Unigrams Feature functions vs. features Others Assessing Distributed representations as features

Supervised sentiment analysis:
Feature representation

Christopher Potts
Stanford Linguistics

CS224u: Natural language understanding

1/6


http://creativecommons.org/licenses/by/4.0/

Unigrams Feature functions vs. features Others Assessing Distributed representations as features

N-gram feature functions

e Unigrams: the basis for “bag-of-words” models
e Easily generalized to “bag of-ngrams”
e Highly dependent on the tokenization scheme

o Can be combined with preprocessing steps like *_NEG’
marking

o Creates very large, very sparse feature representations

o Generally fails to directly model relationships between
features

2/6



Unigrams

Feature functions vs. features Others Assessing

Feature functions vs. features

Distributed representations as features

[1]:

[2]:

[3]:

[4]:

[5]:

[6]:

[71:

[71:

from collections import Counter

import numpy as np

import pandas as pd

from sklearn.feature_extraction import DictVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.utils.extmath import softmax

import sst

def unigrams_phi(text):
return Counter (text.lower().split())

example_texts = ["a a a", "a a b", "a b b", "b b b"]
feats = [unigrams_phi(text) for text in example_texts]
vec = DictVectorizer (sparse=False)

X = vec.fit_transform(feats)

pd.DataFrame (X, columns=vec.get_feature_names())

W N RO
o r N W
ocoocop
W N RO
o oo ocuUT

3/6



Unigrams

Feature functions vs. features Others Assessing Distributed representations as features

Feature functions vs. features

[71:

[71:

[8]:

[9]:

[10]:

[10]:

[11]:

[11]:

[12]:

[12]:

[13]:

pd.DataFrame (X, columns=vec.get_feature_names())

[N IYY
o RN W
ocoocowp
W R o
ocooocouo

7 = @10, @0, Ga°, IERT

mod = LogisticRegression()

mod.fit (X, y)

LogisticRegression()

pd.DataFrame (mod.coef_, index=mod.classes_, columns=vec.get_feature_names())

a b

C1 0.567932 -0.567932

C2 -0.071105 0.071103

C3 -0.496827 0.496829

softmax (X.dot (mod.coef_.T) + mod.intercept_)

array ([[0.90606849, 0.08182458, 0.01210693],
[0.69610577, 0.22566175, 0.07823248],
[0.32165061, 0.37430625, 0.30404314],
[0.07617433, 0.31820816, 0.605617511])

mod. predict_proba (X)

3/6



Unigrams Feature functions vs. features Others Assessing Distributed representations as features

Other ideas for hand-built feature functions
o Lexicon-derived features

Negation marking

Modal adverbs:
» “It is quite possibly a masterpiece.”
» “It is totally amazing.”

Length based features

Thwarted expectations: ratio of positive to negative
words
» “Many consider the movie bewildering, boring,
slow-moving or annoying.”
» “It was hailed as a brilliant, unprecedented artistic
achievement worthy of multiple Oscars.”

Non-literal language:
» “Not exactly a masterpiece.”
» “Like 50 hours long.”
» “The best movie in the history of the universe.”

4/6



Unigrams Feature functions vs. features Others Assessing Distributed representations as features

Assessing individual feature functions

1. sklearn.feature_selection offers functions to assess how much
information your feature functions contain with respect to your labels.

2. Take care when assessing feature functions individually; correlations
between them will make these assessments hard to interpret:

X1 X2 X3

chi2(X1,y) =3
chi2(X2,y) = 0.33
chi2(Xs,y) = 0.2

mmTm - H

COoOO0O0OORKHKF
OoOOoOrRHOOR
HFHRRORORO

What do the scores tell us about the best model? In truth, a linear
model performs best with just X3, and including X, hurts.

3. Consider more holistic assessment methods: systematically removing
or disrupting features in the context of a full model and comparing
performance before and after.

5/6



Unigrams Feature functions vs. features Others Assessing

Distributed representations as features

y < Classifier prediction
Lexical vectors combined via
X <« |afunction like sum or mean.
These are the inputs to the
classifier.
X305 X401 X476 Embedding look-up
The Rock rules

Distributed representations as features

6/6



Unigrams

Distributed representations as features

[1]: import numpy as np
import os
from sklearn.linear_model import LogisticRegression
import sst
import utils

[2]: GLOVE_HOME = os.path.join('data', 'glove.6B')
SST_HOME = os.path.join('data', 'sentiment')

[3]: glove_lookup = utils.glove2dict(os.path.join(GLOVE_HOME, 'glove.6B.300d.txt'))

[4]: def vsm_leaves_phi(text, lookup, np_func=np.mean):

allvecs = np.array([lookup[w] for w in text.lower().split() if w in lookup])

if len(allvecs) == 0:
dim = len(next(iter(lookup.values())))
feats = np.zeros(dim)
else:
feats = np_func(allvecs, axis=0)
return feats

[5]: def glove_leaves_phi(text, np_func=np.mean):
return vsm_leaves_phi(text, glove_lookup, np_func=np_func)

[6]: def fit_softmax(X, y):
mod = LogisticRegression(
fit_intercept=True, solver='liblinear', multi_class='auto')
mod.fit (X, y)
return mod

[7]: glove_sum_experiment = sst.experiment (
sst.train_reader (SST_HOME) ,
glove_leaves_phi,
fit_softmax,
vectorize=False) # Tell ‘experiment” it needn't use a DictVectorizer.

Feature functions vs. features Others Assessing Distributed representations as features

6/6



	N-gram feature functions
	Feature functions vs. features
	Other ideas for hand-built feature functions
	Assessing individual feature functions
	Distributed representations as features

