Contextual word representations: BERT

Christopher Potts

Stanford Linguistics

CS224u: Natural language understanding

Core model structure

Masked Language Modeling (MLM)

Masked Language Modeling (MLM)

Masked Language Modeling (MLM)

MLM loss function

For Transformer parameters H_{θ} and sequence $\mathbf{x} = [x_1, \dots, x_T]$ with masked version $\hat{\mathbf{x}}$:

$$\max_{\theta} \sum_{t=1}^{T} m_t \log \frac{\exp(e(x_t)^{\mathsf{T}} H_{\theta}(\hat{\mathbf{x}})_t)}{\sum_{x' \in \mathcal{V}} \exp(e(x')^{\mathsf{T}} H_{\theta}(\hat{\mathbf{x}})_t)}$$

where V is the vocabulary, x_t is the actual token at step t, $m_t = 1$ if token t was masked, else 0, and e(x) is the embedding for x.

Binary next sentence prediction pretraining

Positive: Actual sentence sequences

- [CLS] the man went to [MASK] store [SEP]
- he bought a gallon [MASK] milk [SEP]
- Label: IsNext

Negative: Randomly chosen second sentence

- [CLS] the man went to [MASK] store [SEP]
- penguin [MASK] are flight ##less birds [SEP]
- Label: NotNext

Transfer learning and fine-tuning

Tokenization and the BERT embedding space

```
[1]: from transformers import BertTokenizer
[2]: tokenizer = BertTokenizer.from pretrained('bert-base-cased')
[3]: tokenizer.tokenize("This isn't too surprising.")
[3]: ['This', 'isn', "'", 't', 'too', 'surprising', '.']
[4]: tokenizer.tokenize("Encode me!")
[4]: ['En', '##code', 'me', '!']
[5]: tokenizer.tokenize("Snuffleupagus?")
[5]: ['S', '##nu', '##ffle', '##up', '##agu', '##s', '?']
[6]: tokenizer.vocab size
[6]: 28996
```

Initial BERT model releases

Base

• Transformer layers: 12

Hidden representations: 768 dimensions

Attention heads: 12

Total parameters: 110M

Large

Transformer layers: 24

Hidden representations: 1024 dimensions

Attention heads: 16

Total parameters: 340M

Limited to sequences of 512 tokens due to dimensionality of the positional embeddings.

Many new releases at the project site and on Hugging Face.

Known limitations with BERT

- 1. Devlin et al. (2019:§5): admirably detailed but still partial ablation studies and optimization studies.
- Devlin et al. (2019): "The first [downside] is that we are creating a mismatch between pre-training and fine-tuning, since the [MASK] token is never seen during fine-tuning."
- Devlin et al. (2019): "The second downside of using an MLM is that only 15% of tokens are predicted in each batch"
- 4. Yang et al. (2019): "BERT assumes the predicted tokens are independent of each other given the unmasked tokens, which is oversimplified as high-order, long-range dependency is prevalent in natural language"

References I

- Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics.
- Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le. 2019. XLNet: Generalized autoregressive pretraining for language understanding. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages 5753–5763. Curran Associates. Inc.