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Core model structure

Transformer blocks

.
.
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Masked Language Modeling (MLM)

rules

Transformer blocks
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Masked Language Modeling (MLM)

rules

Transformer blocks

X47 X47 X30 X10
ﬁ ﬁ ﬁ ﬁ ﬁ

masking: random word
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MLM loss function

For Transformer parameters Hg and sequence x = [x1, ..., XT]
with masked version X:

max ZT: m¢log exp (e(xt) ' Ho(X):)
t ~
o 3 ey exp(e(x)THe(X)t)
where V is the vocabulary, x; is the actual token at step ¢,

m¢ =1 if token t was masked, else 0, and e(x) is the
embedding for x.
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Binary next sentence prediction pretraining

Positive: Actual sentence sequences

e [CLS] the man went to [MASK] store [SEP]
e he bought a gallon [MASK] milk [SEP]
o Label: IsNext

Negative: Randomly chosen second sentence

e [CLS] the man went to [MASK] store [SEP]
e penguin [MASK] are flight ##less birds [SEP]
o Label: NotNext
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Transfer learning and fine-tuning

your task labels

your task
params
Transformer blocks
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Model structure

MLM MLM loss Next Sentence Prediction Fine-tuning Tokenization

Model releases

Limitations

Tokenization and the BERT embedding space

[1]:

[2]:

[3]:

[3]:

[4]:

[4]:

[5]:

[5]:

[6]:

[6]:

from transformers import BertTokenizer

tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
tokenizer.tokenize("This isn't too surprising.")

['This', 'isn', "'", 't', 'too', 'surprising', '.']
tokenizer.tokenize("Encode me!")

['En', '##code', 'me', '!']

tokenizer.tokenize ("Snuffleupagus?")

['S', '##nu', '##ffle', '##up', '##agu', '##s', '?']
tokenizer.vocab_size

28996
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Initial BERT model releases

Base

Transformer layers: 12

Hidden representations: 768 dimensions
Attention heads: 12

Total parameters: 110M

Large

Transformer layers: 24

Hidden representations: 1024 dimensions
Attention heads: 16

Total parameters: 340M

Limited to sequences of 512 tokens due to dimensionality of
the positional embeddings.

Many new releases at the project site and on Hugging Face.
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https://github.com/google-research/bert
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Known limitations with BERT

1. Devlin et al. (2019:85): admirably detailed but still
partial ablation studies and optimization studies.

2. Devlin et al. (2019): “The first [downside] is that we are
creating a mismatch between pre-training and
fine-tuning, since the [MASK] token is never seen during
fine-tuning.”

3. Devlin et al. (2019): “The second downside of using an
MLM is that only 15% of tokens are predicted in each
batch”

4. Yang et al. (2019): “BERT assumes the predicted tokens
are independent of each other given the unmasked
tokens, which is oversimplified as high-order, long-range
dependency is prevalent in natural language”
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