?



 Strict unambiguous NLI

● Hard to test on world ↔ sentence. (Why?)
● What about sentence ↔ sentence?
● Natural language inference (NLI):

Doing logical inference where the logical formulae 
are represented using natural language. 
(as formalized for NLP here by MacCartney, ‘09)

● Framed as classification task:
○ All dogs bark and Fido is a dog. ⊏ Fido barks.
○ No dog barks. ≡ All dogs don’t bark.
○ No dog barks. ? Some dog barks.



Strict unambiguous NLI
● MacCartney’s seven possible relations between 

phrases/sentences:

Venn symbol name example

x ≡ y equivalence couch ≡ sofa

x ⊏ y forward entailment
(strict)

crow ⊏ bird

x ⊐ y reverse entailment
(strict)

European ⊐ French

x ^ y negation
(exhaustive exclusion)

human ^ nonhuman

x | y alternation
(non-exhaustive exclusion)

cat | dog

x ‿ y cover
(exhaustive non-exclusion)

animal ‿ nonhuman

x # y independence hungry # hippo

Slide from Bill MacCartney



Monotonicity (a quick reminder)

● A way of using lexical knowledge to reason about 
sentences.

● Given: black dogs ⊏ dogs, dogs ⊏ animals
○ Upward monotone:

■ some dogs bark ⊏ some animals bark
○ Downward monotone: 

■ all dogs bark ⊏ all black dogs bark
○ Non-monotone:

■ most dogs bark # most animals bark
■ most dogs bark # most black dogs bark



Strict unambiguous NLI

Strip away everything else that makes natural language 
hard:
● Small, unambiguous vocabulary
● No morphology (no tense, no plurals, no agreement..)
● No pronouns/references to context
● Unlabeled constituency parses are given in data



The setup
● Small (~50 word) vocabulary

○ Three basic types:
■ Quantifiers: some, all, no, most, two, three
■ Predicates: dog, cat, animal, live, European, …
■ Negation: not 

● Handmade dataset, 12k sentence pairs, grouped into 
templates.

● All sentences of the form QPP, with optional negation 
on each predicate:

((some x) bark) # ((some x) (not bark))
((some dog) bark) # ((some dog) (not bark))
((most (not dog)) European) ⊐ ((most (not dog)) French)



The model: an RNTN for NLI

P(⊏) = 0.8

no dog vs. not all dog

dogall

all dognot

not all dog

dogno

all dog

Softmax classifier

Comparison (R)NTN layer

Composition RNTN layer

● Layers are parameterized with third-order 
tensors, after Chen et al. ‘13

● Parameters are shared between copies of the 
composition layer

● Input word vectors are initialized randomly and 
learned.

Learned word vectors



Five experiments

● All-in: train and test on all data. ⇒ 100%
● All-split: train on 85% of each pattern, test on rest. 

                                                  ⇒ 100%

(most dog) bark | (no dog) alive

(all cat) French ⊐ (some cat) European

(most dog) French | (no dog) European



Five experiments

● One-set-out: hold out one pattern for testing only, split 
remaining data 85/15.
○ (most x) European | (no x) European

● One-subclass-out: hold out one set of patterns for 
testing only, split remaining data 85/15.
○ (most x) y | (no x) y

● One-pair-out: hold out one every pattern with a given 
pair of quantifiers for testing only, split rest.
○ (most (not x)) y # (no x) z...



Pilot results

MacCartney’s join:
(most x) y ⊏ (some x) y , (some x) y ^ (no x) y  

⊨  (most x) y | (no x) y  
(some x) y ⊐ (most x) y , (most x) y | (no x) y  

⊨ (some x) y {⊐^|#⌣} (no x) y  



Today

Can these techniques learn models for general purpose 
NLU?
● Survey: Deep learning models for NLU
● Experiment: Can RNTNs learn to reason with quantifiers 

(in an ideal world)?
● Experiment: Can RNTNs learn the natural logic join 

operator?
● Experiment: How do these models do on a challenge 

dataset?



Extra experiments: MacC’s Join

MacCartney’s join table: aRb & bR’c ⇒ a{join(R,R’)}c

Cells that contain # represent uncertain results and can be 
approximated by just #.



Extra experiments: Lattices with join

d
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c
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Extra experiments: Lattices with join

● Same model as in the monotonicity experiments above, 
but no composition/internal structure in the sentences.

● Lattice with 50 sets/nodes, 50% of data held out for 
testing.

⇒ 100% accuracy

P(⊏) = 0.8

a vs. b

ba

Softmax classifier

Comparison (R)NTN layer

Learned set vectors
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SemEval SICK

● NLP challenge dataset:
○ 10,000 sentence pairs labeled:

■  {forward entailment, contradiction, neutral}
○ “Sentences involving compositional knowledge” 

challenge:
■ No idioms, no named entities, no anaphora, 

tense doesn’t matter.
■ Requires general knowledge about word 

meaning and hypernymy, but no factoid 
knowledge.



SemEval SICK data

CONTRADICTION:
The woman in a red costume is leaning against a brick wall and 
playing an instrument.
The woman in a red costume is not leaning against a brick wall 
and is not playing an instrument.
NEUTRAL:
The player is dunking the basketball into the net and a crowd is 
in background.
A man with a jersey is dunking the ball at a basketball game.
ENTAILMENT:
Four kids are doing backbends in the park
Four children are doing backbends in the park



SemEval SICK model

dogs

all

all dogs

Learned word vectors

● Dependency tree RNNs
● Pretrained word vectors
● Partially-trained words
● y = Mheadxhead+f(Mrel(1)x1)+f(Mrel(2)x2)... all red dogs bark

bark

all

DET

NSUBJ

ROOT

Words transformed into constituents

red

red
AMOD

Learned word vectors

...



Results so far… eh?

● String inclusion baseline: 55.2%
● Most frequent class (Neutral): 56.4%
● Best dependency tree RNN: 74.5%
● Best SemEval result (UIllinois): 84.6%

But!
● No alignment or word sense disambiguation



Deep learning logistics

● There isn’t any library yet that can do everything you’ll 
need well.
○ But! Research code is available in MATLAB and 

Java
● Training monotonicity and SICK models: 4-18 hrs
● Lots of knobs to twiddle:

○ Stochastic optimization (AdaGrad/SGD) v. batch (L-
BFGS)

○ Number of layers, dimensionality, L1 v. L2
○ Type of nonlinearity
○ Train/test split
○ DepTree RNNs: diagonal v. square matrices
...



Thanks!

Code is available for all three experiments.
sbowman@stanford.edu

mailto:sbowman@stanford.edu
mailto:sbowman@stanford.edu


Next steps

● Better formal characterizations of what it takes to learn 
to do inference

● Better formal characterizations of the structures that 
can be learned

● More types of network
● More semantic phenomena
● Test on natural language data


