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Varieties of evaluation

Behavioral

e Standard (“lIID";
Independent and
Identically Distributed)

* Exploratory

* Hypothesis-driven
* Challenge

* Adversarial

® Security-oriented

Tests ANLI DynaSent Conclusions
Structural
* Probing

* Feature attribution
* |nterventions
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Standard evaluations

1. Create a dataset from a single process.

2. Divide the dataset into disjoint train and test sets, and
set the test set aside.

3. Develop a system on the train set.

4. Only after all development is complete, evaluate the
system based on accuracy on the test set.

5. Report the results as providing an estimate of
the system’s capacity to generalize.
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Adversarial evaluations

1. Create a dataset by whatever means you like.

2. Develop and assess the system using that dataset,
according to whatever protocols you choose.

3. Develop a new test dataset of examples that you
suspect or know will be challenging given your system
and the original dataset.

4. Only after all system development is complete, evaluate
the system based on accuracy on the new test dataset.

5. Report the results as providing an estimate of the
system’s capacity to generalize.
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Winograd sentences

1. The trophy doesn’t fit into the brown suitcase because
it's too small. What is too small?
The suitcase / The trophy

2. The trophy doesn’t fit into the brown suitcase because
it's too large. What is too large?
The suitcase / The trophy

3. The council refused the demonstrators a permit because
they feared violence. Who feared violence?
The council / The demonstrators

4. The council refused the demonstrators a permit because
they advocated violence. Who advocated violence?
The council / The demonstrators

Winograd 1972; Levesque 2013
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Levesque’s (2013) adversarial framing

Could a crocodile run a steeplechase?

“The intent here is clear. The question can be answered by
thinking it through: a crocodile has short legs; the hedges in
a steeplechase would be too tall for the crocodile to jump
over; so no, a crocodile cannot run a steeplechase.”

Foiling cheap tricks

“Can we find questions where cheap tricks like this will not
be sufficient to produce the desired behaviour? This
unfortunately has no easy answer. The best we can do,
perhaps, is to come up with a suite of multiple-choice
questions carefully and then study the sorts of computer
programs that might be able to answer them.”
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Key questions

What can behavioral testing tell us?
(And what can’t it tell us?)
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No need to be adversarial

Here are some questions that start off exploratory and end
up being adversarial:

A W N

Has my system learned anything about numerical terms?
Does my system understand how negation works?
Does my system work with a new style or genre?

This system is supposed to know about numerical terms,
but here are some test cases that are outside of its
training experiences for such terms. ..

When applied to invented genres, does my system
produce socially problematic (e.qg., stereotyped) outputs?

Are their patterns of random inputs that lead my system
to produce problematic outputs?
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Limits of behavioral testing
Even/Odd Model 1
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Limits of behavioral testing
Even/Odd Model 1

four

—— even
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Limits of behavioral testing
Even/Odd Model 1

four

twenty one
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Limits of behavioral testing
Even/Odd Model 1

four
twenty one

thirty two

—— even
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Limits of behavioral testing
Even/Odd Model 1

four
twenty one
thirty two
thirty six
———> even
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Limits of behavioral testing
Even/Odd Model 1

four
twenty one
thirty two
thirty six

sixty three
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Limits of behavioral testing
Even/Odd Model 1

four: even
four twenty one: odd
thirty two: even
twenty one thirty six: even
thirty two sixty three: odd
else: odd

thirty six

sixty three
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Limits of behavioral testing
Even/Odd Model 1

four: even
four twenty one: odd
thirty two: even
twenty one thirty six: even
thirty two sixty three: odd
else: odd

thirty six

sixty three

twenty two
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Limits of behavioral testing
Even/Odd Model 2

four
twenty one
thirty two

thirty six

sixty three /
twenty two

—— even

12/80



Overview Analytical Compositionality (Re)COGS Tests ANLI DynaSent Conclusions
0000000 OOO@OO00O0O0O0O0 0OOOO0O O0000000000000 OOOOOO0O OOOOO0O0O0 0OOOOOOOOO0000O00000 OO

Limits of behavioral testing
Even/Odd Model 2

four
twenty one
thirty two
thirty six
sixty three
twenty two

five
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Limits of behavioral testing
Even/Odd Model 2

four
twenty one
thirty two
thirty six
sixty three
twenty two
five

eighty nine
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Limits of behavioral testing
Even/Odd Model 2

four
twenty one
thirty two
thirty six
sixty three ———» even
twenty two
five

eighty nine

fifty six
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Limits of behavioral testing
Even/Odd Model 2

d=
four one: odd
two: even
twenty one three: odd
, four: even
thirty two five: odd
i ; six: even
Gillig7 523 seven: odd
Sixty three elght: even —) even
nine: odd
twenty two else: odd
five return

d[input final token]

eighty nine

fifty six
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Limits of behavioral testing
Even/Odd Model 2

d=

four one: odd

two: even

twenty one three: odd

; four: even

thirty two five: odd

. . six: even

L7 e seven: odd

sixty three eight: even

nine: odd

twenty two else: odd
five return

d[input final token]

eighty nine
fifty six

sixteen
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Limits of behavioral testing
Even/Odd Model 3

four
twenty one
thirty two
thirty six
sixty three ———» even
twenty two
five

eighty nine
fifty six

sixteen
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Metrics

The limitations of accuracy-based metrics are generally left
unaddressed by the methods we will explore here, but these
limitations should be brought in!
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Model failing or dataset failing?

Liu et al. (2019)

“What should we conclude when a system fails on a
challenge dataset? In some cases, a challenge might exploit
blind spots in the design of the original dataset (dataset
weakness). In others, the challenge might expose an
inherent inability of a particular model family to handle
certain natural language phenomena (model weakness).
These are, of course, not mutually exclusive.”
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Model failing or dataset failing?

Geiger et al. (2019)

However, for any evaluation method, we should ask whether
it is fair. Has the model been shown data sufficient to
support the kind of generalization we are asking of it? Unless
we can say “yes” with complete certainty, we can’t be sure
whether a failed evaluation traces to a model limitation or a
data limitation that no model could overcome.
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Model failing or dataset failing?
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Model failing or dataset failing?

3 5 7 ...

What number comes next?
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Model failing or dataset failing?

-
]
]

e e B e
M4 T —H|Q

14/80



Overview  Analytical Compositionality (Re)COGS Tests ANLI DynaSent Conclusions
0000000 0O00O®0000000 0000000 O0000000000000 OOOOOO0O OOOOO0O0O0 0OOOOOOOOO0000O00000 OO

Model failing or dataset failing?
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Inoculation by fine-tuning

M Original Per W Chall Performance

Standard Challenge Evaluation

Step 1)
Train on Original Outcome:
Challenge is
oY) difficult for
Teston the model.
Original & Challenge Why?

Proposed Method

1

1

1

i Serd Possible Outcomes:
: Fine-tune on a few 1

1 | challenge examples (1) | | | Dataset Weakness
1

| ] ’m Model Weakness
1

1

1

1

(3) Annotation
Artifacts, Other

Figure 1: An illustration of the standard challenge eval-
uation procedure (e.g., Jia and Liang, 2017) and our
proposed analysis method. “Original” refers to the a
standard dataset (e.g., SQuAD) and “Challenge” refers
to the challenge dataset (e.g., Adversarial SQuAD).
Outcomes are discussed in Section 2.

Liu et al. 2019
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Inoculation by fine-tuning
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Liu et al. 2019
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Negation as a learning target

Intuitive learning target

If A entails B then not-B entails not-A
Observation
Top-performing NLI models fail to achieve the learning target

(Yanaka et al. 2019, 2020; Hossain et al. 2020; Geiger et al.
2020b).

Tempting conclusion
Top-performing models are incapable of learning negation.

Dataset observation
Negation is severely under-represented in NLI benchmarks.
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MoNLI dataset construction

Positive MoNLI (PMoNLI; 1,476 examples)
SNLI hypothesis (A) Food was served.

WordNet pizza C food

New example (B) Pizza was served.
Positive MoNLI (A) neutral (B)
Positive MoNLI (B) entailment (A)

Negative MoNLI (PMoNLI; 1,202 examples)
SNLI hypothesis (A) The children are not holding plants.

WordNet flowers C plants
New example (B) The children are not holding flowers.
Negative MoNLI (A) entailment (B)

Negative MoNLI (B) neutral (A)
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A systematic generalization task

NMoNLI Train NMoNLI Test

person 198 dog 88
instrument 100 building 64
food 94 ball 28
machine 60 car 12
woman 58 mammal 4
music 52 animal 4
tree 52
boat 46
fruit 42
produce

fish

plant

jewelry

anything

hat

40
40
38
36 . .
34 Our models know these lexical relations
20
man 20
16
12
10
8
6
6
a4
a4
2
2
2

(high Positive MoNLI accuracy) and will
be compelled to combine this knowledge
with what they learn about negation dur-
ing Negative MoNLI fine-tuning.

horse
gun
adult
shirt
shoe
store
cake
individual
clothe
weapon
creature
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MoNLI as challenge dataset

No MoNLI fine-tuning With NMoNLI fine-tuning

Model Input pretrain NLI train data SNLI PMoNLI NMoNLI SNLI NMoNLI
BiLSTM GloVe SNLI train 81.6 73.2 37.9 74.6 93.5
ESIM GloVe SNLI train 87.9 86.6 39.4 56.9 96.2
BERT BERT SNLI train 90.8 94.4 2.2 90.5 90.0

Diagnosis: Dataset failing!

Geiger et al. 2020b
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Reminder: Biological creatures are amazing

LLINENIN )

AA o0 mA

Premack 1983; Wasserman et al. 2017; Geiger et al. 2020a
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Reminder: Biological creatures are amazing
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Premack 1983; Wasserman et al. 2017; Geiger et al. 2020a
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Informal statement

Compositionality
The meaning of a phrase is a function of the meanings of its
immediate syntactic constituents and the way they are

combined.
S
NP VP
Det N V/\Np
////A\\\\

every student zdmired P
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The usual motivation

1. Modeling all meaningful units
[every] = Af Ag Vx ((f X) — (g X))

2. “Infinite” capacity
3. Creativity

4. Systematicity

ANLI DynaSent Conclusions
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S

TN

NP VP

/\
Det N \Y NP
every student agdmired 0 N

the idea
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Compositionality or systematicity?

Fodor and Pylyshyn (1988:37):

“What we mean when we say that linguistic capacities are
systematic is that the ability to produce/understand some
sentences is intrinsically connected to the ability to
produce/understand certain others.”

Sandy loves the puppy.
The puppy loves Sandy.
the turtle ~ the puppy

The turtle loves the puppy.
The puppy loves the turtle.
The turtle loves Sandy.

N o 0B WN P
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A worrisome lack of systematicity

Example Gold Prediction

The bakery sells a mean apple pie.
They sell a mean apple pie.

She sells a mean apple pie. neg
He sells a mean apple pie. neg
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Compositionality by design
SHRDLU Chat-80

/* Sentences */

(THNOT sentence(S) --> declarative(S), terminator(.)
THPROG (X2 THGOAL( #1S  $?X2, YRAM| sentence(S) --> wh_question(S), terminator(?)
¢ 2 ETHGOALfgsupgoRT #;EXIRAI;:)Z))))))) sentence(S) --> yn_question(S), terminator(?)
“which supports no pyhmids:’ ) sentence(S) --> imperative(S), terminator(!)
(THNOT Jex o ,
THPROG (X2 'H * Noun Phrase *
{ o) gﬂﬁgf“(#ls §X2 #PYRAMID)) np (np (Agmt,, Pronoun, []) ,Agnt, NPCase, def, _, Set,Nil) -->
(THGOAL(#SUPPORT $X1 $?X2))))) {is_pp(set)},
“which supports every pyramid” pers_pron (Pronoun,Agnt, Case) ,

{empty (Nil), role(Case,decl,NPCase)}.
¥16. 52—Quantifiers.
/* Prepositional Phrase */
pp (PP (Prep,Arg) , Case, Set, Mask) -->
prep (Prep),
{prep_case (NPCase) },
np (Arg, ,NPCase,_,Case,Set,Mask) .

DCS SST

Some river traverses every cily. city traversed by no rivers
X12 X21 Xi2
) ) @
1 2\ 1 2\ I\
/ / E
1 1 1 1 2
€ € G €9 4 @m
1
9 a a Q | There Gy
@ e @ @ )
(surface) (inve
Q
it interesting
¢ "o
() Quantifier scope ambiguity (@, Q) (d) Quantification (@, F) sow  and
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°

No compositionality/systematicity guarantees!

Can we pose behavioral tests that will assess whether
models like this have found systematicity solutions?
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(Re)COGS
L]

COGS: A Compositional Generalization Challenge
Based on Semantic Interpretation

Najoung Kim Tal Linzen
Johns Hopkins University New York University
n.kim@jhu.edu linzen@nyu.edu

ReCOGS: How Incidental Details of a Logical Form
Overshadow an Evaluation of Semantic Interpretation

Zhengxuan Wu Christopher D. Manning Christopher Potts
Stanford University
{wuzhengx, manning, cgpotts}@stanford.edu
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Task

COGS

1. > Input: Arose was helped by a dog .
» Qutput: rose ( x _ 1 ) AND help . theme ( x - 3 , x _ 1)
AND help . agent ( x - 3, x _ 6 ) AND dog ( x

2. » Input: The sailor dusted a boy .

» Qutput: * sailor ( x - 1 ) ; dust . agent ( x - 2, x _ 1
) AND dust . theme ( x - 2 , x _ 4 ) AND boy ( x _ 4 )
ReCOGS

1. » Input: Arose was helped by a dog .
»> Qutput: rose ( 53 ) ; dog ( 38 ) ; help ( 7 ) AND
theme ( 7 , 53 ) AND agent ( 7 , 38 )

2. » Input: The sailor dusted a boy .
> Qutput: * sailor ( 48 ) ; boy ( 53 ) ; dust ( 10 ) AND
agent ( 10 , 48 ) AND theme ( 10 , 53 )

31/80



Conclusions

Motivations

1. Humans easily interpret novel combinations of familiar
elements in ways that are systematic.

2. Compositionality is an explanation for this capability.
3. Can our best models generalize this way?
4. Have they too found compositional solutions?

The COGS and ReCOGS tasks are behavioral tests that seek
to resolve 3, and the hope is that this can inform 4.
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Understanding COGS logical forms

1. Verbs specify primitive events that have their own core conceptual
structure and can involve one more more obligatory or optional roles.

a. Emma broke a vase:
vase ( x _ 3 ) ; break . agent ( x _ 2 , Emma ) AND
break . theme ( x _ 2 , x _ 3 )

b. The vase broke:
vase ( x _ 3 ) ; break . theme ( x _ 2, x _ 1)

2. Variable numbering is determined by linear position in the input sentence.

3. All variables are bound; free variables are existentially bound with widest
scope:
a.dog ( x - 1) AND run . agent ( x - 2, x _ 1)
b. 3x_13x_2dog ( x - 1 ) AND run . agent ( x - 2, x _ 1)
4. Definite descriptions are marked with *:

a. The sailor ran.
b. * sailor ( x - 1) ; run . agent ( x - 2, x _ 1)
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COGS splits

1. Train: 24,000 examples plus 155 primitives
2. Dev: 10,000 examples
3. Test: 10,000 examples
4. Gen: 21,000 examples

Kim and Linzen 2020
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Generalization categories

Case Training Generalization

$.3.1. Novel Combination of Familiar Primitives and Grammatical Roles

Subject —+ Object (common noun) A hedgehog ate the cake. The baby liked the hedgehog.
Subject —+ Object (proper noun) Lina gave the cake o Olivia. A hero shortened Lina.
Object —+ Subject (common noun) Henry liked a cockroach. The cockroach ate the bat.
Object —+ Subject (proper noun) The creature grew Charlie. Charlie worshipped the cake.
Primitive noun — Subject (common noun) shark A shark examined the child.
Primitive noun — Subject (proper noun) Paula Paula sketched William.
Primitive noun — Object (common noun) shark A chief heard the shark.
Primitive noun — Object (proper noun) Paula The child helped Paula.
Primitive verb — Infinitival argument crawl A baby planned to crawl.

$.3.2. Novel Combination Modified Phrases and Grammatical Roles
‘Object modification — Subject modification Noah ate the cake on the plate. The cake on the table burned.

5.3.3. Deeper Recursion
Depth generalization: Sentential complements  Emma said that Noah knew that  Emma said that Noah knew that

the cat danced. Lucas saw that the cat danced.
Depth generalization: PP modifiers Ava saw the ball in the bottle on  Ava saw the ball in the bottle on
the table. the table on the floor.

8.3.4. Verb Argument Structure Alternation

Active — Passive The crocodile blessed William. A muffin was blessed.
Passive — Active The book was squeezed. The girl squeezed the straw-
berry.

Object-omitted transitive — Transitive Emily baked. The giraffe baked a cake.

Unaccusative — Transitive The glass shattered. Liam shatterd the jigsaw.

Double object dative — PP dative The girl teleported Liam the Benjamin teleported the cake to
cookie. Isabella.

PP dative — Double Object Dative Jane shipped the cake to John.  Jane shipped John the cake.
$.3.5. Verb Class

Agent NP — Unaccusative subject The cobra helped a dog. The cobra froze.

‘Theme NP — Object-omitted transitive subject The hippo decomposed. The hippo painted.

‘Theme NP — Unergative subject ‘The hippo decomposed. The hippo giggled.

Kim and Linzen 2020
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STRUCT LEX Overall
Model Obj PP — Subj PP CP Recursion PP Recursion %
BART (Lewis et al. 2019) 0 0 12 91 79t
BART+syn (Lewis et al. 2019) 0 5 8 80 8ot
T5 (Raffel et al. 2019) 0 0 9 97 83t
Kim and Linzen 2020 0 0 0 73 63
Ontanon et al. 2022 0 0 0 53 48
Akyurek and Andreas 2021 0 0 1 96 82
Conklin et al. 2021 0 0 0 88 75
Csordas et al. 2021 0 0 0 95 81
Zheng and Lapata 2022 0 25 35 99 88*

TResults are copied from Yao and Koller (2022). ¥Model uses pretrained

weights and is hyperparameter tuned using data sampled from the

generalization splits.

Wu et al. 2023
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Why removing redundant tokens matters

COGS:

kitten ( x - 1) COGS: kitten (1)
50000
o Z Bi-gram Frequency
< 250001
[
[as]
0 E::! —— p——

G Emma)( Llam) ( Ol1v1a) G Noah)

50000
=3 Bi-gram Frequency

25000 -

After

| NN | | — =
(1 G 4) G 6) G Emma) @ 3)

Wu et al. 2023

37/80



Overview Analytical
0000000 OOOOOOOOOOOOO 0OOOO0O

Compositionality (Re)COGS

Tests ANLI DynaSent Conclusions
000000000 @0000 OOOOO00 OOOOO0O0O0 0OOOOOOO0O0O000000000 OO

What is behind the Os for CP/PP recursion?

Input sentences

10000

B gen (input)
B train (input)

Frequency
a3
(=3 wu
(=3 (=3
o o

2500

0

0 10 20 30 40 50 60
Sequence Length

Output LFs

B gen (logical form)

o 8000 B train (logical form)
19
£ 6000
% 4000
£
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2000
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Sequence Length

To decouple length from
depth, we concatenate ex-
isting examples and rein-
dex the variable names to
cover the variable names
seen at test time.
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~ w
8 g
N
S

5
5
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k-shots (LSTM) k-shots (Transformer)
Wu et al. 2023
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What is behind the 0s for PP modifiers?
Hypothesis

The train data teach the model that PPs occur only with a specific
set of variables and positions. When models learn this lesson, they
struggle with examples that contradict it.

Variant Sentence Logical Form

Preposing + Interjection The box in the tent = box ( x _ 1) ; * tent ( x _
Emma was um um 4 ) ; box . nmod . in ( x _
lended . 1, x_4 ) AND lend . theme

(x_7, x_1) AND lend .
recipient ( x _ 7 , Emma )

Participial VP (Subj) A leaf painting the x spaceship ( x _ 4 ) ; leaf
spaceship froze . (x_ 1) AND leaf . acl .

paint ( x - 1, x _ 4 ) AND
freeze . theme ( x _ 5, x _
1)

Result

Large performance increases for LSTMs and Transformers.

Wu et al. 2023
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Modifications for ReCOGS

Wu et al. 2023
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Modifications for ReCOGS

Input Sentence: Mia ate a cake .

Wu et al. 2023
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Modifications for ReCOGS

Input Sentence: Mia ate a cake .

COGS LF: eat . agent ( x _ 1, Mia ) AND eat . theme
(x_1,x_3)AND cake ( x_3)

Wu et al. 2023
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Modifications for ReCOGS

Input Sentence: Mia ate a cake .

COGS LF: eat . agent ( x _ 1, Mia ) AND eat . theme
(x_1,x_3)AND cake ( x_3)

i

Redundant Token Removal

Wu et al. 2023
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Modifications for ReCOGS

Input Sentence: Mia ate a cake .

COGS LF: eat . agent ( x _ 1, Mia ) AND eat . theme
(x_1,x_3)AND cake ( x_3)

i

Redundant Token Removal

1

Meaning-Preserving Data Augmentation

Wu et al. 2023
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Modifications for ReCOGS

Input Sentence: Mia ate a cake .

COGS LF: eat . agent ( x _ 1, Mia ) AND eat . theme
(x_1,x_3) AND cake ( x_3)

1
Redundant Token Removal

1
1

Wu et al. 2023
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Modifications for ReCOGS

Input Sentence: Mia ate a cake .

COGS LF: eat . agent ( x _ 1, Mia ) AND eat . theme
(x_1,x_3) AND cake ( x_3)

1
Redundant Token Removal

1
1

Wu et al. 2023
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Modifications for ReCOGS

Input Sentence: Mia ate a cake .

COGS LF: eat . agent ( x _ 1, Mia ) AND eat . theme
(x_1,x_3) AND cake ( x_3)

i

Redundant Token Removal

1
1

Performance
[}

LEX
&3 sTRUCT

Wu et al. 2023

40/80



Overview Analytical Compositionality (Re)COGS
0000000 OOOOOOOOOOOOO 0OOOO0O

ReCOGS results

Tests ANLI

DynaSent
0000000000000 OOOOO000 OOOOO0O0O0 0OOOOOOO00O000O000000 OO

Conclusions
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Wu et al. 2023
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Conceptual questions

1. How can we test for meaning if we are predicting logical
forms?

2. What is a fair generalization test in the current context?
a. Models are shown a world that manifests specific
restrictions.
b. In some cases we want them not to learn those
restrictions.
c. In other cases we do want them to learn those
restrictions.

3. What are the limits of compositionality for humans and
how should that inform our generalization tests?

4. If we have goals that are not supported by our datasets
but that seem like good goals for models to reach, how
should we express that in our tasks and our models?

Conclusions
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SQUaD leaderboards

SQUAD2.0 tests the ability of a system to not only answer reading comprehension
questions, but also abstain when presented with a question that cannot be answered
based on the provided paragraph.

Rank

3

Jun 04, 2021
Feb 21,

May 16, 2021
4

Apr 06, 2020

1
2
5

5

May 05, 2020

Apr 05, 2020

Mar 15, 2019

Model

Human Performance
Stanford University
(Rajpurkar & Jia et al. "18)

IE-Net (ensemble)
RICOH_SRCB_DML

FPNet (ensemble)
Ant Service Intelligence Team

IE-Netv2 (ensemble)
RICOH_SRCB_DML

SA-Net on Albert (ensemble)
QIANXIN

SA-Net-V2 (ensemble)
QIANXIN

Retro-Reader (ensemble)
Shanghai Jiao Tong University
http://arxiv.org/abs/2001.09694

RoBERTa+Verify (single model)
cw

BERT + ConvLSTM + MTL + Verifier (ensemble)
Layer 6 Al

86.831

90.939

90.871

90.860

90.724

90.679

90.578

86.448

86.730

89.452

93.214

93.183

93.100

93.011

92.948

92.978

89.586

89.286

Rajpurkar et al. 2016
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SQUaD adversarial testing

Passage

Peyton Manning became the first quarterback ever to lead
two different teams to multiple Super Bowls. He is also the
oldest quarterback ever to play in a Super Bowl at age 39.
The past record was held by John Elway, who led the Broncos
to victory in Super Bowl XXXIIl at age 38 and is currently
Denver’s Executive Vice President of Football Operations and
General Manager.

Question
What is the name of the quarterback who was 38 in Super
Bowl XXXIII?

Jia and Liang 2017
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Question
What is the name of the quarterback who was 38 in Super
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Answer
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SQUaD adversarial testing
System Original Adversarial
ReasoNet-E 81.1 394
SEDT-E 80.1 35.0
BiDAF-E 80.0 34.2
Mnemonic-E 79.1 46.2
Ruminating 78.8 37.4
jNet 78.6 37.9
Mnemonic-S 78.5 46.6
ReasoNet-S 78.2 39.4
MPCM-S 77.0 40.3
SEDT-S 76.9 33.9
RaSOR 76.2 39.5
BiDAF-S 75.5 34.3
Match-E 75.4 29.4
Match-S 71.4 27.3
DCR 69.4 37.8
Logistic 50.4 23.2

45/80



Overview Analytical Compositionality (Re)COGS Tests ANLI DynaSent Conclusions
0000000 OOOOOOOOOOOOO 0OOOO0O 0000000000000 0 OOG®OO0O0 OOOOO0O00 0OOOOOOO0O0O0O000O00000 OO

SQUaD adversarial testing

System Original Rank Adversarial Rank
ReasoNet-E 1 5
SEDT-E 2 10
BiDAF-E 3 12
Mnemonic-E 4 2
Ruminating 5 9
jNet 6 7
Mnemonic-S 7 1
ReasoNet-S 8 5
MPCM-S 9 3
SEDT-S 10 13
RaSOR 11 4
BiDAF-S 12 11
Match-E 13 14
Match-S 14 15
DCR 15 8

Logistic 16 16
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Plot of Original vs. Adversarial scores for SQUaD
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SNLI leaderboard: Systems over time
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Bowman et al. 2015
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Example: NLI

MultiNLI leaderboard: Systems over time Human:
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An SNLI adversarial evaluation

Premise Relation Hypothesis
A little girl is very sad.
Train A little girl kneeling
in the dirt crying.
A little girl is very
unhappy.
) An elderly couple are ,"/-\Vi(r:%uple drinking
Train sitting outside a '
restaurant, enjoying
wine. neutral A couple drinking

champagne.

Glockner et al. 2018
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An SNLI adversarial evaluation

Model Train set SNLI test set  New test set A
SNLI 84.7% 51.9% -32.8

Decomposable Attention

! MuliNLI + SNLI  84.9% 658%  -19.1
(Parikh et al., 2016) SciTail + SNLI 85.0% 490%  -360
SNLI 87.9% 65.6% 223
ESIM (Chenetal,2017) MuliNLI+SNLI  863% 749%  -114
SciTail + SNLI 88.3% 677% 206
] SNLI 86.0% 622% 238
Models ihat have R?;;i“ik:g‘;ﬁ:;'g‘gﬁiﬂ MultiNLI+ SNLI  846% 682%  -168
rosources used to J SciTail + SNLI 85.0% 60.1% 249
create the -
adversarial ‘WordNet Baseline - - 85.8% -
examples KIM (Chen et al.. 2018) SNLI 88.6% 83.5% 5.

Table 3: Accuracy of various models trained on SNLI or a union of SNLI with another dataset (MultiNLI,
SciTail), and tested on the original SNLI test set and the new test set.
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An SNLI adversarial evaluation

RoBERTA-MNLI, off-the-shelf

[1]:

[2]:

[31:

[4]:

[5]:

[6]:

[71:

[8]:

[9]:

import nli, os, torch
from sklearn.metrics import classification_report

# Available from https://github.com/BIU-NLP/Breaking_NLI:

breaking nli_src_filename = os.path.join("../new-data/data/dataset.jsonl")
reader = nli.NLIReader (breaking nli_src_filename)

exs = [((ex.sentencel, ex.sentence2), ex.gold_label) for ex in reader.read()]

X_test_str, y_test = zip(xexs)

model = torch.hub.load('pytorch/fairseq', 'roberta.large.mnli')
_ = model.eval()

Using cache found in /Users/cgpotts/.cache/torch/hub/pytorch_fairseq master

X_test = [model.encode(*ex) for ex in X_test_str]
pred_indices = [model.predict('mnli', ex).argmax() for ex in X_test]
to_str = {0: 'contradiction', 1: 'neutral', 2: 'entailment'}

preds = [to_str[c.item()] for c in pred_indices]

Conclusions
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An SNLI adversarial evaluation
RoBERTA-MNLI, off-the-shelf

[10]: print(classification_report(y_test, preds))
precision recall fl-score support
contradiction 0.99 0.97 0.98 7164
entailment 0.86 1.00 0.92 982
neutral 0.15 0.15 0.15 47
accuracy 0.97 8193
macro avg 0.67 0.71 0.68 8193
weighted avg 0.97 0.97 0.97 8193
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A MultiNLI adversarial evaluation

Category Premise Relation Hypothesis

Antonyms | love the Cinderella contradicts | hate the Cinderella
story. story.

Numerical Tim has 350 pounds of = contradicts Tim has less than 750
cement in 100, 50, pounds of cement in
and 25 pound bags. 100, 50, and 25 pound

bags.

Word overlap  Possibly no other
country has had such
a turbulent history.

The country’s history
has been turbulent
and true is true

The country’s history
has been turbulent
and false is not true

Negation Possibly no other
country has had such
a turbulent history.

Also ‘Length mismatch’ and ‘Spelling errors’; Naik et al. 2018
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A MultiNLI adversarial evaluation

Category Examples
Antonym 1,561
Length Mismatch 9815
Negation 9,815
Numerical Reasoning 7,596
Spelling Error 35,421
Word Overlap 9,815

Naik et al. 2018
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Original Competence Test Distraction Test Noise Test

MultiNLI Word Length Spelling

System Dev Antonymy | Numerical | Overlap Negation | Mismatch Error

Mat Mis | Mat Mis | Reasoning | Mat Mis | Mat Mis | Mat Mis | Mat Mis
NB 742 748 | 151 193 21.2 472 47.1 (395 400 | 482 473 |51.1 498
CH 737 728 | 11.6 93 303 583 584|524 522|637 650|683 69.1
RC 713 71.6 | 36.4 328 30.2 537 544|495 504 | 48.6 49.6 | 66.6 67.0
IS 703 70.6 | 144 102 28.8 50.0 50.2 | 46.8 46.6 | 58.7 594 | 583 594
BILSTM | 70.2 70.8 | 13.2 9.8 31.3 57.0 585|514 519|497 512|650 65.1
CBOW | 635 642 | 63 3.6 30.3 53.6 55.6 | 437 442 | 48.0 49.3 | 60.3 60.6
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A MultiNLI adversarial evaluation

Accuracy
s
B

—&— Original (ESIM)
- @~ Original (DA)

Outcome 1
(Dataset weakness)

(a) Word Overlap

—3— Challenge (ESIM)
~X- Challenge (DA)

0

—8— Original ESIM)
- @ Original (DA)

10 50 100 400 500 750
# of Fine-Tuning Examples

(b) Negation

1K

—%— Challenge (ESIM)
== Challenge (DA)

Compositionality

Accuracy
~
a3

(Re)COGS Tests

ANLI

Conclusions
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QOutcome 2
(Model weakness)

(c) Spelling Errors

—@— Orginal ESIM)  —¥— Challange (ESIM)
~ @+ Oigial (OA) ~ =+ Ghalenge (OA)
- Original (chardevel)  ++X:++ Challnge (char-evel)

e e b B i e = K =X
0 10 50 100 400 500 750 1K
# of Fine-Tuning Examples

(d) Length Mismatch

—&— Original (ESIM)  —— Challenga (ESIM)
~®- Orgnal DA) =%~ Challenge (DA)

0

10 50 100 400 500 750
# of Fine-Tuning Examples

1K

Accuracy
~
3

——0—-0-0-—0—0--0

Mo e e e e K =X

0 10 50 100 400 500 750 1K
# of Fine-Tuning Examples

Outcome 3

(Dataset artifacts or other problem)

Accuracy

(e) Numerical Reasoning

—%— Challenge (ESIM)
=X~ Challenge (DA)

100 400 500 750 1K
# of Fine-Tuning Examples

Liu et al. 2019;

Antonym not tested because its label is always ‘contradiction’
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Adversarial NLI

Adversarial NLI: A New Benchmark
for Natural Language Understanding

Yixin Nie*, Adina Williams', Emily Dinan’, Mohit Bansal*, Jason Weston', Douwe Kiela'
*UNC Chapel Hill
TFacebook Al Research
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Adversarial NLI: Dataset creation

A direct response to adversarial test failings *NLI datasets:

1. The annotator is presented with a premise sentence and a
condition (entailment, contradiction, neutral).

2. The annotator writes a hypothesis.

3. A state-of-the-art model makes a prediction about the
premise-hypothesis pair.

4. If the model’s prediction matches the condition, the
annotator returns to step 2 to try again.

5. If the model was fooled, the premise-hypothesis pair is
independently validated by other annotators.
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Adversarial NLI: Example

Premise Hypothesis Reason Label Model
A melee weapon is Melee weapons Melee weapons E N
any weapon used in are good for are good for hand

direct hand-to-hand ranged and to hand combat,

combat; by contrast hand-to-hand but NOT ranged.

with ranged weapons combat.
which act at a
distance. The term
“melee” originates in
the 1640s from the
French word “mélée”,
which refers to
hand-to-hand combat,
a close quarters
battle, a brawl, a
confused fight, etc.
Melee weapons can be
broadly divided into
three categories
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Tests

ANLI

DynaSent

Model Data Al A2 A3 ANLI ANLLE | SNLI MNLI-m/-mm
S.M*t 00.0 289 288 19.8 19.9 91.3 86.7/86.4
+Al 442 326 293 35.0 342 91.3 86.3/86.5

BERT +A1+A2 573 452 334 44.6 432 90.9 86.3/86.3
+A1+A2+A3 572 49.0 46.1 50.5 46.3 90.9 85.6/85.4
S,M,FANLI 574 483 435 49.3 44.2 90.4 86.0/85.8

XLNet S,M,FANLI 67.6 50.7 483 55.1 520 | 91.8 89.6/89.4
SM 47.6 254 221 31.1 314 | 926 90.8 /90.6
+F 540 242 224 32.8 33.7 92.7 90.6/90.5

RoBERTa  +F+Al*? 68.7 193 220 35.8 36.8 92.8 90.9/90.7
+F+A1+A2* 712 443 204 43.7 414 | 929 91.0/90.7
S,M,FANLI 73.8 489 444 53.7 49.7 92.6 91.0/90.6

Conclusions

Table 3: Model Performance. ‘Data’ refers to training dataset (‘S’ refers to SNLI, ‘M’ to MNLI dev (-m=matched,

-mm=mismatched), and ‘F’ to FEVER); ‘A1-A3’ refer to the rounds respectively. ‘-E’ refers to test set examples

written by annotators exclusive to the test set. Datasets marked “*™” were used to train the base model for round 7,
and their performance on that round is underlined.
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A vision for future development

Zellers et al. (2019)

“a path for NLP progress going forward: towards benchmarks
that adversarially co-evolve with evolving state-of-the-art
models.”

Nie et al. (2019)

“This process yields a “moving post” dynamic target for NLU
systems, rather than a static benchmark that will eventually
saturate.”
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Dynabench

AN

Rethinking Al Benchmarking

Dynabench is a research platform for dynamic data collection and benchmarking. Static
benchmarks have well-known issues: they saturate quickly, are susceptible to overfitting,
contain exploitable annotator artifacts and have unclear or imperfect evaluation metrics.

This platform in essence is a scientific experiment: can we make faster progress if we collect
data dynamically, with humans and models in the loop, rather than in the old-fashioned
static way?
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Dynabench

NLI (see Nie et al. 2020
QA (see Bartolo et al. 2020
. Sentiment (DynaSent; Potts et al. 2021
. Hate Speech (Vidgen et al. 2020

W

)
)
)
)
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Overview and resources

Data, code, and models:
https://github.com/cgpotts/dynasent

121,634 sentences, across two rounds, each with 5 gold labels

Paper: Potts et al. 2021

Dynabench: https://dynabench.org
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DynaSent overview
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Round 1

!

amy- -
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Model 0: RoBERTa-based classifier

Training data

CR IMDB SST-3 Yelp Amazon
Positive 2,405 12,500 42,672 260,000 1,200,000
Negative 1,366 12,500 34,944 260,000 1,200,000
Neutral 0 0 81,658 130,000 600,000
Total 3,771 25,000 159,274 650,000 3,000,000

Performance on external assessment datasets

SST-3 Yelp Amazon
Dev  Test Dev Test Dev Test
Positive 85.1 89.0 88.3 90.5 89.1 894
Negative 84.1 84.1 88.8 89.1 86.6 86.6
Neutral 45.4 435 58.2 594 53.9 53.7
Macroavg 715 72.2 78.4 79.7 76.5 76.6
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Harvesting sentences

Yelp Open Dataset

An all-purpose dataset for learning

Favor sentences where the review is 1-star and Model 0
predicts positive, and where the review is 5-star and Model 0
predicts negative.
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Validation
ctens |

You will be shown 10 sentences from reviews of products and services. For each, your task is to choose from one of four labels:
« [POSIEIVEL: The sentence conveys information about the author's positive evaluative sentiment.
« [INEGSEVEI: The sentence conveys information about the author's negative evaluative sentiment.
« [Nosentiment : The sentence does not convey anything about the author's positive or negative sentiment.
« [Mixed'sentiment : The sentence conveys a mix of positive and negative sentiment with no clear overall sentiment.

Here are some simple examples of the labels:

s Sentence: This is an under-appreciated little gem of a movie.|
This is [PB8IlVEI because it expresses a positive overall opinion.

« Sentence: T asked for my steak medium-rare, and they delivered this perfectly!
This is [PBSIEVE because it puts a positive spin on an aspect of the author's experience.

« Sentence: The screen on this device is a little too bright.
This is [INEGAEVEN because it negatively evaluates an aspect of the product.

« Sentence: The book is 972 pages long.|
This is |No sentiment. because it describes a factual matter with no evaluative component.

« Sentence: The waiting room is drab but the examination rooms are cheery enough.|
This is [Mixed sentiment| because two different sentiment evaluations are balanced against each other.

« Sentence: The entrees are delicious, but the service is so bad that it's not worth going.|
This is INEGAENVE because the negative statement outweighs the positive one.

1
Sentence: The host did a great job of making me feel unwanted.

~ JBSSifiel: The sentence conveys information about the author's positive evaluative sentiment.
~ INEGEEVEl: The sentence conveys information about the author’s negative evaluative sentiment.
No sentiment : The sentence does not convey anything about the author's positive or negative sentiment.

Mixed sentiment : The sentence conveys a mix of positive and negative sentiment with no clear overall sentiment.
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Resulting dataset

Tests ANLI DynaSent

Dist Majority Label

Train Train Dev Test
Positive 130,045 21,391 1,200 1,200
Negative 86,486 14,021 1,200 1,200
Neutral 215,935 45,076 1,200 1,200
Mixed 39,829 3,900 0 0
No Majority - 10,071 0 0
Total 472,295 94,459 3,600 3,600

Conclusions
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47% adversarial examples
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Model O
SST-3 Yelp Amazon Round 1
Dev  Test Dev  Test Dev  Test Dev Test
Positive 85.1 89.0 88.3 90.5 89.1 894 33.3 333
Negative 84.1 84.1 88.8 89.1 86.6 86.6 33.3 33.3
Neutral 454 435 58.2 59.4 53.9 53.7 33.3 333
Macroavg 715 722 78.4 79.7 76.5 76.6 33.3 333

Five annotators synthesized from our crowd

Note: 614/1,280 workers never disagreed with the majority label.

Dev  Test
Positive 88.1 87.8
Negative 89.2 89.3
Neutral 86.6 86.9
Macroavg 88.0 88.0
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Randomly sampled (short)

examples

Sentence Model 0 Responses

Good food nasty attitude by hostesses . neg mix, mix, mix, neg, neg
Not much of a cocktail menu that | saw. neg neg, neg, neg, heg, heg
| scheduled the work for 3 weeks later. neg neu, heu, heu, heu, pos
| was very mistaken, it was much more! neg neg, pos, pos, pos, pos
It is a gimmick, but when in Rome, | get it. neu mix, mix, mix, neu, neu
Probably a little pricey for lunch. neu mix, neg, neg, neg, neg
But this is strictly just my opinion. neu neu, heu, neu, neu, pos
The price was okay, not too pricey. neu mix, neu, pos, pos, pos
The only downside was service was a little slow. pos  mix, mix, mix, neg, neg
However there is a 2 hr seating time limit. pos mix, neg, neg, neg, neu
With Alex, | never got that feeling. pos neu, neu, heu, heu, pos
Its ran very well by management. pos  pos, pos, pos, pos, pos
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Round 2
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Tests ANLI

DynaSent

Model 1: RoBERTa-based classifier

Training data

Conclusions

CR IMDB SST-3 Yelp Amazon Round 1
Positive 2,405 12,500 128,016 29,841 133,411 339,748
Negative 1,366 12,500 104,832 30,086 133,267 252,630
Neutral 0 0 244,974 30,073 133,322 431,870
Total 3,771 25,000 477,822 90,000 400,000 1,024,248

Performance on external assessment datasets and Round 1

SST-3 Yelp Amazon Round 1
Dev Test Dev  Test Dev  Test Dev Test
Positive 84.6 88.6 80.0 83.1 83.3 83.3 81.0 804
Negative 82.7 84.4 79.5 79.6 78.7 78.8 80.5 80.2
Neutral 40.0 45.2 56.7 56.6 55,5 554 83.1 835
Macroavg 69.1 72.7 72.1 73.1 72.5 725 815 814
Model 0 715 72.2 78.4 79.7 76.5 76.6 33.3 333
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Dynabench interface

BERMS,  About  Tasks~

SENTIMENT ANALYSIS
Find examples that fool the model

BB Your goal: enter a negative ¥  statement that fools the model into predicting positive.

Please pretend you a reviewing a place, product, book or movie

This year's NAACL was very different because of Covid

Model prediction: positive
Well donel You fooled the model, G214
93.79%

Optionally, provide an explanation for your example: Draft. Click out of input box to save.

(Cowi s carly nota goo g

(The mosetprobanly doesrt knowwhat Covia s ]

Model Inspector
#s This year 's NA AC L was very different because of Cov id #/s

The model inspector shows the layer integrated gradients for the input token layer of the model,

" Retract | M Flag | Q Inspect

This year's NAACL was very different because of Covid

Switch to next context Submit
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The prompt condition

SENTIMENT ANALYSIS

Find examples that fool the model

Your goal: enter a negative ~  statement that fools the model into predicting positive or neutral.

Inspirational Prompt (you can use this as a starting point but it might not be negative):

The waitress periodically stopped by to say sorry or that it was coming up soon, but we didn't actually get food until almost 7:50.

The waitress periodically stopped by to say sorry in a very nice way, but

we didn't actually get food until almost 7:50.

Model prediction: positive

You fooled the model! It predicted positive, but a person would say this sentence is

negative.

Thank you! You are required to confirm that you judge this sentence to be negative

before you can submit this HIT!

Yes, | confirm that | judge this sentence to be negative.

No, | judge this sentence to be positive or neutral.

Inspect

45.74%

49.49%

The waitress periodically stopped by to say sorry in a very nice way, but we didn't actually get food until almost 7:50.

Switch to next context m Tries: 1/10
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Validation

Same as in Round 1.
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Resulting dataset

Dist Majority Label

Train Train Dev Test
Positive 32,551 6,038 240 240
Negative 24,994 4,579 240 240
Neutral 16,365 2,448 240 240
Mixed 18,765 3,334 0 0
No Majority - 2,136 0 0
Total 92,675 18,535 720 720

19% adversarial examples
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Conclusions

Model 1
SST-3 Yelp Amazon Round 1 Round 2
Dev Test Dev Test Dev Test Dev Test Dev Test
Positive 84.6 88.6 80.0 83.1 83.3 83.3 81.0 80.4 33.3 333
Negative 82.7 844 795 79.6 78.7 78.8 805 80.2 33.3 333
Neutral 40.0 45.2 56.7 56.6 555 554 83.1 835 33.3 333
Macroavg 69.1 72,7 721 73.1 725 725 815 814 333 333

Five annotators synthesized from our crowd

Dev  Test
Positive 91.0 90.9
Negative 91.2 91.0
Neutral 88.9 88.2
Macroavg 90.4 90.0

Note: 116/244 workers never disagreed with the majority label.
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Conclusions

examples

Sentence Model 1 Responses

The place was somewhat good and not well neg mix, mix, mix, mix, neg
I bought a new car and met with an accident. neg neg, neg, nheg, neg, neg
The retail store is closed for now at least. neg neu, heu, neu, heu, neu
Prices are basically like garage sale prices. neg neg, neu, pos, pos, pos
That book was good. | need to get rid of it. neu  mix, mix, mix, neg, pos
| REALLY wanted to like this place neu mix, neg, neg, neg, pos
I'm going to leave my money for the next vet. neu neg, neu, neu, neu, neu
once the model made a super decision. neu pos, pos, pos, pos, pos
| cook my caribbean food and it was okay pos mix, mix, mix, pos, pos
This concept is really cool in name only. pos mix, neg, neg, neg, neu
Wow, it'd be super cool if you could join us pos neu, neu, heu, heu, pos
Knife cut thru it like butter! It was great. pos  pos, pos, pos, pos, pos
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Key open questions

1. Can adversarial training improve systems? (See Jia and
Liang 2017:84.6; Alzantot et al. 2018:84.3; Liu et al.
2019; lyyer et al. 2018.)

2. What constitutes a fair non-IID generalization test?

3. Can hard behavioral testing provide us with the insights
we need when it comes to certifying systems as
trusworthy? If so, which tests? If not, what should be do
instead?

4. Are systems finding systematic solutions?

5. Where humans generalize in ways that are unsupported
by direct experience, how should Al respond in terms of
system design?
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