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Review

Last time: Mapping sentences to logical forms (FOL or lambda calculus)

Alaska borders no states.

¬∃x.state(x) ∧ border(AK, x)
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Review

Last time: Mapping sentences to logical forms (FOL or lambda calculus)

Alaska borders no states.

¬∃x.state(x) ∧ border(AK, x)

We assumed the following were given:

Lexicon: no ⇒ dt : λP.λQ.¬∃x.P (x) ∧Q(x)

states ⇒ n : λx.state(x)

Grammar: dt : f n : a ⇒ np : f(a)

Questions:

But where do they come from?
What if a sentence generates multiple logical forms?
What if a sentences is slightly ungrammatical?
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Today: building real semantic parsers!

sentence Semantic Parser logical form
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Outline

Today: building real semantic parsers!

sentence Semantic Parser logical form

Strategy: break up complex mapping into two parts

Representation (Lexicon/Grammar):

• Should be simple, require minimal human effort

• Generates set of candidate logical forms

Allow overgeneration: state ⇒ n : λx.river(x)

Learning:

• Score/rank candidates based on features

• Optimize feature weights discriminatively to minimize training error
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Semantic Formalisms

sentence Semantic Parser logical form Interpretation denotation

We are free to choose the semantic formalism:

• What kind of logical forms? FOL? lambda calculus?

• What constitutes the lexicon and grammar?

Desiderata:

Model-theoretic: logical forms must have formal interpretation

(mapping from world to true/false)

Compositional: meaning (logical form) of phrase computed from

combining meaning of sub-phrases

Semantic Formalisms:

• Combinatory Categorial Grammar (CCG)

• Dependency-Based Compositional Semantics (DCS)
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Combinatory Categorial Grammar (CCG)

Lexicalized formalism: simple grammar rules, heavy lexicon
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Combinatory Categorial Grammar (CCG)

Lexicalized formalism: simple grammar rules, heavy lexicon

Categories (analogous to types in programming languages):

np vp ⇒ s np s\np ⇒ s

v np ⇒ vp (s\np)/np np ⇒ s\np

In general:

Base categories: s,np,n

Derived categories: if X,Y are categories, then X/Y and X\Y are too
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Combinatory Categorial Grammar (CCG)

Lexicon:

Alice np : alice
Bob np : bob
saw (s\np)/np : λy.λx.saw(x, y)
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Combinatory Categorial Grammar (CCG)

Lexicon:

Alice np : alice
Bob np : bob
saw (s\np)/np : λy.λx.saw(x, y)

Grammar (template):

Forward application (>) Y/X : f X : a ⇒ Y : f(a)

Backward application (<) X : a Y \X : f ⇒ Y : f(a)

Derivation:

Alice

np : alice

saw

(s\np)/np : λy.λx.saw(x, y)

Bob

np : bob

s\np : λx.saw(x, bob)
>

s : saw(alice, bob)
<
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Combinatory Categorial Grammar (CCG)

More grammar rule templates:

Forward composition (B>) Y/X : f X/Z : a ⇒ Y/Z : λz.f(a(z))

Type raising (T>) X : a ⇒ Y/(Y \X) : λf.f(a)

Alice

np : alice

s/(s\np) : λf.f(alice)
T >

saw

(s\np)/np : λy.λx.saw(x, y)

s/np : λy.saw(alice, y)
B >

Bob

np : bob

s : saw(alice, bob)
>

Composition creates non-traditional bracketing useful for right-node raising:

s : saw(alice, bob) ∧ heard(carol, bob)

[[Alice saw] and [Carol heard]] Bob.
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CCG Meets Real Data

Non-contentful words:

λx.flight(x) ∧ to(x, boston)

Show me flights to Boston
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CCG Meets Real Data

Non-contentful words:

λx.flight(x) ∧ to(x, boston)

Show me flights to Boston

Solution: identity functions: show me ⇒ n/n : λf.f

Missing content:

λx.flight(x) ∧ to(x, boston)

Boston flights

Solution: type-raising: np : x ⇒ np/n : λf.λa.f(a) ∧ to(a, x)

Non-standard ordering:

λx.flight(x) ∧ oneway(x)

flights one-way

Solution: disharmonic combinators: X : a Y /X : f ⇒ Y : f(a)
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Dependency-Based Compositional Semantics (DCS)

What is the most populous city in California?
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How to interpret the logical form?

What is the most populous city in California?
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World/Database

city

San Francisco
Chicago
Boston
· · ·

state

Alabama
Alaska
Arizona
· · ·

loc

Mount Shasta California
San Francisco California
Boston Massachusetts
· · · · · ·

border

Washington Oregon
Washington Idaho
Oregon Washington
· · · · · ·

· · · · · ·
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Basic DCS Trees

DCS tree Constraints

city c ∈ city

1

1
c1 = `1

loc ` ∈ loc

2

1
`2 = s1

CA s ∈ CA

Database

city

San Francisco
Chicago
Boston
· · ·

loc

Mount Shasta California
San Francisco California
Boston Massachusetts
· · · · · ·

CA

California

A DCS tree encodes a constraint satisfaction problem (CSP)

Computation: dynamic programming ⇒ time = O(# nodes)
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Divergence between Syntactic and Semantic Scope

most populous city in California

Syntax Semantics

most

populous

California

in

city

argmax(λx.city(x) ∧ loc(x, CA), λx.population(x))

Problem: syntactic scope is lower than semantic scope

If DCS trees look like syntax, how do we get correct semantics?
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Solution: Mark-Execute

Alaska borders no states.

Execute at semantic scope

Mark at syntactic scope
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Solution: Mark-Execute

Some river traverses every city.

Execute at semantic scope

Mark at syntactic scope
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Some river traverses every city.

Execute at semantic scope

Mark at syntactic scope
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Solution: Mark-Execute

Some river traverses every city.

Execute at semantic scope

Mark at syntactic scope

x21x21

2

1

1

1

qq

some

river

qq

every

city

traverse

∗∗

Quantification (wide)

Analogy: Montague’s quantifying in, Carpenter’s scoping constructor
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From Sentences to DCS Trees

Lexicon (very simple/crude)

no ⇒ no

state ⇒ state

Grammar (very simple/crude)

a b ⇒

i

j

k

l

b

c

a

a b ⇒

i

j

k

l

a

c

b
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Words to Predicates (Lexical Semantics)

What is the most populous city in CA ?
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Words to Predicates (Lexical Semantics)

city city

state state

river river

argmax population population CA

What is the most populous city in CA ?

Lexical Triggers:

1. String match CA ⇒ CA

2. Function words (20 words) most ⇒ argmax

3. Nouns/adjectives city ⇒ city state river population
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most populous city in California
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Ci,j = set of DCS trees for span [i, j]
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λx.city(x) ∧ loc(x, CA) 1 1 2 1 CAloccity

Lexicon categories + lambda calculus predicates

major n/n : λf.λx.f(x) ∧ major(x) major

Grammar combinator rules u dependency parsing

Y/X : a X : b ⇒ Y : a(b) i j ba

Nature tighter control simple/permissive

20



Comparison

CCG DCS

Logical form lambda calculus formulae DCS trees

λx.city(x) ∧ loc(x, CA) 1 1 2 1 CAloccity

Lexicon categories + lambda calculus predicates

major n/n : λf.λx.f(x) ∧ major(x) major

Grammar combinator rules u dependency parsing

Y/X : a X : b ⇒ Y : a(b) i j ba

Nature tighter control simple/permissive

Origin linguistics NLP

20



Outline

Representation

1

2

1

1

2

1

1

1

2

1

CA

border

state

loc

1

1

1

1

1

1

major

2

1

AZ

traverse

river

traverse

city

Learning

x

θ z

w y

Experiments

21



Supervision

Detailed Supervision What is the largest city in California?

argmax({c : city(c) ∧ loc(c, CA)}, population)

22



Supervision

Detailed Supervision What is the largest city in California?

expert

argmax({c : city(c) ∧ loc(c, CA)}, population)

22



Supervision

Detailed Supervision
- doesn’t scale up

What is the largest city in California?

expert

argmax({c : city(c) ∧ loc(c, CA)}, population)

22



Supervision

Detailed Supervision
- doesn’t scale up

What is the largest city in California?

expert

argmax({c : city(c) ∧ loc(c, CA)}, population)

Natural Supervision What is the largest city in California?

Los Angeles

22



Supervision

Detailed Supervision
- doesn’t scale up

What is the largest city in California?

expert

argmax({c : city(c) ∧ loc(c, CA)}, population)

Natural Supervision What is the largest city in California?

non-expert

Los Angeles

22



Supervision

Detailed Supervision
- doesn’t scale up

What is the largest city in California?

expert

argmax({c : city(c) ∧ loc(c, CA)}, population)

Natural Supervision
- scales up

What is the largest city in California?

non-expert

Los Angeles

22



Supervision

Detailed Supervision
- doesn’t scale up
- representation-dependent

What is the largest city in California?

expert

argmax({c : city(c) ∧ loc(c, CA)}, population)

Natural Supervision
- scales up

What is the largest city in California?

non-expert

Los Angeles

22



Supervision

Detailed Supervision
- doesn’t scale up
- representation-dependent

What is the largest city in California?
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Considerations

Computational: how to efficiently search exponential space?

What is the most populous city in California?

· · · LF LF LF LF LF LF LF LF LF LF LF LF LF LF LF LF LF · · ·

Los Angeles

Statistical: how to parametrize mapping from sentence to logical form?

What is the most populous city in California?

argmax(λx.city(x) ∧ loc(x, CA), λx.population(x))
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Semantic Parsing Log-linear Model

z: citycity loc CA

x: city in California

1 1 2 1

features(x, z) = ( in loc : 1

1 1 loccity : 1

· · · ) ∈ Rd

score(x, z) = features(x, z) · θ

p(z | x, θ) = escore(x,z)∑
z′∈Z(x) e

score(x,z′)
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EM-like Algorithm:
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numerical optimization (L-BFGS)
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US Geography Benchmark

Standard semantic parsing benchmark since 1990s

600 training examples, 280 test examples

What is the highest point in Florida?
⇒ answer(A,highest(A,(place(A),loc(A,B),const(B,stateid(florida)))))

How many states have a city called Rochester?
⇒ answer(A,count(B,(state(B),loc(C,B),const(C,cityid(rochester, ))),A))

What is the longest river that runs through a state that borders Tennessee?
⇒ answer(A,longest(A,(river(A),traverse(A,B),state(B),next to(B,C),const(C,stateid(tennessee)))))

Of the states washed by the Mississippi river which has the lowest point?
⇒ answer(A,lowest(B,(state(A),traverse(C,A),const(C,riverid(mississippi)),loc(B,A),place(B))))

· · ·
Supervision in past work: question + program
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US Geography Benchmark

Standard semantic parsing benchmark since 1990s

600 training examples, 280 test examples

What is the highest point in Florida?
⇒ Walton County

How many states have a city called Rochester?
⇒ 2

What is the longest river that runs through a state that borders Tennessee?
⇒ Missouri

Of the states washed by the Mississippi river which has the lowest point?
⇒ Louisiana

· · ·
Supervision in past work: question + program

Supervision in this work: question + answer

28



Input to Learning Algorithm

Training data (600 examples)

What is the highest point in Florida? ⇒ Walton County
How many states have a city called Rochester? ⇒ 2
What is the longest river that runs through a state that borders Tennessee? ⇒ Missouri
Of the states washed by the Mississippi river which has the lowest point? ⇒ Louisiana
· · · · · ·

29



Input to Learning Algorithm

Training data (600 examples)

What is the highest point in Florida? ⇒ Walton County
How many states have a city called Rochester? ⇒ 2
What is the longest river that runs through a state that borders Tennessee? ⇒ Missouri
Of the states washed by the Mississippi river which has the lowest point? ⇒ Louisiana
· · · · · ·

Lexicon (20 general, 22 specific)

no ⇒ no
argmax ⇒ most

city ⇒ city
state ⇒ state
mountain ⇒ mountain
· · · · · ·

29



Input to Learning Algorithm

Training data (600 examples)

What is the highest point in Florida? ⇒ Walton County
How many states have a city called Rochester? ⇒ 2
What is the longest river that runs through a state that borders Tennessee? ⇒ Missouri
Of the states washed by the Mississippi river which has the lowest point? ⇒ Louisiana
· · · · · ·

Lexicon (20 general, 22 specific)

no ⇒ no
argmax ⇒ most

city ⇒ city
state ⇒ state
mountain ⇒ mountain
· · · · · ·

World/Database

city

San Francisco
Chicago
Boston
· · ·

state

Alabama
Alaska
Arizona
· · ·

loc

Mount Shasta California
San Francisco California
Boston Massachusetts
· · · · · ·

border

Washington Oregon
Washington Idaho
Oregon Washington
· · · · · ·

· · · · · ·
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Some Intuition on Learning

parameters θ

(1) search DCS trees (hard!)

(2) numerical optimization

k-best lists

If no DCS tree on k-best list is correct, skip example in (2)
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Effect: automatic curriculum learning, learning improves search
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Current Limitations

Unknown facts: How far is Los Angeles from Boston?

Database has no distance information

Unknown concepts: What states are landlocked?

Need to induce database view for landlocked(x) = ¬border(x, ocean)

Unknown words: What is the largest settlement in California?

Training examples do not contain the word settlement
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Summary

sentence Semantic Parser logical form Interpretation denotation

Learning from Weak Supervision

• Model logical form as latent variable

• Semantic formalisms: CCG, DCS

Strategy:

• Lexicon/grammar generates set of candidate logical forms

• Learned feature weights capture linguistic generalizations
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